• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Fuzzy Systems
Articles in Press
Current Issue
Journal Archive
Volume Volume 15 (2018)
Volume Volume 14 (2017)
Volume Volume 13 (2016)
Volume Volume 12 (2015)
Volume Volume 11 (2014)
Volume Volume 10 (2013)
Volume Volume 9 (2012)
Volume Volume 8 (2011)
Volume Volume 7 (2010)
Volume Volume 6 (2009)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 5 (2008)
Volume Volume 4 (2007)
Volume Volume 3 (2006)
Volume Volume 2 (2005)
Volume Volume 1 (2004)
Cristea, I., Hoskova, S. (2009). FUZZY PSEUDOTOPOLOGICAL HYPERGROUPOIDS. Iranian Journal of Fuzzy Systems, 6(4), 11-19. doi: 10.22111/ijfs.2009.525
Irina Cristea; Sarka Hoskova. "FUZZY PSEUDOTOPOLOGICAL HYPERGROUPOIDS". Iranian Journal of Fuzzy Systems, 6, 4, 2009, 11-19. doi: 10.22111/ijfs.2009.525
Cristea, I., Hoskova, S. (2009). 'FUZZY PSEUDOTOPOLOGICAL HYPERGROUPOIDS', Iranian Journal of Fuzzy Systems, 6(4), pp. 11-19. doi: 10.22111/ijfs.2009.525
Cristea, I., Hoskova, S. FUZZY PSEUDOTOPOLOGICAL HYPERGROUPOIDS. Iranian Journal of Fuzzy Systems, 2009; 6(4): 11-19. doi: 10.22111/ijfs.2009.525

FUZZY PSEUDOTOPOLOGICAL HYPERGROUPOIDS

Article 4, Volume 6, Issue 4, November and December 2009, Page 11-19  XML PDF (197 K)
DOI: 10.22111/ijfs.2009.525
Authors
Irina Cristea1; Sarka Hoskova 2
1DIEA, University of Udine, Via delle Scienze 206, 33100 DIEA, University of Udine, Via delle Scienze 206, 33100 Udine, Italy, Italy
2Department of Mathematics and Physics, University of Defence Brno, Kounicova 65, 61200 Brno, Czech Republic
Abstract
On a hypergroupoid one can define a topology such that the hyperoperation
is pseudocontinuous or continuous. In this paper we extend this
concepts to the fuzzy case. We give a connection between the classical and the
fuzzy (pseudo)continuous hyperoperations.
Keywords
Hypergroupoid; (Fuzzy) pseudocontinuous hyperoperation; (Fuzzy) continuous hyperoperation; Fuzzy topological space
References
[1] R. Ameri, Topological (transposition) hypergroups, Ital. J. Pure Appl. Math., 13 (2003),
171-176.
[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
[3] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, 1993.
[4] P. Corsini, Join spaces, power sets, fuzzy sets, Proc. Fifth International Congress on A.H.A.,
1993, Ia¸si, Romania, Hadronic Press, (1994), 45-52.
[5] P. Corsini, A new connection between hypergroups and fuzzy sets, Southeast Asian Bull.
Math., 27 (2003), 221-229.
[6] P. Corsini, Hyperstructures associated with fuzzy sets endowed with two membership functions,
J. Comb. Inform. Syst. Sci., 31 (2006), 247-254.
[7] P. Corsini and V. Leoreanu, Join spaces associated with fuzzy sets, J. Combin. Inform. Syst.
Sci., 20(1-4) (1995), 293-303
[8] P. Corsini and I. Tofan, On fuzzy hypergroups, Pure Math. Appl., 8 (1997), 29-37.
[9] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers,
Advances in Mathematics, 2003.
[10] I. Cristea, A property of the connection between fuzzy sets and hypergroupoids, Ital. J. Pure
Appl. Math., 21 (2007), 73-82.
[11] I. Cristea, Hyperstructures and fuzzy sets endowed with two membership functions, Fuzzy
Sets and Systems, 160 (2009), 1114-1124.
[12] I. Cristea, About the fuzzy grade of the direct product of two hypergroupoids, Iran. J. Fuzzy
Syst., to appear.
[13] B. Davvaz, Fuzzy Hv-groups, Fuzzy Sets and Systems, 101 (1999), 191-195.
[14] B. Davvaz, Fuzzy Hv-submodules, Fuzzy Sets and Systems, 117 (2001), 477-484.
[15] B. Davvaz and W. A. Dudek, Intuitionistic Hv-ideals, Int. J. Math. Math. Sci., Art. ID
65921, (2006), 11.
[16] B. Davvaz, W. A. Dudek and Y. B. Jun, Intuitionistic fuzzy Hv-submodules, Inform. Sci.,
176 (2006), 285-300.
[17] B. Davvaz, J. Zhan and K. P. Shum, Generalized fuzzy Hv-submodules endowed with interval
valued membership functions, Inform. Sci., 178 (2008), 3147-315.
[18] W. A. Dudek, J. Zhan and B. Davvaz, On intuitionistic (S, T)-fuzzy hypergroups, Soft Computing,
12 (2008), 1229-1238.
[19] R. Engelking, General topology, PWN-Polish Scientific Publishers, Warszawa, (1977), 626.
[20] D. H. Foster, Fuzzy topological groups, J. Math. Anal. Appl., 67 (1979), 549-564.
[21] M. Ganster, D. N. Georgiou and S. Jafari, On fuzzy topological groups and fuzzy continuous
functions, Hacet. J. Math. Stat., 34S (2005), 45-51
[22] S. Hoskova, Topological hypergroupoids, submitted.

