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SOME QUOTIENTS ON A BCK-ALGEBRA GENERATED BY A
FUZZY SET

A. HASANKHANI AND H. SAADAT

ABSTRACT. First we show that the cosets of a fuzzy ideal p in a BCK-algebra
X

X form another BCK-algebra — (called the fuzzy quotient BCK-algebra of X
I

by p). Also we show that — is a fuzzy partition of X and we prove several

some isomorphism theorems. Moreover we prove that if the associated fuzzy
similarity relation of a fuzzy partition P of a commutative BCK-algebra is
compatible, then P is a fuzzy quotient BCK-algebra. Finally we define the
notion of a coset of a fuzzy ideal and an element of a BCK-algebra and prove
related theorems.

1. Introduction

In 1966, the notion of a BCK-algebra was introduced by Y. Imai and K. Iseki
[4]. Zadeh in 1965 [13] introduced the notion of fuzzy subset of a nonempty set A
as a function from A to [0,1]. Ougen Xi extended these ideas to BCK-algebra [11].
In this paper the notions of fuzzy quotient BCK-algebra induced by fuzzy ideals,
and the concept of a quotient algebra of a BCK-algebra, generated by a fuzzy ideal
and an element are defined and then related theorems are proved.

2. Preliminaries

Definition 2.1. [4, 7] (a) A BCK-algebra is a nonempty set X with a binary
operation ”*” and a constant 0 satisfying the following axioms:

(i)  ((@xy)*(@x2))*(z%y) =0

(11)  (zx(zxy))xy=0

(tit) xxx=0

(iv) xzxy=0and y=*z =0 imply that z =y

(v Oxx=0, forall z,y,z € X -
(b) A nonempty set A of a BCK-algebra is said to be an ideal of X if the following
conditions hold:
) 0eA
1) z€X,yxxzec Aimply that y € A, forall y € X
(c) A BCK-algebra X is said to be commutative if z x (x xy) = y * (y * x), for all
z,y € X. zx(x*y) is denoted by x Ay

(i
(i
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Lemma 2.2. [8] Let X be a BCK-algebra. Then,

(i) xx0=z,VreX

i) [y xa)* (yaxa)) x(y1xy2) =0, Va,y1, 920 € X

i) (zxy)xz=(r*x2)*xy , Va,y,z€X

w) (zxy)xx=0 Ve,yeX
(zAy)xz=(xAy)*xy, Vo,ye X

Definition 2.3. [9, 13] (7) For r € [0, 1] fuzzy point x, is defined to be fuzzy subset

of X such that
_frif y=z
(#3) If u, n are two fuzzy subsets of X. Then
pCne plr) <nx), vee X

Definition 2.4. [11] A fuzzy sunset p of a BCK-algebra X is a fuzzy ideal if it

satisfies
(1) pO)=1,vVereX

(i) plz) > minfu(z y), pu()} , Yoy € X

Lemma 2.5. [3] Let X be a BCK-algebra and p a fuzzy ideal of X. Then

(1) plrxy) >min{p(z*2), w(y)(zxy)} , Vo,y,2 € X
() ifxxy=0 then p(z) > ply) , Ve,y € X -

Definition 2.6. Let u be a fuzzy subset of X and « € [0, 1]. Then by a level subset
o Of f1 we mean the set {z € X : u(z) > a}.

Definition 2.7. Let X and Y be two sets, and f a function of X into Y. Let u
and 7 be fuzzy subsets of X and Y, respectively. Then f(u) the image of p under
f, is a fuzzy subset of Y

sup p(x) if f(y) #0
f)(y) =1 f@=y .
0 it fly)=0,

for all y € Y, f~1(n) the pre-image of  under f, is a fuzzy subset of X such that

i) = n(f(@), VeeX -

Lemma 2.8. [11] (i) Let p be a fuzzy ideal of BCK-algebra X. For all a € [0,1],
if o # @, then ugy is an ideal of X.
(i1) Let f : X — X' be an epimorphism of BCK-algebra and p' a fuzzy ideal of X'.
Then f=Y(u') is a fuzzy ideal of X.

