Extended graphs based on KM-fuzzy metric spaces

M. Hamidi¹, S. Jahanpanah² and A. Radfar³

¹, ², ³Department of Mathematics, Faculty of Mathematics, Payame Noor University, Tehran, Iran

m.hamidi@pnu.ac.ir, s.jahanpanah@pnu.ac.ir, radfar@pnu.ac.ir

Abstract

This paper applies the concept of KM-fuzzy metric spaces and introduces a novel concept of KM-fuzzy metric graphs based on KM-fuzzy metric spaces. This study investigates on the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to extend the concept of KM-fuzzy metric spaces to a larger class of KM-fuzzy metric spaces such as union and product of KM-fuzzy metric spaces and in this regard investigates on a class of products of KM-fuzzy metric graphs.

Keywords: KM-Fuzzy metric space, t-norm, (derivable) KM-fuzzy metric graph, C-graphable.

2010 MSC: 54E35, 05C72, 05C76.

1 Introduction

As a generalization of the classical set theory, fuzzy set theory was introduced by Zadeh to deal with uncertainties[21]. Fuzzy set theory plays an important role in modeling and controlling unsure systems in nature, society and industry. Fuzzy set theory also plays a vital role in complex phenomena which is not easily characterized by classical set theory. After the pioneering work of Zadeh, there has been a great effort to obtain fuzzy analogues of classical theories. Among other fields, a progressive development is made in the field of fuzzy topology. Fuzzy topology is a fundamental branch of fuzzy theory which has become an area of active research in the last years because of its wide range of applications. One of the most important problems in fuzzy topology is to obtain an appropriate concept of fuzzy metric space. This problem has been investigated by many authors from different points of view. There have been several attempts to find an appropriate notion of metric spaces in fuzzy setting (4, 6, 7, 13), all of them being generalizations of the notion of metric spaces. They have introduced and studied the notion of KM-fuzzy metric spaces with respect to the concept of t-norms. Furthermore, the class of topological spaces that are fuzzy metrizable agrees with the class of metrizable-topological spaces. In 1975, Kramosil and Michalek introduced in [13], the notion of fuzzy metric spaces as KM-fuzzy metric spaces which is a generalization of the notion of crisp metrics and M. Grabiec added a lost condition to notion of KM-fuzzy metric spaces and completed this notation in [6]. In 2015, I. Mardones-Perez et al. studied the degree in which some topological and uniform properties of KM-fuzzy pseudometric spaces are satisfied and established some relations between KM-fuzzy pseudometric spaces and some particular fuzzy structures which appear naturally, the so called fuzzifying structures[17]. Fuzzy graphs introduced by Rosenfeld are finding an increasing number of applications in modelling real time systems where the level of information inherent in the system varies with different levels of precision. Fuzzy models are becoming useful because of their aim in reducing the difference between the traditional numerical models used in engineering and sciences[20]. The generalization of the concept fuzzy graphs is noticed by some researchers and more subject, such as fuzzy graph based on t-norm, intuitionistic fuzzy threshold graphs, m-polar fuzzy graph. Mordeson et al. generalized the definition of a fuzzy graph by replacing minimum in the basic definitions with an arbitrary t-norm. They developed a measure on the susceptibility of trafficking in persons for networks by using a t-norm other than minimum[19]. Further materials regarding graphs and hypergraphs are available in the literature too [1, 2, 3, 5, 8, 9, 10, 11, 13, 15, 18].

Corresponding Author: M. Hamidi
Received: **; Revised: **; Accepted: **.
Regarding these points, we introduce the concept of C-graphable set and show that every non-empty set X is a C-graphable set. Also we proved that for every given set with respect to the concept of C-graphable sets one can construct a metric space. The fuzzy metric spaces are not necessarily finite space, so one of our motivation of this work is the concept of KM-fuzzy metric space. This study presents a concept of KM-fuzzy metric graph. The main motivation of this work is the concept of KM-fuzzy graph based on t-norm such as Domby t-norm, Godel t-norm and etc. We applied the notation of KM-fuzzy metric space to generate of finite KM-fuzzy metric graph. It is extended some production operations on KM-fuzzy metric spaces and so it is generalized on KM-fuzzy metric graphs.

2 Preliminaries

In this section, we recall some definitions and results, which we need use in what follows.

Definition 2.1. [12, 16] Let $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ be simple graphs, $(x_1, x_2), (y_1, y_2) \in V_1 \times V_2$, where $V_1 \times V_2$ is the vertex set of the following graphs:

(i) categorical(tensor, direct, cardinal, Kronecker) product graph $G_1 \times G_2$:

$$E(G_1 \times G_2) = \{(x_1, x_2)(y_1, y_2) \mid x_1y_1 \in E_1 \text{ and } x_2y_2 \in E_2\};$$

(ii) Cartesian product graph $G_1 \odot G_2$:

$$E(G_1 \odot G_2) = \{(x_1, x_2)(y_1, y_2) \mid (x_1 = y_1 \text{ and } x_2y_2 \in E_2) \text{ or } (x_1y_1 \in E_1 \text{ and } x_2 = y_2)\};$$

(iii) semi-strong product graph $G_1 \bullet G_2$:

$$E(G_1 \bullet G_2) = \{(x_1, x_2)(y_1, y_2) \mid (x_1 = y_1 \text{ and } x_2y_2 \in E_2) \text{ or } (x_1y_1 \in E_1 \text{ and } x_2 = y_2)\};$$

