SOME QUOTIENTS ON A BCK-ALGEBRA GENERATED BY A FUZZY SET

A. HASANKHANI AND H. SAADAT

ABSTRACT. First we show that the cosets of a fuzzy ideal μ in a BCK-algebra X form another BCK-algebra $\frac{X}{\mu}$ (called the fuzzy quotient BCK-algebra of X by μ). Also we show that $\frac{X}{\mu}$ is a fuzzy partition of X and we prove several some isomorphism theorems. Moreover we prove that if the associated fuzzy similarity relation of a fuzzy partition P of a commutative BCK-algebra is compatible, then P is a fuzzy quotient BCK-algebra. Finally we define the notion of a coset of a fuzzy ideal and an element of a BCK-algebra and prove related theorems.

1. Introduction

In 1966, the notion of a BCK-algebra was introduced by Y. Imai and K. Iseki [4]. Zadeh in 1965 [13] introduced the notion of fuzzy subset of a nonempty set A as a function from A to [0,1]. Ougen Xi extended these ideas to BCK-algebra [11]. In this paper the notions of fuzzy quotient BCK-algebra induced by fuzzy ideals, and the concept of a quotient algebra of a BCK-algebra, generated by a fuzzy ideal and an element are defined and then related theorems are proved.

2. Preliminaries

Definition 2.1. [4, 7] (a) A BCK-algebra is a nonempty set X with a binary operation "*" and a constant 0 satisfying the following axioms:

- (i) ((x*y)*(x*z))*(z*y) = 0
- (ii) (x*(x*y))*y=0
- (iii) x * x = 0
- (iv) x * y = 0 and y * x = 0 imply that x = y
- (v) 0 * x = 0, forall $x, y, z \in X$.
- (b) A nonempty set A of a BCK-algebra is said to be an ideal of X if the following conditions hold:
- (i) $0 \in A$
- (ii) $x \in X$, $y * x \in A$ imply that $y \in A$, for all $y \in X$
- (c) A BCK-algebra X is said to be commutative if x*(x*y)=y*(y*x), for all $x,y\in X$. x*(x*y) is denoted by $x\wedge y$

Received: November 2003; Accepted: April 2004

 $Key\ words\ and\ Phrases:$ Fuzzy similarity relations, Fuzzy partitions, Fuzzy quotient, Fuzzy ideal, Cosets, Quotient algebra.

Lemma 2.2. [8] Let X be a BCK-algebra. Then,

- $(i) x * 0 = x , \forall x \in X$
- (ii) $[(y_1 * x) * (y_2 * x)] * (y_1 * y_2) = 0$, $\forall x, y_1, y_2 \in X$
- $(iii) \quad (x*y)*z = (x*z)*y \quad , \quad \forall x,y,z \in X$
- (iv) (x*y)*x=0 $\forall x,y \in X$
- (v) $(x \wedge y) * x = (x \wedge y) * y , \forall x, y \in X$

Definition 2.3. [9, 13] (i) For $r \in [0, 1]$ fuzzy point x_r is defined to be fuzzy subset of X such that

$$x_r(y) = \begin{cases} r & \text{if} \quad y = x \\ 0 & \text{if} \quad y \neq x \end{cases}$$

(ii) If μ , η are two fuzzy subsets of X. Then

$$\mu \subseteq \eta \Leftrightarrow \mu(x) \le \eta(x) , \ \forall x \in X$$

Definition 2.4. [11] A fuzzy sunset μ of a BCK-algebra X is a fuzzy ideal if it satisfies

- (i) $\mu(0) = 1$, $\forall x \in X$
- (ii) $\mu(x) \ge \min\{\mu(x*y), \mu(y)\}\ , \ \forall x, y \in X$

Lemma 2.5. [3] Let X be a BCK-algebra and μ a fuzzy ideal of X. Then

- (i) $\mu(x * y) \ge \min\{\mu(x * z), \mu(y)(z * y)\}\ , \ \forall x, y, z \in X$
- (ii) if x * y = 0 then $\mu(x) \ge \mu(y)$, $\forall x, y \in X$.

Definition 2.6. Let μ be a fuzzy subset of X and $\alpha \in [0,1]$. Then by a level subset μ_{α} of μ we mean the set $\{x \in X : \mu(x) \geq \alpha\}$.