Definition 2.9. [10] Let X be a nonempty set and R a fuzzy subset of X x X.
Then R is called a fuzzy similarity relation on X if

(1) Rz,x)=1, VerelX

(i1)  R(z,y) = R(y,x)
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Definition 2.10. [2, 10, 12] A fuzzy partition of a set X is a subset P of [0,1]%
whose members satisfy the following conditions:

(1) Every N € P is normalized; i.e.N(z) = 1, for at least one N € X;

(1) For each = € X, there is exactly one N € P with N(z) = 1;

(#43) If M, N € P and, z,y € X are such that M(z) = N(y) =1, Then

M(y) = N(z) = sup{min{M(z), N(2)} : z € X} -

Given a fuzzy partition P of X and element x € X, we denote the unique element
of P with value 1 at = by [z],. It is called the fuzzy similarity class of z.

Lemma 2.11. [10, 12] A canonical one-to-one correspondence between fuzzy par-
tition and fuzzy similarity relations is defined by sending a fuzzy partition P of X
to its fuzzy similarity relation Rp € [0,1]X*X  where for all x,y € X, we have

Rp(z,y) = [z]p(y).

The inverse correspondence is defined by sending a fuzzy similarity relation R
on X to its fuzzy partition Pr C [0,1]% given by Pr = {R(x) : * € X}, where
R(x) is the fuzzy subset of X defined for all y € X by R(x)(y) = R(z,y).

Lemma 2.12. [10] Let R be a fuzzy similarity relation on X, and a,b € X. Then
R{a) = R(b) & R(a,b) =1 -

Definition 2.13. Let X and X’ be general sets, f : X — X’ a function, and p
a fuzzy subset of X, If f(x) = f(y) implies that u(x) = u(y), then p is called
f-invariant.

Theorem 2.14. [5] Let A be an ideal of X. The relation ~4 on X is defined by
r~paySrxye A, yxx e A-
i) The relation ~ 4 is an equivalence relation.

X
1) Let Cy be the equivalence class of x and i {Cy 2 € X}.

X
Then (—,0,C,), is a BCK-algebra where Cyocy = Cyuy, VY, y € X.

Za
Definition 2.15. [8] A BCK-algebra X is called bounded if there is an element 1
of X such that z+1 =0 for all z € X.

Lemma 2.16. [8] Let X be a bounded and commutative BCK-algebra then
(i) (@Ay)ANz=zA(YyAz) foralzyzeX
() zAl=1ANz==x

Definition 2.17. [1] A fuzzy ideal p of a BCK-algebra X is said to be prime if:

e Ay) = p(x) or plx ANy) = puly) , forall z,y € X -

3. Fuzzy cosets
From now on, X is a BCK-algebra and p is a fuzzy ideal of X.
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Definition 3.1. Let x € X. Then the fuzzy subset u, which is defined by
pia(y) = min{p(z * y), py = )}

X
is called a fuzzy coset of u. The set of all fuzzy cosets of p is denoted by —.
i

Lemma 3.2. Let i be a fuzzy relation on X which is defined by
ﬁ(xay) :ﬂz(y) ) Vx,yGX :
Then @ is a fuzzy similarity relation on X.
Proof. Clearly the conditions (i) and (ii) of Definition 2.9 hold. Now by Lemma
2.5 (i), for all z,y,z € X,
pla * z) = min{p(z *y), ply = 2)} , pz xx) > min{u(z «y), ply =)}
Therefore the condition (iii) of Definition 2.9 holds. O

Remark 3.3. Clearly f(z) = p,, Vo € X.
Lemma 3.4. Let z,y1,y2 € X and p, = p,,. Then

