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SOME QUOTIENTS ON A BCK-ALGEBRA GENERATED BY A
FUZZY SET

A. HASANKHANI AND H. SAADAT

Abstract. First we show that the cosets of a fuzzy ideal µ in a BCK-algebra

X form another BCK-algebra
X

µ
(called the fuzzy quotient BCK-algebra of X

by µ). Also we show that
X

µ
is a fuzzy partition of X and we prove several

some isomorphism theorems. Moreover we prove that if the associated fuzzy

similarity relation of a fuzzy partition P of a commutative BCK-algebra is

compatible, then P is a fuzzy quotient BCK-algebra. Finally we define the
notion of a coset of a fuzzy ideal and an element of a BCK-algebra and prove

related theorems.

1. Introduction

In 1966, the notion of a BCK-algebra was introduced by Y. Imai and K. Iseki
[4]. Zadeh in 1965 [13] introduced the notion of fuzzy subset of a nonempty set A
as a function from A to [0,1]. Ougen Xi extended these ideas to BCK-algebra [11].
In this paper the notions of fuzzy quotient BCK-algebra induced by fuzzy ideals,
and the concept of a quotient algebra of a BCK-algebra, generated by a fuzzy ideal
and an element are defined and then related theorems are proved.

2. Preliminaries

Definition 2.1. [4, 7] (a) A BCK-algebra is a nonempty set X with a binary
operation ”*” and a constant 0 satisfying the following axioms:
(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0
(ii) (x ∗ (x ∗ y)) ∗ y = 0
(iii) x ∗ x = 0
(iv) x ∗ y = 0 and y ∗ x = 0 imply that x = y
(v) 0 ∗ x = 0 , forall x, y, z ∈ X ·

(b) A nonempty set A of a BCK-algebra is said to be an ideal of X if the following
conditions hold:
(i) 0 ∈ A
(ii) x ∈ X , y ∗ x ∈ A imply that y ∈ A , forall y ∈ X

(c) A BCK-algebra X is said to be commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x), for all
x, y ∈ X. x ∗ (x ∗ y) is denoted by x ∧ y
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Lemma 2.2. [8] Let X be a BCK-algebra. Then,
(i) x ∗ 0 = x , ∀x ∈ X
(ii) [(y1 ∗ x) ∗ (y2 ∗ x)] ∗ (y1 ∗ y2) = 0 , ∀x, y1, y2 ∈ X
(iii) (x ∗ y) ∗ z = (x ∗ z) ∗ y , ∀x, y, z ∈ X
(iv) (x ∗ y) ∗ x = 0 ∀x, y ∈ X
(v) (x ∧ y) ∗ x = (x ∧ y) ∗ y , ∀x, y ∈ X

Definition 2.3. [9, 13] (i) For r ∈ [0, 1] fuzzy point xr is defined to be fuzzy subset
of X such that

xr(y) =
{
r if y = x
0 if y 6= x

(ii) If µ, η are two fuzzy subsets of X. Then

µ ⊆ η ⇔ µ(x) ≤ η(x) , ∀x ∈ X

Definition 2.4. [11] A fuzzy sunset µ of a BCK-algebra X is a fuzzy ideal if it
satisfies
(i) µ(0) = 1 , ∀x ∈ X
(ii) µ(x) ≥ min{µ(x ∗ y), µ(y)} , ∀x, y ∈ X

Lemma 2.5. [3] Let X be a BCK-algebra and µ a fuzzy ideal of X. Then
(i) µ(x ∗ y) ≥ min{µ(x ∗ z), µ(y)(z ∗ y)} , ∀x, y, z ∈ X
(ii) if x ∗ y = 0 then µ(x) ≥ µ(y) , ∀x, y ∈ X ·

Definition 2.6. Let µ be a fuzzy subset of X and α ∈ [0, 1]. Then by a level subset
µα of µ we mean the set {x ∈ X : µ(x) ≥ α}.