Definition 2.7. Let X and Y be two sets, and f a function of X into Y. Let μ and η be fuzzy subsets of X and Y, respectively. Then $f(\mu)$ the image of μ under f, is a fuzzy subset of Y:

$$f(\mu)(y) = \begin{cases} \sup_{f(x)=y} \mu(x) & \text{if} \quad f^{-1}(y) \neq \emptyset \\ 0 & \text{if} \quad f^{-1}(y) = \emptyset \end{cases},$$

for all $y \in Y$, $f^{-1}(\eta)$ the pre-image of η under f, is a fuzzy subset of X such that

$$f^{-1}(\eta)(x) = \eta(f(x))$$
, $\forall x \in X$.

Lemma 2.8. [11] (i) Let μ be a fuzzy ideal of BCK-algebra X. For all $\alpha \in [0,1]$, if $\mu_{\alpha} \neq \Phi$, then μ_{α} is an ideal of X. (ii) Let $f: X \to X'$ be an epimorphism of BCK-algebra and μ' a fuzzy ideal of X'.

(ii) Let $f: X \to X'$ be an epimorphism of BCK-algebra and μ' a fuzzy ideal of X'. Then $f^{-1}(\mu')$ is a fuzzy ideal of X.

Definition 2.9. [10] Let X be a nonempty set and R a fuzzy subset of $X \times X$. Then R is called a fuzzy similarity relation on X if

- (i) R(x,x) = 1, $\forall x \in X$
- (ii) R(x,y) = R(y,x)
- (iii) $R(x,z) \ge \min\{R(x,y), R(y,z)\}$.

Definition 2.10. [2, 10, 12] A fuzzy partition of a set X is a subset P of $[0,1]^X$ whose members satisfy the following conditions:

- (i) Every $N \in P$ is normalized; i.e. N(x) = 1, for at least one $N \in X$;
- (ii) For each $x \in X$, there is exactly one $N \in P$ with N(x) = 1;
- (iii) If $M, N \in P$ and, $x, y \in X$ are such that M(x) = N(y) = 1, Then

$$M(y) = N(x) = \sup\{\min\{M(z), N(z)\} : z \in X\}$$
.

Given a fuzzy partition P of X and element $x \in X$, we denote the unique element of P with value 1 at x by $[x]_p$. It is called the fuzzy similarity class of x.

Lemma 2.11. [10, 12] A canonical one-to-one correspondence between fuzzy partition and fuzzy similarity relations is defined by sending a fuzzy partition P of X to its fuzzy similarity relation $R_P \in [0,1]^{X \times X}$, where for all $x, y \in X$, we have $R_P(x,y) = [x]_P(y)$.

The inverse correspondence is defined by sending a fuzzy similarity relation R on X to its fuzzy partition $P_R \subseteq [0,1]^X$ given by $P_R = \{R\langle x \rangle : x \in X\}$, where $R\langle x \rangle$ is the fuzzy subset of X defined for all $y \in X$ by $R\langle x \rangle(y) = R(x,y)$.

Lemma 2.12. [10] Let R be a fuzzy similarity relation on X, and $a, b \in X$. Then

$$R\langle a\rangle = R\langle b\rangle \Leftrightarrow R(a,b) = 1$$
.

Definition 2.13. Let X and X' be general sets, $f: X \to X'$ a function, and μ a fuzzy subset of X, If f(x) = f(y) implies that $\mu(x) = \mu(y)$, then μ is called f-invariant.

Theorem 2.14. [5] Let A be an ideal of X. The relation \sim_A on X is defined by

$$x \sim_A y \Leftrightarrow x * y \in A , y * x \in A$$

- i) The relation \sim_A is an equivalence relation.
- ii) Let C_x be the equivalence class of x and $\frac{X}{A} = \{C_x : x \in X\}.$

Then
$$(\frac{X}{A}, o, C_o)$$
, is a BCK-algebra where $C_x \circ c_y = C_{x*y}, \forall x, y \in X$.

Definition 2.15. [8] A BCK-algebra X is called bounded if there is an element 1 of X such that x * 1 = 0 for all $x \in X$.