Y1
Py, = Hawyy 0 Hyjve = Hygua
Proof. Since p, = p,_, then by Lemma 2.12, we get that p(y1+y2) = pu(ye+*y1) = 1.
On the other hand, from Definition 2.1 (a) (¢) and Lemma 2.5 (i) we obtain that:
p((z xy1) * (2 xy2)) > p(y2 * y1) -

Thus p((x *y1) * (z *xy2)) = 1. Similarly pu((z*y2) * (x xy1)) = 1.
Consequently f(x*y1, x+y2) = 1 and hence by Remark 3.3 and Lemma 2.12 we have
Houyy = Moy, - Similarly, by Lemma 2.2 (ii) we can show that u O

Y1 *T = 'U’yz*m'
Lemma 3.5. Let z,y,2',y' € X,y = pgr and pry = pr. Then p

Try Nzl*y/ .

Proof. By Lemma 34 p,, =p, andp, =p . Therefore p_, = p ]

THY x/ *xy x! *xy ! xy’ Txy x/xy! "
X .
Theorem 3.6. (—,0, o) is a BCK-algebra where
"

0. X X X
1 M 1
(vaﬂy) = sy

Proof. The proof follows from Lemma 3.5. (]
X

Theorem 3.7. — is a fuzzy partition of X.
I

Proof. The proof follows from Lemmas 3.2 and 2.11. a

X
Theorem 3.8. There exists an ideal K of — such that
I

(

=

~

|

)X
Ha

for all o € [0, 1].
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X X
Proof. Let a € [0,1]. By Lemma 2.8 (3), pq is an ideal of X. Define ¢ : — — —

o pa
by ¢(tz) = Cy for all x € X. If py = p,, then by Lemma 2.12 G(z,y) = 1 and

hence p(z *y) = pu(y * ¢) = 1 > «, which implies that x *y € p, and y x x € pi,.
hence C, = Cy. Thus ¢ is well-defined. Clearly ¢ is an epimorphism. Now let
K = Kery. The theorem is proved. ]

Definition 3.9. By p*, we mean the set {x € X : u(x) = 1}. Clearly p* is an
ideal of X.

X X
Theorem 3.10. — ~ —.

pwoop

Proof. 1t is enough to show that the epimorphism ¢, defined in the proof of theorem
X
3.8, is one-to-one. To do this, Let C,,Cy € — be such that C,, = C), for z,y € X.

Then x xy € p* and y * 2 € p*. In other words, u(z *y) = u(y * z) = 1 and hence
by Remark 3.3 and Lemmas 2.12 and 3.2, p1; = f1y. |

Theorem 3.11. Let f be a BCK-homomorphism from X onto X' and u an f-
X

invariant fuzzy ideal of X such that p* C Kerf. Then — ~ X'.
I

X
Proof. Define g : — — X' by g(p1z) = f(z). By Lemmas 2.12 and 3.2, we have for
]
all z,2' € X
Yo = o = ¥z 2 xxep* = zxa 2" xx € Kerf = f(x) = f(a)
Therefore g is well-defined. Clearly g is an epimorphism.
Now let p, € Kerg. Then f(z) = f(0) = 0. Since p is f-invariant, hence u(x) =
1(0). From Definition 2.1 (a) (v) and Lemma 2.2 (i) we obtain that u(x x 0) =

w0+ 2) = p(0) = 1.
Hence, 7i(z,0) = 1, which implies that p, = po, by Lemma 2.12. Thus Kerg =
{10}, and hence g is one-to-one. O

Theorem 3.12. Let f be a BCK-homomorphism from X onto X' and u* = Kerf.
Then

{ : X/ .
1
. X / X /
Proof. Since ~ X' we conclude that — =~ X'. Also by theorem 3.10
Kerf w*
X X X
— o~ —. Thus — = X", O
poop I

X
Lemma 3.13. Let [[,: X — — be a function defined by [],(x) = pz. Then
L

(i) 01, s an epimorphism
(id) if u = xgoy, then Hu is an isomorphism. in other words,