Definition 2.7. Let X and Y be two sets, and f a function of X into Y . Let µ
and η be fuzzy subsets of X and Y , respectively. Then f(µ) the image of µ under
f , is a fuzzy subset of Y :

f(µ)(y) =

{
sup

f(x)=y

µ(x) if f−1(y) 6= ∅

0 if f−1(y) = ∅ ,

for all y ∈ Y , f−1(η) the pre-image of η under f , is a fuzzy subset of X such that

f−1(η)(x) = η(f(x)) , ∀x ∈ X ·

Lemma 2.8. [11] (i) Let µ be a fuzzy ideal of BCK-algebra X. For all α ∈ [0, 1],
if µα 6= Φ, then µα is an ideal of X.
(ii) Let f : X → X ′ be an epimorphism of BCK-algebra and µ′ a fuzzy ideal of X ′.
Then f−1(µ′) is a fuzzy ideal of X.

Definition 2.9. [10] Let X be a nonempty set and R a fuzzy subset of X × X.
Then R is called a fuzzy similarity relation on X if
(i) R(x, x) = 1 , ∀x ∈ X
(ii) R(x, y) = R(y, x)
(iii) R(x, z) ≥ min{R(x, y), R(y, z)} ·
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Definition 2.10. [2, 10, 12] A fuzzy partition of a set X is a subset P of [0, 1]X

whose members satisfy the following conditions:
(i) Every N ∈ P is normalized; i.e.N(x) = 1, for at least one N ∈ X;
(ii) For each x ∈ X, there is exactly one N ∈ P with N(x) = 1;
(iii) If M,N ∈ P and, x, y ∈ X are such that M(x) = N(y) = 1, Then

M(y) = N(x) = sup{min{M(z), N(z)} : z ∈ X} ·

Given a fuzzy partition P of X and element x ∈ X, we denote the unique element
of P with value 1 at x by [x]p. It is called the fuzzy similarity class of x.

Lemma 2.11. [10, 12] A canonical one-to-one correspondence between fuzzy par-
tition and fuzzy similarity relations is defined by sending a fuzzy partition P of X
to its fuzzy similarity relation RP ∈ [0, 1]X×X , where for all x, y ∈ X, we have
RP (x, y) = [x]P (y).

The inverse correspondence is defined by sending a fuzzy similarity relation R
on X to its fuzzy partition PR ⊆ [0, 1]X given by PR = {R〈x〉 : x ∈ X}, where
R〈x〉 is the fuzzy subset of X defined for all y ∈ X by R〈x〉(y) = R(x, y).

Lemma 2.12. [10] Let R be a fuzzy similarity relation on X, and a, b ∈ X. Then

R〈a〉 = R〈b〉 ⇔ R(a, b) = 1 ·

Definition 2.13. Let X and X ′ be general sets, f : X → X ′ a function, and µ
a fuzzy subset of X, If f(x) = f(y) implies that µ(x) = µ(y), then µ is called
f -invariant.

Theorem 2.14. [5] Let A be an ideal of X. The relation ∼A on X is defined by

x ∼A y ⇔ x ∗ y ∈ A , y ∗ x ∈ A ·

i) The relation ∼A is an equivalence relation.

ii) Let Cx be the equivalence class of x and
X

A
= {Cx : x ∈ X}.

Then (
X

A
, o, Co), is a BCK-algebra where Cxocy = Cx∗y,∀x, y ∈ X.

Definition 2.15. [8] A BCK-algebra X is called bounded if there is an element 1
of X such that x ∗ 1 = 0 for all x ∈ X.

Lemma 2.16. [8] Let X be a bounded and commutative BCK-algebra then
(i) (x ∧ y) ∧ z = x ∧ (y ∧ z) for all x, y, z ∈ X
(ii) x ∧ 1 = 1 ∧ x = x

Definition 2.17. [1] A fuzzy ideal µ of a BCK-algebra X is said to be prime if:

µ(x ∧ y) = µ(x) or µ(x ∧ y) = µ(y) , for all x, y ∈ X ·

3. Fuzzy cosets

From now on, X is a BCK-algebra and µ is a fuzzy ideal of X.
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Definition 3.1. Let x ∈ X. Then the fuzzy subset µx which is defined by

µx(y) = min{µ(x ∗ y), µ(y ∗ x)}

is called a fuzzy coset of µ. The set of all fuzzy cosets of µ is denoted by
X

µ
.