Lemma 2.16. [8] Let X be a bounded and commutative BCK-algebra then

- (i) $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ for all $x, y, z \in X$
- (ii) $x \wedge 1 = 1 \wedge x = x$

Definition 2.17. [1] A fuzzy ideal μ of a BCK-algebra X is said to be prime if:

$$\mu(x \wedge y) = \mu(x) \text{ or } \mu(x \wedge y) = \mu(y)$$
 , for all $x,y \in X$ ·

3. Fuzzy cosets

From now on, X is a BCK-algebra and μ is a fuzzy ideal of X.

Definition 3.1. Let $x \in X$. Then the fuzzy subset μ_x which is defined by

$$\mu_x(y) = \min\{\mu(x * y), \mu(y * x)\}\$$

is called a fuzzy coset of μ . The set of all fuzzy cosets of μ is denoted by $\frac{X}{\mu}$.

Lemma 3.2. Let $\overline{\mu}$ be a fuzzy relation on X which is defined by

$$\overline{\mu}(x,y) = \mu_x(y)$$
 , $\forall x, y \in X$.

Then $\overline{\mu}$ is a fuzzy similarity relation on X.

Proof. Clearly the conditions (i) and (ii) of Definition 2.9 hold. Now by Lemma 2.5 (i), for all $x, y, z \in X$,

$$\mu(x*z) \ge \min\{\mu(x*y), \mu(y*z)\}\ , \ \mu(z*x) \ge \min\{\mu(z*y), \mu(y*x)\}\$$

Therefore the condition (iii) of Definition 2.9 holds.

Remark 3.3. Clearly $\overline{\mu}\langle x\rangle = \mu_x, \forall x \in X$.

Lemma 3.4. Let $x, y_1, y_2 \in X$ and $\mu_{y_1} = \mu_{y_2}$. Then

$$\mu_{x*y_1} = \mu_{x*y_2} \ , \ \mu_{y_1*x} = \mu_{y_2*x}$$

Proof. Since $\mu_{y_1} = \mu_{y_2}$, then by Lemma 2.12, we get that $\mu(y_1 * y_2) = \mu(y_2 * y_1) = 1$. On the other hand, from Definition 2.1 (a) (i) and Lemma 2.5 (ii) we obtain that:

$$\mu((x*y_1)*(x*y_2)) \ge \mu(y_2*y_1)$$
.

Thus $\mu((x * y_1) * (x * y_2)) = 1$. Similarly $\mu((x * y_2) * (x * y_1)) = 1$.

Consequently $\overline{\mu}(x*y_1,x*y_2)=1$ and hence by Remark 3.3 and Lemma 2.12 we have $\mu_{x*y_1}=\mu_{x*y_2}$. Similarly, by Lemma 2.2 (ii) we can show that $\mu_{y_1*x}=\mu_{y_2*x}$.

Lemma 3.5. Let $x, y, x', y' \in X$, $\mu_x = \mu_{x'}$ and $\mu_y = \mu_{y'}$. Then $\mu_{x*y} = \mu_{x'*y'}$.

Proof. By Lemma 3.4 $\mu_{x*y}=\mu_{x'*y}$ and $\mu_{x'*y}=\mu_{x'*y'}$. Therefore $\mu_{x*y}=\mu_{x'*y'}$.

Theorem 3.6. $(\frac{X}{\mu}, O, \mu_0)$ is a BCK-algebra where

$$O: \frac{X}{\mu} \times \frac{X}{\mu} \to \frac{X}{\mu}$$
$$(\mu_x, \mu_y) \mapsto \mu_{x*y} \cdot$$

Proof. The proof follows from Lemma 3.5.

Theorem 3.7. $\frac{X}{\mu}$ is a fuzzy partition of X.

Proof. The proof follows from Lemmas 3.2 and 2.11.

Theorem 3.8. There exists an ideal K of $\frac{X}{\mu}$ such that

$$\frac{\left(\frac{X}{\mu}\right)}{K} \simeq \frac{X}{\mu_{\alpha}}$$

for all $\alpha \in [0,1]$.