X
X ~—

I
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Proof. (i) The proof is easy.
(1) If py = py, for ,y € X, then p(r*y) = ply*z) =1. Thuszxy =y*z = 0.
Hence x = y, therefore [] ., 1s one-to-one. (]

Theorem 3.14. Let f be a BCK-homomorphism from X into X', p a fuzzy ideal

of X and 1 a fuzzy ideal of X' such f(u) C p'. Then there is a homomorphism
X X'

of BCK-algebras f* : ; — ? such that f* Hu = Hu’ f- In another words, the

following diagram is commutative.

x 4 x
LI, LTI,
X o x'
AT

X X'
Proof. Define f*: — — —- by f(pe) = ,LL;( . At first we show that f* is well-
K K ’

defined. To do this let p, = p, . Then by Lemma 2.12 fi(x1,72) = 1, and hence
w(zy * x2) = p(xe x 1) = 1. Now we have
P (1)« f(22)) = p/(f(a1x22))
FHW ) (1 % @2)
> p(zy*a2), since f(u) C p

/

= 1 .
Similarly p/(f(z2) * f(z1)) = 1, thus M/f(m) = u’f(mz) by Lemma 2.12. It is easily
seen that f* is a homomorphism and f* Hu = HH, f. O

Theorem 3.15. (Isomorphism theorem) Let f : X — X' be an epimorphism of
BCK-algebras, and i’ a fuzzy ideal of X'. Then

_XxX X

Fi0 = w
Proof. By Lemma 2.8 (ii), p = f~1(y') is a fuzzy ideal of X. Since f is onto, then

Flp) = f(F7H W) ="

By Theorem 3.14, the mapping f* is a homomorphism. Clearly f* is onto. To
show that f* is one-to-one, suppose that u, € Kerf*, for a € X then we have
o = f* (1) = u;(a) it follows that p/(f(a) % 0) = 1. In other words p/(f(a)) = 1.
Hence p(a *0) = u(a) = (f~1(1'))(a) = ¢/ (f(a)) = 1. On the other hand 1 =
#(0) = (0 % a). Consequently p1, = pto. This completes the proof. O

Corollary 3.16. (Homomorphism Theorem). Let f : X — X' be an epimorphism

X
of BCK-algebras. Then ———— ~ X'.
f (X{o})

Proof. The proof follows from Theorem 3.15 and Lemma 3.13 (4i). g
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Definition 3.17. A fuzzy similarity relation R on X is said to be compatible if for
each x,y,z € X we have:

R(z*z,y*z) > R(z,y) and R(z * z,z xy) > R(x,y)

Theorem 3.18. Let R be a compatible fuzzy similarity on X. Then R(0) is a fuzzy
ideal of X.

Proof. Clearly R(0)(0) =1. Now let =,y € X we have

R(0)(z) R(0,z) > min{R(0,z * y), R(z *y,x)} , by Definition 2.9 - (i)
min{R(0,z xy), R(x xy,z*0)} by Lemma 2.2()
min{R(0,z *xy), R(y,0)} by Definition 3.17
min{ R(0)(z x y), R{0)(y)} -

AV |

O
Theorem 3.19. Let X be a commulative BCK-algebra, P a fuzzy partition of X

X
such that its fuzzy similarity Rp (see Lemma 2.11) is compatible. Then Rp(0) =P
P

Proof. For simplicity of notation, we will denote Rp(0) by 7. At first we show that
X
P C —. To do this, let M € P. Then by Definition 2.10 (7) there exists x € X

n
such that M(z) = 1. On the other hand, for all y € X, [y]p(y) = 1. Thus by
Definition 2.1- (¢4¢) and 3.17 we have:

M(y) = [ylp(z) = Rp(x,y) = Rp(y,x) < Rp(y *y, 2 +y) = Rp(0,2 % y) ,
and also
M(y) = Ry(z,y) < Ry(x * z,y xx) = Rp(0,y x ) -
Therefore
(1) M(y) <n.(y) , VyeX -
On the other hand we obtain that
Ne(y) < Rp(0,zxy) < Rp(x*0,z% (zxxy)) = Rp(x,x* (x*y))
and
Ne(y) < Rp(0,y xx) < Rp(y+0,y* (yxx)) = Rp(y,y * (y = x)) -
Since X is commutative, it follows that
Ne(y) < min{Rp(z,z Ay), Rp(z Ay,y)} < Rp(z,y)
Hence
(2) 1:(y) < Rp(z,y) = [ylp(v) = M(y) , Yy € X -
From (1) and (2) we obtain that
M=n, , JzeX-
Thus

(3) pPCc—.

X
n
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X
Now let n, € —. Then by Definition 2.10 (i), there exists N € P such that
n
N(z) = 1. As we have proved, N = 7,,, which implies that

X
4 ~—cp.
(4) ;
Now the proof follows from (3) and (4). O

4. Cosets of a BCK-algebra generated by a fuzzy ideal and an element
Definition 4.1. Let a € X. We define the relation ”"~,” on X as follows.

x o~y e plexy) > pla), wlyxx) > pla) forall z,y € X
Theorem 4.2. = ~, y is an equivalence relation on X.

Proof. By Definition 2.1 and 2.4 (i), ”~,” is reflexive and clearly ”~,” is symmetric.
Now we prove that ”~,” is transitive. To do this let ,y,z € X, x ~, y and y ~, z.
Then we have

p((sz)* (zxy)) = min{u(((zx2)* (@ xy) * (y*2)),my=2)}
by Definition 2.4(ii)

min{p(0), u(y * z)} , by Definition 2.1(%)

w(y *z) , by Definition 2.1(%)

> p(a), sincey~gz -.
Hence:
(e xz) = min{p((z*z)* (x*y)), plzxy)}
min{u(0), u(a)} , since z ~qy
Therefor

p(x * z) = p(a) -
Similarly by Lemma 2.2 (ii), we can show that
e+ 2) > p(a) -

Hence x ~ z. U

Definition 4.3. Let a € X. For x € X, the equivalence class of x with respect to
"~," is denoted by C.(a, ) and it is called the coset of z in X and generated by
a and p.

Remark 4.4. The set of all cosets generated by a and p is denoted by Cx (a, ).
Corollary 4.5. Cx(a,u) is a partition for X.
Proposition 4.6. Let a,x € X. Then a € Cy(a, p) if and only if

Ci(a, ) = Co(a, p) -
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Proof. Let Cy(a, ) = Co(a, p). By Definition 2.1 (iv) and Lemma 2.2. (7) it follows
that a € Cy(a, ). Hence a € Cy(a, ). Conversely, let a € Cy(a, ). Then we have
(e %0) = p(z) > minfu(z 5 0), u(a)} > p(a) -

On the other hand
w0+ x) = p(0) = p(a) -
Hence 0 ~, z, therefore Cy(a, ) = Cy(a, p). O

Proposition 4.7. For all z,y,a € X, z*xy,y *xx € Co(a, p) if and only if

Cola 1) = Cyla, )

Proof. The proof follows from Definition 2.1 (¢i) and Lemma 2.2. (). O
Proposition 4.8. y € C,(0, p) implies that p(x) = u(y).

Proof. The proof follows from Lemma 2.5 (i7), and Definition 2.4 (). O

Proposition 4.9. Fora € X, Cy(a,n) is a subalgebra and an ideal of X .
Proof. Let z,y € Co(a, ). Then by Lemma 2.2 (4v) and 2.5 (i) we have p(z*xy) >
p(x) = p(a) and p(y * x) = p(y) = p(a). Since

p(zxy) #0) = p(z x y), u((y * x) * 0) = p(y * x) ,
hence z xy € Co(a, p). Therefore Cy(a, 1) is a subalgebra of X. From Definition
2.5 and some calculation we get that, Co(a, 1) is an ideal of X. O

Lemma 4.10. For all x,a,b € X,
(i) Cux(a Nb, p) € Cula, p) N Cr(b, p),
(i) if 1 is a fuzzy prime ideal of X, then Cyp(a Ab,pu) = Cyp(a, ) N Cy(b, p).