Lemma 3.2. Let µ be a fuzzy relation on X which is defined by

µ(x, y) = µx(y) , ∀x, y ∈ X ·
Then µ is a fuzzy similarity relation on X.

Proof. Clearly the conditions (i) and (ii) of Definition 2.9 hold. Now by Lemma
2.5 (i), for all x, y, z ∈ X,

µ(x ∗ z) ≥ min{µ(x ∗ y), µ(y ∗ z)} , µ(z ∗ x) ≥ min{µ(z ∗ y), µ(y ∗ x)}
Therefore the condition (iii) of Definition 2.9 holds. �

Remark 3.3. Clearly µ〈x〉 = µx,∀x ∈ X.

Lemma 3.4. Let x, y1, y2 ∈ X and µy1
= µy2

. Then

µ
x∗y1

= µ
x∗y2

, µ
y1∗x

= µ
y2∗x

Proof. Since µy1
= µy2

, then by Lemma 2.12, we get that µ(y1∗y2) = µ(y2∗y1) = 1.
On the other hand, from Definition 2.1 (a) (i) and Lemma 2.5 (ii) we obtain that:

µ((x ∗ y1) ∗ (x ∗ y2)) ≥ µ(y2 ∗ y1) ·
Thus µ((x ∗ y1) ∗ (x ∗ y2)) = 1. Similarly µ((x ∗ y2) ∗ (x ∗ y1)) = 1.
Consequently µ(x∗y1, x∗y2) = 1 and hence by Remark 3.3 and Lemma 2.12 we have
µ

x∗y1
= µ

x∗y2
. Similarly, by Lemma 2.2 (ii) we can show that µ

y1∗x
= µ

y2∗x
. �

Lemma 3.5. Let x, y, x′, y′ ∈ X,µx = µx′ and µy = µy′ . Then µ
x∗y

= µ
x′∗y′ .

Proof. By Lemma 3.4 µ
x∗y

= µ
x′∗y

and µ
x′∗y

= µ
x′∗y′ . Therefore µ

x∗y
= µ

x′∗y′ . �

Theorem 3.6. (
X

µ
,O, µ0) is a BCK-algebra where

O :
X

µ
× X

µ
→ X

µ
(µx, µy) 7→ µ

x∗y
·

Proof. The proof follows from Lemma 3.5. �

Theorem 3.7.
X

µ
is a fuzzy partition of X.

Proof. The proof follows from Lemmas 3.2 and 2.11. �

Theorem 3.8. There exists an ideal K of
X

µ
such that

(X
µ )

K
' X

µα

for all α ∈ [0, 1].
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Proof. Let α ∈ [0, 1]. By Lemma 2.8 (i), µα is an ideal of X. Define ϕ :
X

µ
→ X

µα

by ϕ(µx) = Cx for all x ∈ X. If µx = µy, then by Lemma 2.12 µ(x, y) = 1 and
hence µ(x ∗ y) = µ(y ∗ x) = 1 ≥ α, which implies that x ∗ y ∈ µα and y ∗ x ∈ µα.
hence Cx = Cy. Thus ϕ is well-defined. Clearly ϕ is an epimorphism. Now let
K = Kerϕ. The theorem is proved. �

Definition 3.9. By µ∗, we mean the set {x ∈ X : µ(x) = 1}. Clearly µ∗ is an
ideal of X.

Theorem 3.10.
X

µ
' X

µ∗
.

Proof. It is enough to show that the epimorphism ϕ, defined in the proof of theorem

3.8, is one-to-one. To do this, Let Cx, Cy ∈
X

µ∗
be such that Cx = Cy for x, y ∈ X.