Proof. Let $\alpha \in [0,1]$. By Lemma 2.8 (i), μ_{α} is an ideal of X. Define $\varphi: \frac{X}{\mu} \to \frac{X}{\mu_{\alpha}}$ by $\varphi(\mu_x) = C_x$ for all $x \in X$. If $\mu_x = \mu_y$, then by Lemma 2.12 $\overline{\mu}(x,y) = 1$ and hence $\mu(x*y) = \mu(y*x) = 1 \ge \alpha$, which implies that $x*y \in \mu_{\alpha}$ and $y*x \in \mu_{\alpha}$. hence $C_x = C_y$. Thus φ is well-defined. Clearly φ is an epimorphism. Now let $K = Ker\varphi$. The theorem is proved.

Definition 3.9. By μ^* , we mean the set $\{x \in X : \mu(x) = 1\}$. Clearly μ^* is an ideal of X.

Theorem 3.10. $\frac{X}{\mu} \simeq \frac{X}{\mu^*}$.

Proof. It is enough to show that the epimorphism φ , defined in the proof of theorem 3.8, is one-to-one. To do this, Let $C_x, C_y \in \frac{X}{\mu^*}$ be such that $C_x = C_y$ for $x, y \in X$. Then $x * y \in \mu^*$ and $y * x \in \mu^*$. In other words, $\mu(x * y) = \mu(y * x) = 1$ and hence by Remark 3.3 and Lemmas 2.12 and 3.2, $\mu_x = \mu_y$.

Theorem 3.11. Let f be a BCK-homomorphism from X onto X' and μ an f-invariant fuzzy ideal of X such that $\mu^* \subseteq Kerf$. Then $\frac{X}{\mu} \simeq X'$.

Proof. Define $g: \frac{X}{\mu} \to X'$ by $g(\mu_x) = f(x)$. By Lemmas 2.12 and 3.2, we have for all $x, x' \in X$

$$\mu_x = \mu_{x'} \Rightarrow x * x', x' * x \in \mu^* \Rightarrow x * x', x' * x \in Kerf \Rightarrow f(x) = f(x')$$

Therefore g is well-defined. Clearly g is an epimorphism.

Now let $\mu_x \in Kerg$. Then f(x) = f(0) = 0. Since μ is f-invariant, hence $\mu(x) = \mu(0)$. From Definition 2.1 (a) (v) and Lemma 2.2 (i) we obtain that $\mu(x*0) = \mu(0*x) = \mu(0) = 1$.

Hence, $\overline{\mu}(x,0) = 1$, which implies that $\mu_x = \mu_0$, by Lemma 2.12. Thus $Kerg = \{\mu_0\}$, and hence g is one-to-one.

Theorem 3.12. Let f be a BCK-homomorphism from X onto X' and $\mu^* = Kerf$. Then

$$\frac{X}{u} \simeq X'$$
.

Proof. Since $\frac{X}{Kerf} \simeq X'$, we conclude that $\frac{X}{\mu^*} \simeq X'$. Also by theorem 3.10 $\frac{X}{\mu} \simeq \frac{X}{\mu^*}$. Thus $\frac{X}{\mu} \cong X'$.

Lemma 3.13. Let $\prod_{\mu} : X \to \frac{X}{\mu}$ be a function defined by $\prod_{\mu} (x) = \mu_x$. Then

- (i) $0 \prod_{\mu}$ is an epimorphism
- (ii) if $\mu = \chi_{\{0\}}$, then \prod_{μ} is an isomorphism. in other words,

$$X \simeq \frac{X}{\mu}$$

Proof. (i) The proof is easy.

(ii) If $\mu_x = \mu_y$, for $x, y \in X$, then $\mu(x * y) = \mu(y * x) = 1$. Thus x * y = y * x = 0. Hence x = y, therefore \prod_{μ} is one-to-one.

