Cristea, I., Hoskova, S. (2009). 'FUZZY PSEUDOTOPOLOGICAL HYPERGROUPOIDS', Iranian Journal of Fuzzy Systems, 6(4), pp. 11-19. doi: 10.22111/ijfs.2009.525
Cristea, I., Hoskova, S. FUZZY PSEUDOTOPOLOGICAL HYPERGROUPOIDS. Iranian Journal of Fuzzy Systems, 2009; 6(4): 11-19. doi: 10.22111/ijfs.2009.525
1DIEA, University of Udine, Via delle Scienze 206, 33100 DIEA, University of Udine, Via delle Scienze 206, 33100 Udine, Italy, Italy
2Department of Mathematics and Physics, University of Defence Brno, Kounicova 65, 61200 Brno, Czech Republic
Abstract
On a hypergroupoid one can define a topology such that the hyperoperation is pseudocontinuous or continuous. In this paper we extend this concepts to the fuzzy case. We give a connection between the classical and the fuzzy (pseudo)continuous hyperoperations.
[1] R. Ameri, Topological (transposition) hypergroups, Ital. J. Pure Appl. Math., 13 (2003), 171-176. [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190. [3] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, 1993. [4] P. Corsini, Join spaces, power sets, fuzzy sets, Proc. Fifth International Congress on A.H.A., 1993, Ia¸si, Romania, Hadronic Press, (1994), 45-52. [5] P. Corsini, A new connection between hypergroups and fuzzy sets, Southeast Asian Bull. Math., 27 (2003), 221-229. [6] P. Corsini, Hyperstructures associated with fuzzy sets endowed with two membership functions, J. Comb. Inform. Syst. Sci., 31 (2006), 247-254. [7] P. Corsini and V. Leoreanu, Join spaces associated with fuzzy sets, J. Combin. Inform. Syst. Sci., 20(1-4) (1995), 293-303 [8] P. Corsini and I. Tofan, On fuzzy hypergroups, Pure Math. Appl., 8 (1997), 29-37. [9] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers, Advances in Mathematics, 2003. [10] I. Cristea, A property of the connection between fuzzy sets and hypergroupoids, Ital. J. Pure Appl. Math., 21 (2007), 73-82. [11] I. Cristea, Hyperstructures and fuzzy sets endowed with two membership functions, Fuzzy Sets and Systems, 160 (2009), 1114-1124. [12] I. Cristea, About the fuzzy grade of the direct product of two hypergroupoids, Iran. J. Fuzzy Syst., to appear. [13] B. Davvaz, Fuzzy Hv-groups, Fuzzy Sets and Systems, 101 (1999), 191-195. [14] B. Davvaz, Fuzzy Hv-submodules, Fuzzy Sets and Systems, 117 (2001), 477-484. [15] B. Davvaz and W. A. Dudek, Intuitionistic Hv-ideals, Int. J. Math. Math. Sci., Art. ID 65921, (2006), 11. [16] B. Davvaz, W. A. Dudek and Y. B. Jun, Intuitionistic fuzzy Hv-submodules, Inform. Sci., 176 (2006), 285-300. [17] B. Davvaz, J. Zhan and K. P. Shum, Generalized fuzzy Hv-submodules endowed with interval valued membership functions, Inform. Sci., 178 (2008), 3147-315. [18] W. A. Dudek, J. Zhan and B. Davvaz, On intuitionistic (S, T)-fuzzy hypergroups, Soft Computing, 12 (2008), 1229-1238. [19] R. Engelking, General topology, PWN-Polish Scientific Publishers, Warszawa, (1977), 626. [20] D. H. Foster, Fuzzy topological groups, J. Math. Anal. Appl., 67 (1979), 549-564. [21] M. Ganster, D. N. Georgiou and S. Jafari, On fuzzy topological groups and fuzzy continuous functions, Hacet. J. Math. Stat., 34S (2005), 45-51 [22] S. Hoskova, Topological hypergroupoids, submitted.
[23] J. Jantosciak, Transposition hypergroups: noncommutative join spaces, J. Algebra, 187 (1997), 97-19. [24] A. Kehagias and K. Serafimidis, The L-fuzzy Nakano hypergroup, Inform. Sci., 169 (2005), 305-327. [25] Y. M. Liu and M. K. Luo, Fuzzy topology, Advances in Fuzzy Systems-Applications and Theory, World Scientific, 9 (1997). [26] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976), 621-633. [27] J. L. Ma and C. H. Yu, Fuzzy topological groups, Fuzzy Sets and Systems, 12 (1984), 289-299. [28] F. Marty, Sur une generalization de la notion de group, 8th Congress Math. Scandenaves, Stockholm, (1934), 45-49. [29] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517. [30] M. S¸tef˘anescu and I. Cristea, On the fuzzy grade of hypergroups, Fuzzy Sets and Systems, 159(9) (2008), 1097-1106. [31] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353. [32] J. Zhan, B. Davvaz and K. P. Shum, On fuzzy isomorphism theorems of hypermodules, Soft Computing, 11 (2007), 1053-1057. [33] J. Zhan, B. Davvaz and K. P. Shum, A new view of fuzzy hypermodules, Acta Math. Sin. (Engl. Ser.), 23(8) (2007), 1345-1356. [34] J. Zhan, B. Davvaz and K. P. Shum, Isomorphism theorems of hypermodules, Acta Math. Sinica (Chin. Ser.), 50(4) (2007), 909-914. [35] J. Zhan, B. Davvaz and K. P. Shum, A new view of fuzzy hypernear-rings, Inform. Sci., 178(2) (2008), 425-438. [36] J. Zhan and W. A. Dudek, Interval valued intuitionistic (S, T)-fuzzy Hv-submodules, Acta Math. Sin. (Engl. Ser.), 22 (2006), 963-970. [37] J. Zhan, B. Davvaz and K. P. Shum, A new view of fuzzy hyperquasigroups, J. Intell. Fuzzy Systems, 20 (2009), 147-157.