Then x ∗ y ∈ µ∗ and y ∗ x ∈ µ∗. In other words, µ(x ∗ y) = µ(y ∗ x) = 1 and hence
by Remark 3.3 and Lemmas 2.12 and 3.2, µx = µy. �

Theorem 3.11. Let f be a BCK-homomorphism from X onto X ′ and µ an f-

invariant fuzzy ideal of X such that µ∗ ⊆ Kerf . Then
X

µ
' X ′.

Proof. Define g :
X

µ
→ X ′ by g(µx) = f(x). By Lemmas 2.12 and 3.2, we have for

all x, x′ ∈ X
µx = µx′ ⇒ x ∗ x′, x′ ∗ x ∈ µ∗ ⇒ x ∗ x′, x′ ∗ x ∈ Kerf ⇒ f(x) = f(x′)

Therefore g is well-defined. Clearly g is an epimorphism.
Now let µx ∈ Kerg. Then f(x) = f(0) = 0. Since µ is f -invariant, hence µ(x) =
µ(0). From Definition 2.1 (a) (v) and Lemma 2.2 (i) we obtain that µ(x ∗ 0) =
µ(0 ∗ x) = µ(0) = 1.
Hence, µ(x, 0) = 1, which implies that µx = µ0, by Lemma 2.12. Thus Kerg =
{µ0}, and hence g is one-to-one. �

Theorem 3.12. Let f be a BCK-homomorphism from X onto X ′ and µ∗ = Kerf .
Then

X

µ
' X ′ ·

Proof. Since
X

Kerf
' X ′, we conclude that

X

µ∗
' X ′. Also by theorem 3.10

X

µ
' X

µ∗
. Thus

X

µ
∼= X ′. �

Lemma 3.13. Let
∏

µ : X → X

µ
be a function defined by

∏
µ(x) = µx. Then

(i) 0
∏

µ is an epimorphism
(ii) if µ = χ{0}, then

∏
µ is an isomorphism. in other words,

X ' X

µ
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Proof. (i) The proof is easy.
(ii) If µx = µy, for x, y ∈ X, then µ(x ∗ y) = µ(y ∗ x) = 1. Thus x ∗ y = y ∗ x = 0.
Hence x = y, therefore

∏
µ is one-to-one. �

Theorem 3.14. Let f be a BCK-homomorphism from X into X ′, µ a fuzzy ideal
of X and µ′ a fuzzy ideal of X ′ such f(µ) ⊆ µ′. Then there is a homomorphism

of BCK-algebras f∗ :
X

µ
→ X ′

µ′
such that f∗

∏
µ =

∏
µ′ f . In another words, the

following diagram is commutative.

X
f→ X ′

↓
∏

µ
↓

∏
µ′

X
µ

→
f∗ X′

µ′

Proof. Define f∗ :
X

µ
→ X ′

µ′
by f∗(µx) = µ′

f(x)
. At first we show that f∗ is well-

defined. To do this let µ
x1

= µ
x2

. Then by Lemma 2.12 µ(x1, x2) = 1, and hence
µ(x1 ∗ x2) = µ(x2 ∗ x1) = 1. Now we have

µ′(f(x1) ∗ f(x2)) = µ′(f(x1 ∗ x2))
= f−1(µ′)(x1 ∗ x2)
≥ µ(x1 ∗ x2) , since f(µ) ⊆ µ′

= 1 ·

Similarly µ′(f(x2) ∗ f(x1)) = 1, thus µ′
f(x1)

= µ′
f(x2)

by Lemma 2.12. It is easily
seen that f∗ is a homomorphism and f∗

∏
µ =

∏
µ′ f . �

Theorem 3.15. (Isomorphism theorem) Let f : X → X ′ be an epimorphism of
BCK-algebras, and µ′ a fuzzy ideal of X ′. Then

X

f−1(µ′)
' X ′

µ′
·

Proof. By Lemma 2.8 (ii), µ = f−1(µ′) is a fuzzy ideal of X. Since f is onto, then

f(µ) = f(f−1(µ′)) = µ′ ·

By Theorem 3.14, the mapping f∗ is a homomorphism. Clearly f∗ is onto. To
show that f∗ is one-to-one, suppose that µa ∈ Kerf∗, for a ∈ X then we have
µ′0 = f∗(µa) = µ′

f(a)
it follows that µ′(f(a) ∗ 0) = 1. In other words µ′(f(a)) = 1.