Theorem 3.14. Let f be a BCK-homomorphism from X into X', μ a fuzzy ideal of X and μ' a fuzzy ideal of X' such $f(\mu) \subseteq \mu'$. Then there is a homomorphism of BCK-algebras $f^*: \frac{X}{\mu} \to \frac{X'}{\mu'}$ such that $f^* \prod_{\mu} = \prod_{\mu'} f$. In another words, the following diagram is commutative.

$$\begin{array}{ccc} X & \stackrel{f}{\rightarrow} & X' \\ \downarrow \prod_{\mu} & & \downarrow \prod_{\mu'} \\ \frac{X}{\mu} & \stackrel{f}{f^*} & \frac{X'}{\mu'} \end{array}$$

Proof. Define $f^*: \frac{X}{\mu} \to \frac{X'}{\mu'}$ by $f^*(\mu_x) = \mu'_{f(x)}$. At first we show that f^* is well-defined. To do this let $\mu_{x_1} = \mu_{x_2}$. Then by Lemma 2.12 $\overline{\mu}(x_1, x_2) = 1$, and hence $\mu(x_1 * x_2) = \mu(x_2 * x_1) = 1$. Now we have

$$\mu'(f(x_1) * f(x_2)) = \mu'(f(x_1 * x_2))$$

$$= f^{-1}(\mu')(x_1 * x_2)$$

$$\geq \mu(x_1 * x_2) , \text{ since } f(\mu) \subseteq \mu'$$

$$= 1 .$$

Similarly $\mu'(f(x_2)*f(x_1))=1$, thus $\mu'_{f(x_1)}=\mu'_{f(x_2)}$ by Lemma 2.12. It is easily seen that f^* is a homomorphism and $f^*\prod_{\mu}=\prod_{\mu'}f$.

Theorem 3.15. (Isomorphism theorem) Let $f: X \to X'$ be an epimorphism of BCK-algebras, and μ' a fuzzy ideal of X'. Then

$$\frac{X}{f^{-1}(\mu')} \simeq \frac{X'}{\mu'} \ .$$

Proof. By Lemma 2.8 (ii), $\mu = f^{-1}(\mu')$ is a fuzzy ideal of X. Since f is onto, then

$$f(\mu) = f(f^{-1}(\mu')) = \mu'$$
.

By Theorem 3.14, the mapping f^* is a homomorphism. Clearly f^* is onto. To show that f^* is one-to-one, suppose that $\mu_a \in Kerf^*$, for $a \in X$ then we have $\mu'_0 = f^*(\mu_a) = \mu'_{f(a)}$ it follows that $\mu'(f(a) * 0) = 1$. In other words $\mu'(f(a)) = 1$. Hence $\mu(a * 0) = \mu(a) = (f^{-1}(\mu'))(a) = \mu'(f(a)) = 1$. On the other hand $1 = \mu(0) = \mu(0 * a)$. Consequently $\mu_a = \mu_0$. This completes the proof.

Corollary 3.16. (Homomorphism Theorem). Let $f: X \to X'$ be an epimorphism of BCK-algebras. Then $\frac{X}{f^{-1}(\chi_{\{0\}})} \simeq X'$.

Proof. The proof follows from Theorem 3.15 and Lemma 3.13 (ii). \Box

Definition 3.17. A fuzzy similarity relation R on X is said to be compatible if for each $x, y, z \in X$ we have:

$$R(x*z, y*z) \ge R(x, y)$$
 and $R(z*x, z*y) \ge R(x, y)$

Theorem 3.18. Let R be a compatible fuzzy similarity on X. Then $R\langle 0 \rangle$ is a fuzzy ideal of X.

Proof. Clearly R(0)(0) = 1. Now let $x, y \in X$ we have

$$\begin{split} R\langle 0\rangle(x) &= R(0,x) \geq \min\{R(0,x*y),R(x*y,x)\} \text{ , by Definition 2.9} \cdot (iii) \\ &= \min\{R(0,x*y),R(x*y,x*0)\} \quad \text{ by Lemma 2.2}(i) \\ &\geq \min\{R(0,x*y),R(y,0)\} \quad \text{ by Definition 3.17} \\ &= \min\{R\langle 0\rangle(x*y),R\langle 0\rangle(y)\} \cdot \end{split}$$

Theorem 3.19. Let X be a commulative BCK-algebra, P a fuzzy partition of X such that its fuzzy similarity R_P (see Lemma 2.11) is compatible. Then $\frac{X}{R_P\langle 0\rangle} = P$.