[23] J. Jantosciak, Transposition hypergroups: noncommutative join spaces, J. Algebra, 187
(1997), 97-19.
[24] A. Kehagias and K. Serafimidis, The L-fuzzy Nakano hypergroup, Inform. Sci., 169 (2005),
305-327.
[25] Y. M. Liu and M. K. Luo, Fuzzy topology, Advances in Fuzzy Systems-Applications and
Theory, World Scientific, 9 (1997).
[26] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976),
621-633.
[27] J. L. Ma and C. H. Yu, Fuzzy topological groups, Fuzzy Sets and Systems, 12 (1984), 289-299.
[28] F. Marty, Sur une generalization de la notion de group, 8th Congress Math. Scandenaves,
Stockholm, (1934), 45-49.
[29] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
[30] M. S¸tef˘anescu and I. Cristea, On the fuzzy grade of hypergroups, Fuzzy Sets and Systems,
159(9) (2008), 1097-1106.
[31] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
[32] J. Zhan, B. Davvaz and K. P. Shum, On fuzzy isomorphism theorems of hypermodules, Soft
Computing, 11 (2007), 1053-1057.
[33] J. Zhan, B. Davvaz and K. P. Shum, A new view of fuzzy hypermodules, Acta Math. Sin.
(Engl. Ser.), 23(8) (2007), 1345-1356.
[34] J. Zhan, B. Davvaz and K. P. Shum, Isomorphism theorems of hypermodules, Acta Math.
Sinica (Chin. Ser.), 50(4) (2007), 909-914.
[35] J. Zhan, B. Davvaz and K. P. Shum, A new view of fuzzy hypernear-rings, Inform. Sci.,
178(2) (2008), 425-438.
[36] J. Zhan and W. A. Dudek, Interval valued intuitionistic (S, T)-fuzzy Hv-submodules, Acta
Math. Sin. (Engl. Ser.), 22 (2006), 963-970.
[37] J. Zhan, B. Davvaz and K. P. Shum, A new view of fuzzy hyperquasigroups, J. Intell. Fuzzy
Systems, 20 (2009), 147-157.

Statistics
Article View: 2,383
PDF Download: 2,061
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.