Hence µ(a ∗ 0) = µ(a) = (f−1(µ′))(a) = µ′(f(a)) = 1. On the other hand 1 =
µ(0) = µ(0 ∗ a). Consequently µa = µ0. This completes the proof. �

Corollary 3.16. (Homomorphism Theorem). Let f : X → X ′ be an epimorphism

of BCK-algebras. Then
X

f−1(χ{0})
' X ′.

Proof. The proof follows from Theorem 3.15 and Lemma 3.13 (ii). �
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Definition 3.17. A fuzzy similarity relation R on X is said to be compatible if for
each x, y, z ∈ X we have:

R(x ∗ z, y ∗ z) ≥ R(x, y) and R(z ∗ x, z ∗ y) ≥ R(x, y)

Theorem 3.18. Let R be a compatible fuzzy similarity on X. Then R〈0〉 is a fuzzy
ideal of X.

Proof. Clearly R〈0〉(0) = 1. Now let x, y ∈ X we have

R〈0〉(x) = R(0, x) ≥ min{R(0, x ∗ y), R(x ∗ y, x)} , by Definition 2.9 · (iii)
= min{R(0, x ∗ y), R(x ∗ y, x ∗ 0)} by Lemma 2.2(i)
≥ min{R(0, x ∗ y), R(y, 0)} by Definition 3.17
= min{R〈0〉(x ∗ y), R〈0〉(y)} ·

�

Theorem 3.19. Let X be a commulative BCK-algebra, P a fuzzy partition of X

such that its fuzzy similarity RP (see Lemma 2.11) is compatible. Then
X

RP 〈0〉
= P .

Proof. For simplicity of notation, we will denote RP 〈0〉 by η. At first we show that

P ⊆ X

η
. To do this, let M ∈ P . Then by Definition 2.10 (i) there exists x ∈ X

such that M(x) = 1. On the other hand, for all y ∈ X, [y]P (y) = 1. Thus by
Definition 2.1- (iii) and 3.17 we have:

M(y) = [y]P (x) = RP (x, y) = RP (y, x) ≤ RP (y ∗ y, x ∗ y) = RP (0, x ∗ y) ,
and also

M(y) = Rp(x, y) ≤ Rp(x ∗ x, y ∗ x) = RP (0, y ∗ x) ·
Therefore

(1) M(y) ≤ ηx(y) , ∀y ∈ X ·
On the other hand we obtain that

ηx(y) ≤ RP (0, x ∗ y) ≤ RP (x ∗ 0, x ∗ (x ∗ y)) = RP (x, x ∗ (x ∗ y))
and

ηx(y) ≤ RP (0, y ∗ x) ≤ RP (y ∗ 0, y ∗ (y ∗ x)) = RP (y, y ∗ (y ∗ x)) ·
Since X is commutative, it follows that

ηx(y) ≤ min{RP (x, x ∧ y), RP (x ∧ y, y)} ≤ RP (x, y)

Hence

(2) ηx(y) ≤ RP (x, y) = [y]P (x) = M(y) , ∀y ∈ X ·
From (1) and (2) we obtain that

M = ηx , ∃x ∈ X ·
Thus

(3) P ⊆ X

η
·



40 A. Hasankhani and H. Saadat

Now let ηx ∈ X

η
. Then by Definition 2.10 (ii), there exists N ∈ P such that

N(x) = 1. As we have proved, N = ηx, which implies that

(4)
X

η
⊆ P ·

Now the proof follows from (3) and (4). �

4. Cosets of a BCK-algebra generated by a fuzzy ideal and an element

Definition 4.1. Let a ∈ X. We define the relation ”∼a” on X as follows.

x ∼a y ⇔ µ(x ∗ y) ≥ µ(a), µ(y ∗ x) ≥ µ(a) for all x, y ∈ X

Theorem 4.2. x ∼a y is an equivalence relation on X.