Proof. For simplicity of notation, we will denote $R_P\langle 0 \rangle$ by η . At first we show that $P \subseteq \frac{X}{\eta}$. To do this, let $M \in P$. Then by Definition 2.10 (i) there exists $x \in X$ such that M(x) = 1. On the other hand, for all $y \in X$, $[y]_P(y) = 1$. Thus by Definition 2.1- (iii) and 3.17 we have:

$$M(y) = [y]_P(x) = R_P(x,y) = R_P(y,x) \le R_P(y*y,x*y) = R_P(0,x*y) ,$$

and also

$$M(y) = R_p(x, y) \le R_p(x * x, y * x) = R_P(0, y * x)$$
.

Therefore

(1)
$$M(y) \le \eta_x(y) , \forall y \in X .$$

On the other hand we obtain that

$$\eta_x(y) < R_P(0, x * y) < R_P(x * 0, x * (x * y)) = R_P(x, x * (x * y))$$

and

$$\eta_x(y) \le R_P(0, y * x) \le R_P(y * 0, y * (y * x)) = R_P(y, y * (y * x))$$
.

Since X is commutative, it follows that

$$\eta_x(y) \le \min\{R_P(x, x \land y), R_P(x \land y, y)\} \le R_P(x, y)$$

Hence

(2)
$$\eta_x(y) \le R_P(x,y) = [y]_P(x) = M(y) , \forall y \in X .$$

From (1) and (2) we obtain that

$$M = \eta_x \ , \ \exists x \in X \ .$$

Thus

$$(3) P \subseteq \frac{X}{\eta} .$$

Now let $\eta_x \in \frac{X}{\eta}$. Then by Definition 2.10 (ii), there exists $N \in P$ such that N(x) = 1. As we have proved, $N = \eta_x$, which implies that

$$\frac{X}{\eta} \subseteq P .$$

Now the proof follows from (3) and (4).

4. Cosets of a BCK-algebra generated by a fuzzy ideal and an element

Definition 4.1. Let $a \in X$. We define the relation " \sim_a " on X as follows.

$$x \sim_a y \Leftrightarrow \mu(x * y) \geq \mu(a), \mu(y * x) \geq \mu(a)$$
 for all $x, y \in X$

Theorem 4.2. $x \sim_a y$ is an equivalence relation on X.

Proof. By Definition 2.1 and 2.4 (i), " \sim_a " is reflexive and clearly " \sim_a " is symmetric. Now we prove that " \sim_a " is transitive. To do this let $x, y, z \in X$, $x \sim_a y$ and $y \sim_a z$. Then we have

$$\begin{array}{rcl} \mu((x*z)*(x*y)) & \geq & \min\{\mu(((x*z)*(x*y))*(y*z)), \mu(y*z)\} \\ & & \text{by Definition 2.4}(ii) \\ & = & \min\{\mu(0), \mu(y*z)\} \;, & \text{by Definition 2.1}(i) \\ & = & \mu(y*z) \;, & \text{by Definition 2.1}(i) \\ & \geq & \mu(a) \;, & \text{since } y \sim_a z \;\cdot \;. \end{array}$$

Hence:

$$\mu(x*z) \geq \min\{\mu((x*z)*(x*y)), \mu(x*y)\}\$$
= $\min\{\mu(0), \mu(a)\}\$, since $x \sim_a y$

Therefor

$$\mu(x*z) \ge \mu(a)$$
.

Similarly by Lemma 2.2 (ii), we can show that

$$\mu(z*x) \ge \mu(a)$$
.

Hence $x \sim_a z$.

Definition 4.3. Let $a \in X$. For $x \in X$, the equivalence class of x with respect to " \sim_a " is denoted by $C_x(a, \mu)$ and it is called the coset of x in X and generated by a and μ .

Remark 4.4. The set of all cosets generated by a and μ is denoted by $C_X(a,\mu)$.

Corollary 4.5. $C_X(a,\mu)$ is a partition for X.

Proposition 4.6. Let $a, x \in X$. Then $a \in C_x(a, \mu)$ if and only if

$$C_x(a,\mu) = C_0(a,\mu)$$
.

Proof. Let $C_x(a, \mu) = C_0(a, \mu)$. By Definition 2.1 (iv) and Lemma 2.2. (i) it follows that $a \in C_0(a, \mu)$. Hence $a \in C_x(a, \mu)$. Conversely, let $a \in C_x(a, \mu)$. Then we have

$$\mu(x*0) = \mu(x) \ge \min\{\mu(x*a), \mu(a)\} \ge \mu(a)$$
.