Proof. (i) From Lemma 2.2. (v) and 2.5 (i) we can prove ().
(ii) follows from Definition 2.17. O

Theorem 4.11. Let X be a bounded, commutative BCK-algebra, p a fuzzy prime
ideal of X, x € X, and C(X,p) = {Cy(a,p) : a € X}. Define the operation ”.”
On Cy(X, 1) as follows: Cy(a,p) - Cy(b, ) = Cypla Ab, ). Then (Cyp(X,p),-) is a
monoid.

Proof. The proof follows from Lemmas 4.10 (i) and 2.16 (i3). O
Lemma 4.12. Let a,y1,y2 € X and y1 ~q y2. Then

TxY| ~g THYs and YL *T ~gyoxx , forallx € X -
Proof. Since y1 ~, y2, we have pu(yy * y2) > u(a) and u(y2 * y1) > p(a). On the
other hand by Definition 2.1 (i) we get that
((z*y1) * (@ *y2)) = (y2xy1) =0 -
Hence from Definition 2.4.

p((rxyn) * (x*y2)) > min{p[((z*y1) * (v xy2)) * (Y2 * y1)], w(y2 * y1)}
> min{u(0), u(a)} , since y1 ~q y2 = p(a)

wa) -
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Similarly we have u((z * y2) * (z * y1)) > p(a). Consequently
T*Yl ~a THY2

Similarly from Lemma 2.2 (i) we get that y1 * & ~g yo * . O

Lemma 4.13. Let a € X, We define @ : Cx(a,pu) X Cx(a,u) — Cx(a,u) as
follows

Ca:(avu) ® Cy(avl’é) = CI*y(auu) , Vz,ye X -
Then @ is an operation on Cx(a, ).

Proof. Let Cy, (a,p) = Cy,(a,p) and Cy, (a, p) = Cy,(a, ). Then zq ~, z2 and
Y1 ~q Yo. Hence by Lemma 4.12 we have x1 * y; ~g T2 * y2. ALso y1 ~4 yo implies
that x1 % y; ~g x1 * y2. Therefore from Theorem 4.2 we have z1 x 1 ~g T2 * y2. In
other words Cy, .y, (@, 1t) = Cryuy, (@, ). O

Theorem 4.14. Let a € X. Then (Cx(a, ), Co(a, 1), ®) is a BCK-algebra called
the quotient algebra generated by p and a.

Proof. Clearly the axioms (), (i7), (i47), (v) of Definition 2.1 hold. Now let

Ca(a, p) ® Cy(a, ) = Cyla, p) ® Ca(a, p) = Co(a, p)
Then
Casyla, p) = Co(a, 1) = Cysz(a, p) -
Hence by proposition 4.7 we have:

Cala ) = Cyla,p) -
O

Theorem 4.15. Let f : X — X' be an epimorphism of BCK-algebras and p be
frinvariant and p, . € Kerf, fora € X. Then Cypla,p) ~ X',

Proof. Define ¢ : Cx(a, n) — X' by, ¥(Cy(a, ) = f(z), for all z € X.

Let Cy(a,p) = Cy(a, p), where z,y € X. Then z*xy,y*z € p,,, € Kerf.

Hence f(x) = f(y). In other words ¢ is well defined. Clearly ¢ is an epimorphism.
Now let f(x) = f(y), for x,y € X. Then f(z*xy) = f(y*xz) = f(0).

Since p is f-invariant, we have

p(x = y) = p(0) = pla) , ply =) = p(0) = p(a) -
Therefore Cy(a, 1) = Cy(a, ), which implies that ¢ is one-to-one. O
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