Proof. By Definition 2.1 and 2.4 (i), ”∼a” is reflexive and clearly ”∼a” is symmetric.
Now we prove that ”∼a” is transitive. To do this let x, y, z ∈ X, x ∼a y and y ∼a z.
Then we have

µ((x ∗ z) ∗ (x ∗ y)) ≥ min{µ(((x ∗ z) ∗ (x ∗ y)) ∗ (y ∗ z)), µ(y ∗ z)}
by Definition 2.4(ii)

= min{µ(0), µ(y ∗ z)} , by Definition 2.1(i)
= µ(y ∗ z) , by Definition 2.1(i)
≥ µ(a) , since y ∼a z · .

Hence:

µ(x ∗ z) ≥ min{µ((x ∗ z) ∗ (x ∗ y)), µ(x ∗ y)}
= min{µ(0), µ(a)} , since x ∼a y

Therefor
µ(x ∗ z) ≥ µ(a) ·

Similarly by Lemma 2.2 (ii), we can show that

µ(z ∗ x) ≥ µ(a) ·

Hence x ∼a z. �

Definition 4.3. Let a ∈ X. For x ∈ X, the equivalence class of x with respect to
”∼a” is denoted by Cx(a, µ) and it is called the coset of x in X and generated by
a and µ.

Remark 4.4. The set of all cosets generated by a and µ is denoted by CX(a, µ).

Corollary 4.5. CX(a, µ) is a partition for X.

Proposition 4.6. Let a, x ∈ X. Then a ∈ Cx(a, µ) if and only if

Cx(a, µ) = C0(a, µ) ·
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Proof. Let Cx(a, µ) = C0(a, µ). By Definition 2.1 (iv) and Lemma 2.2. (i) it follows
that a ∈ C0(a, µ). Hence a ∈ Cx(a, µ). Conversely, let a ∈ Cx(a, µ). Then we have

µ(x ∗ 0) = µ(x) ≥ min{µ(x ∗ a), µ(a)} ≥ µ(a) ·
On the other hand

µ(0 ∗ x) = µ(0) ≥ µ(a) ·
Hence 0 ∼a x, therefore C0(a, µ) = Cx(a, µ). �

Proposition 4.7. For all x, y, a ∈ X, x ∗ y, y ∗ x ∈ C0(a, µ) if and only if

Cx(a, µ) = Cy(a, µ) ·
Proof. The proof follows from Definition 2.1 (iii) and Lemma 2.2. (i). �

Proposition 4.8. y ∈ Cx(0, µ) implies that µ(x) = µ(y).

Proof. The proof follows from Lemma 2.5 (ii), and Definition 2.4 (ii). �

Proposition 4.9. For a ∈ X, C0(a, µ) is a subalgebra and an ideal of X.

Proof. Let x, y ∈ C0(a, µ). Then by Lemma 2.2 (iv) and 2.5 (ii) we have µ(x∗y) ≥
µ(x) ≥ µ(a) and µ(y ∗ x) ≥ µ(y) ≥ µ(a). Since

µ((x ∗ y) ∗ 0) = µ(x ∗ y), µ((y ∗ x) ∗ 0) = µ(y ∗ x) ,
hence x ∗ y ∈ C0(a, µ). Therefore C0(a, µ) is a subalgebra of X. From Definition
2.5 and some calculation we get that, C0(a, µ) is an ideal of X. �

Lemma 4.10. For all x, a, b ∈ X,
(i) Cx(a ∧ b, µ) ⊆ Cx(a, µ) ∩ Cx(b, µ),
(ii) if µ is a fuzzy prime ideal of X, then Cx(a ∧ b, µ) = Cx(a, µ) ∩ Cx(b, µ).

Proof. (i) From Lemma 2.2. (v) and 2.5 (ii) we can prove (i).
(ii) follows from Definition 2.17. �

Theorem 4.11. Let X be a bounded, commutative BCK-algebra, µ a fuzzy prime
ideal of X, x ∈ X, and Cx(X,µ) = {Cx(a, µ) : a ∈ X}. Define the operation ”.”
On Cx(X,µ) as follows: Cx(a, µ) · Cx(b, µ) = Cx(a ∧ b, µ). Then (Cx(X,µ), ·) is a
monoid.