On the other hand

$$\mu(0*x) = \mu(0) \ge \mu(a) \cdot$$

Hence $0 \sim_a x$, therefore $C_0(a, \mu) = C_x(a, \mu)$.

Proposition 4.7. For all $x, y, a \in X$, $x * y, y * x \in C_0(a, \mu)$ if and only if

$$C_x(a,\mu) = C_y(a,\mu)$$
.

Proof. The proof follows from Definition 2.1 (iii) and Lemma 2.2. (i). \Box

Proposition 4.8. $y \in C_x(0, \mu)$ implies that $\mu(x) = \mu(y)$.

Proof. The proof follows from Lemma 2.5 (ii), and Definition 2.4 (ii).

Proposition 4.9. For $a \in X$, $C_0(a, \mu)$ is a subalgebra and an ideal of X.

Proof. Let $x, y \in C_0(a, \mu)$. Then by Lemma 2.2 (iv) and 2.5 (ii) we have $\mu(x * y) \ge \mu(x) \ge \mu(a)$ and $\mu(y * x) \ge \mu(y) \ge \mu(a)$. Since

$$\mu((x*y)*0) = \mu(x*y), \mu((y*x)*0) = \mu(y*x),$$

hence $x * y \in C_0(a, \mu)$. Therefore $C_0(a, \mu)$ is a subalgebra of X. From Definition 2.5 and some calculation we get that, $C_0(a, \mu)$ is an ideal of X.

Lemma 4.10. For all $x, a, b \in X$,

- (i) $C_x(a \wedge b, \mu) \subseteq C_x(a, \mu) \cap C_x(b, \mu)$,
- (ii) if μ is a fuzzy prime ideal of X, then $C_x(a \wedge b, \mu) = C_x(a, \mu) \cap C_x(b, \mu)$.

Proof. (i) From Lemma 2.2. (v) and 2.5 (ii) we can prove (i).

(ii) follows from Definition 2.17.

Theorem 4.11. Let X be a bounded, commutative BCK-algebra, μ a fuzzy prime ideal of X, $x \in X$, and $C_x(X,\mu) = \{C_x(a,\mu) : a \in X\}$. Define the operation "." On $C_x(X,\mu)$ as follows: $C_x(a,\mu) \cdot C_x(b,\mu) = C_x(a \wedge b,\mu)$. Then $(C_x(X,\mu),\cdot)$ is a monoid.

Proof. The proof follows from Lemmas 4.10 (ii) and 2.16 (ii).

Lemma 4.12. Let $a, y_1, y_2 \in X$ and $y_1 \sim_a y_2$. Then

$$x * y_1 \sim_a x * y_2$$
 and $y_1 * x \sim_a y_2 * x$, for all $x \in X$.

Proof. Since $y_1 \sim_a y_2$, we have $\mu(y_1 * y_2) \geq \mu(a)$ and $\mu(y_2 * y_1) \geq \mu(a)$. On the other hand by Definition 2.1 (i) we get that

$$((x * y_1) * (x * y_2)) * (y_2 * y_1) = 0$$

Hence from Definition 2.4.

$$\mu((x*y_1)*(x*y_2)) \geq \min\{\mu[((x*y_1)*(x*y_2))*(y_2*y_1)], \mu(y_2*y_1)\}$$

$$\geq \min\{\mu(0), \mu(a)\}, \text{ since } y_1 \sim_a y_2 = \mu(a)$$

$$= \mu(a).$$

Similarly we have $\mu((x * y_2) * (x * y_1)) \ge \mu(a)$. Consequently

$$x * y_1 \sim_a x * y_2$$

Similarly from Lemma 2.2 (ii) we get that $y_1 * x \sim_a y_2 * x$.

Lemma 4.13. Let $a \in X$, We define $\oplus : C_X(a,\mu) \times C_X(a,\mu) \to C_X(a,\mu)$ as follows

$$C_x(a,\mu) \oplus C_y(a,\mu) = C_{x*y}(a,\mu) , \forall x,y \in X .$$

Then \oplus is an operation on $C_X(a, \mu)$.