Proof. The proof follows from Lemmas 4.10 (ii) and 2.16 (ii). �

Lemma 4.12. Let a, y1, y2 ∈ X and y1 ∼a y2. Then

x ∗ y1 ∼a x ∗ y2 and y1 ∗ x ∼a y2 ∗ x , for all x ∈ X ·
Proof. Since y1 ∼a y2, we have µ(y1 ∗ y2) ≥ µ(a) and µ(y2 ∗ y1) ≥ µ(a). On the
other hand by Definition 2.1 (i) we get that

((x ∗ y1) ∗ (x ∗ y2)) ∗ (y2 ∗ y1) = 0 ·
Hence from Definition 2.4.

µ((x ∗ y1) ∗ (x ∗ y2)) ≥ min{µ[((x ∗ y1) ∗ (x ∗ y2)) ∗ (y2 ∗ y1)], µ(y2 ∗ y1)}
≥ min{µ(0), µ(a)} , since y1 ∼a y2 = µ(a)
= µ(a) ·
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Similarly we have µ((x ∗ y2) ∗ (x ∗ y1)) ≥ µ(a). Consequently

x ∗ y1 ∼a x ∗ y2
Similarly from Lemma 2.2 (ii) we get that y1 ∗ x ∼a y2 ∗ x. �

Lemma 4.13. Let a ∈ X, We define ⊕ : CX(a, µ) × CX(a, µ) → CX(a, µ) as
follows

Cx(a, µ)⊕ Cy(a, µ) = Cx∗y(a, µ) , ∀x, y ∈ X ·
Then ⊕ is an operation on CX(a, µ).

Proof. Let Cx1(a, µ) = Cx2(a, µ) and Cy1(a, µ) = Cy2(a, µ). Then x1 ∼a x2 and
y1 ∼a y2. Hence by Lemma 4.12 we have x1 ∗ y1 ∼a x2 ∗ y2. ALso y1 ∼a y2 implies
that x1 ∗ y1 ∼a x1 ∗ y2. Therefore from Theorem 4.2 we have x1 ∗ y1 ∼a x2 ∗ y2. In
other words Cx1∗y1(a, µ) = Cx2∗y2(a, µ). �

Theorem 4.14. Let a ∈ X. Then (CX(a, µ), C0(a, µ),⊕) is a BCK-algebra called
the quotient algebra generated by µ and a.

Proof. Clearly the axioms (i), (ii), (iii), (v) of Definition 2.1 hold. Now let

Cx(a, µ)⊕ Cy(a, µ) = Cy(a, µ)⊕ Cx(a, µ) = C0(a, µ)

Then
Cx∗y(a, µ) = C0(a, µ) = Cy∗x(a, µ) ·

Hence by proposition 4.7 we have:

Cx(a, µ) = Cy(a, µ) ·
�

Theorem 4.15. Let f : X → X ′ be an epimorphism of BCK-algebras and µ be
f-invariant and µ

µ(a) ⊆ Kerf , for a ∈ X. Then Cx(a, µ) ' X ′.

Proof. Define ψ : CX(a, µ) → X ′ by, ψ(Cx(a, µ)) = f(x), for all x ∈ X.
Let Cx(a, µ) = Cy(a, µ), where x, y ∈ X. Then x ∗ y, y ∗ x ∈ µ

µ(a) ⊆ Kerf .
Hence f(x) = f(y). In other words ψ is well defined. Clearly ψ is an epimorphism.
Now let f(x) = f(y), for x, y ∈ X. Then f(x ∗ y) = f(y ∗ x) = f(0).
Since µ is f-invariant, we have

µ(x ∗ y) = µ(0) ≥ µ(a) , µ(y ∗ x) = µ(0) ≥ µ(a) ·
Therefore Cx(a, µ) = Cy(a, µ), which implies that ψ is one-to-one. �
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