Proof. Let $C_{x_1}(a,\mu) = C_{x_2}(a,\mu)$ and $C_{y_1}(a,\mu) = C_{y_2}(a,\mu)$. Then $x_1 \sim_a x_2$ and $y_1 \sim_a y_2$. Hence by Lemma 4.12 we have $x_1 * y_1 \sim_a x_2 * y_2$. ALso $y_1 \sim_a y_2$ implies that $x_1 * y_1 \sim_a x_1 * y_2$. Therefore from Theorem 4.2 we have $x_1 * y_1 \sim_a x_2 * y_2$. In other words $C_{x_1*y_1}(a,\mu) = C_{x_2*y_2}(a,\mu)$.

Theorem 4.14. Let $a \in X$. Then $(C_X(a, \mu), C_0(a, \mu), \oplus)$ is a BCK-algebra called the quotient algebra generated by μ and a.

Proof. Clearly the axioms (i), (ii), (iii), (v) of Definition 2.1 hold. Now let

$$C_x(a,\mu) \oplus C_y(a,\mu) = C_y(a,\mu) \oplus C_x(a,\mu) = C_0(a,\mu)$$

Then

$$C_{x*y}(a,\mu) = C_0(a,\mu) = C_{y*x}(a,\mu) \cdot$$

Hence by proposition 4.7 we have:

$$C_x(a,\mu) = C_y(a,\mu) \cdot$$

Theorem 4.15. Let $f: X \to X'$ be an epimorphism of BCK-algebras and μ be f-invariant and $\mu_{\mu(a)} \subseteq Kerf$, for $a \in X$. Then $C_x(a, \mu) \simeq X'$.

Proof. Define $\psi: C_X(a,\mu) \to X'$ by, $\psi(C_x(a,\mu)) = f(x)$, for all $x \in X$. Let $C_x(a,\mu) = C_y(a,\mu)$, where $x,y \in X$. Then $x*y,y*x \in \mu_{\mu(a)} \subseteq Kerf$.

Hence f(x) = f(y). In other words ψ is well defined. Clearly ψ is an epimorphism. Now let f(x) = f(y), for $x, y \in X$. Then f(x * y) = f(y * x) = f(0).

Since μ is f-invariant, we have

$$\mu(x*y) = \mu(0) \ge \mu(a) \ , \ \mu(y*x) = \mu(0) \ge \mu(a) \ .$$

Therefore $C_x(a,\mu) = C_y(a,\mu)$, which implies that ψ is one-to-one.

References

- [1] A. Hasankhani, F-Spectrum of a BCK-algebra, J. Fuzzy Math. Vol. 8, No. 1 (2000), 1-11.
- [2] V. Hohle, Quotients with respect to similarity relations, Fuzzy sets and systems 27 (1988), 31-44.
- [3] C. S. Hoo, Fuzzy ideal of BCI and MV-algebra, Fuzzy sets and Systems 62 (1994), 111-114.
- [4] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV. Proc. Jopan Academy, 42 (1966), 19-22.
- [5] K. Iseki, On ideals in BCK-algebra, Math. Seminar Notes, 3 (1975), Kobe University.
- [6] K. Iseki, Some properties of BCK-algebra, 2 (1975), xxxv, these notes.
- [7] K. Iseki and S. Tanaka, Ideal theory of BCK-algebra, Math. Japonica, 21 (1976), 351-366.

- [8] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algrba, Math. Japonica, 23 (1978), 1-26.
- [9] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and Systems 8 (1982), 133-139.
- [10] S. Ovchinnikov, Similarity relations, fuzzy partitions, and fuzzy ordering, Fuzzy sets and system, 40 (1991), 107-126.
- [11] O. Xi, Fuzzy BCK-algebra, Math. Japonica, 36 (1991), 935-942.
- [12] L. A. Zadeh, Similarity relations and fuzzy ordering, Inform. Sci. 3 (1971), 177-200.
- [13] L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353.

Abbas Hasankhani*, Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

E-mail address: abhasan@mail.uk.ac.ir

Hamid Saadat, Islamic Azad University Science and Research Campus, Kerman, Iran $E\text{-}mail\ address$: saadat@iauk.ac.ir

*Corresponding author