(iv) strong product (symmetric composition) graph $G_1 \odot G_2$:

$$E(G_1 \odot G_2) = E(G_1 \odot G_2) \cup E(G_1 \times G_2);$$

(v) lexicographic product (composition) graph $G_1 \odot G_2(G_1, G_2, G_1|G_2)$:

$$E(G_1 \odot G_2) = \{(x_1, x_2)(y_1, y_2) \mid (x_1y_1 \in E_1) \text{ or } (x_1 = y_1 \text{ and } x_2y_2 \in E_2)\};$$

(vi) union graph $G_1 \cup G_2$:

$$V(G_1 \cup G_2) = V(G_1) \cup V(G_2); \text{ and } E(G_1 \cup G_2) = E(G_1) \cup E(G_2);$$

(vii) join product graph $G_1 + G_2$:

$$E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup E', \text{ where } E' \text{ is the set of all line joining } V_1 \text{ with } V_2.$$

Definition 2.2. [18] A fuzzy graph $G = (V, \sigma, \mu)$ is an algebraic structure of non-empty set V together with a pair of functions $\sigma: V \rightarrow [0, 1]$ and $\mu: V \times V \rightarrow [0, 1]$ such that for all $x, y \in V, \mu(x, y) \leq \sigma(x) \land \sigma(y)$. It is called σ as fuzzy vertex set and μ as fuzzy edge set of G.

Definition 2.3. [17] A triplet (X, ρ, T) is called a KM-fuzzy metric space, if X is an arbitrary non-empty set, T is a left-continuous t-norm and $\rho: X^2 \times \mathbb{R}^+ \rightarrow [0, 1]$ is a fuzzy set, such that for each $x, y, z, t, s \geq 0$, we have:

(i) $\rho(x, y, 0) = 0$,

(ii) $\rho(x, x, t) = 1$ for all $t > 0$,

(iii) $\rho(x, y, t) = \rho(y, x, t)$ (commutative property),

(iv) $T(\rho(x, y, t), \rho(y, z, s)) \leq \rho(x, z, t + s)$ (triangular inequality),

(vi) $\rho(x, y, t) : \mathbb{R}^+ \rightarrow [0, 1]$ is a left-continuous map,

(vii) $\rho(x, y, t) \rightarrow 1$, when $t \rightarrow \infty$.

(viii) $\rho(x, y, t) = 1, \forall t > 0$ implies that $x = y$.

If (X, ρ, T) satisfies in conditions (i)-(vii), then it is called KM-fuzzy pseudometric space and ρ is called a KM-fuzzy pseudometric.

Theorem 2.4. [17] Let (X, ρ, T) be a KM-fuzzy metric space. Then $\rho(x, y, t) : \mathbb{R}^+ \rightarrow [0, 1]$ is a non-decreasing map.
3 Finite KM-fuzzy metric space

In this section, we apply the concept of KM-fuzzy metric spaces and construct a new class of KM-fuzzy metric spaces under operation product and union of KM-fuzzy metric spaces. In addition, for any given non-empty set we construct KM-fuzzy metric space with respect to \(\alpha\)-discrete metric, where \(\alpha \in \mathbb{R}^+\). From now on, for all \(x, y \in [0, 1]\) we consider \(T_{\min}(x, y) = \min\{x, y\}\), \(T_{pr}(x, y) = xy, T_{lu}(x, y) = \max(0, x + y - 1), T_{do}(x, y) = \frac{xy}{x + y - xy}\) and \(C_T = \{T : [0, 1] \times [0, 1] \to [0, 1] \mid T \text{ is a left-continuous t-norm}\}.

Theorem 3.1. If \((X, \rho, T_{\min})\) is a KM-fuzzy metric space and \(T \in C_T\). Then \((X, \rho, T)\) is a KM-fuzzy metric space.

Proof. Let \(x, y, z \in X, r, s \in \mathbb{R}^+\) and \(T \in C_T\). Since for all \(x, y \in [0, 1], T(x, y) \leq T_{\min}(x, y)\), we get that \(T(\rho(x, y), \rho(y, z)) \leq T_{\min}(\rho(x, y), \rho(y, z)) \leq \rho(x, z, t + s)\). Hence \((X, \rho, T)\) is a KM-fuzzy metric space.

Let \(X\) be an arbitrary set and \(\alpha \in \mathbb{R}^+\). For all \(x, y \in X\), define \(d_\alpha : X \times X \to \mathbb{R}\) by \(d_\alpha(x, y) = 0\), where \(x = y\) and \(d_\alpha(x, y) = \alpha\), where \(x \neq y\) as an \(\alpha\)-discrete metric. So we have the following theorem.

Theorem 3.2. Let \(X\) be an arbitrary set and \(|X| \geq 2\). Then there exists a fuzzy set \(\rho : X^2 \times \mathbb{R}^+ \to [0, 1]\), such that \((X, \rho, T_{\min})\) is a KM-fuzzy metric space.

Proof. Let \(|X| \geq 2\) and \(\alpha \in \mathbb{R}^+\) be a fixed element. Clearly \((X, d_\alpha)\) is a metric space, now for all \(x, y \in X\), \(0 \neq m, s, t \in \mathbb{R}^+\), define \(\rho : X^2 \times \mathbb{R}^+ \to [0, 1]\) by \(\rho(x, y, 0) = 0\) and \(\rho(x, y, t) = \frac{\varphi(t)}{\varphi(t) + md_\alpha(x, y)}\), where \(\varphi : \mathbb{R}^+ \to \mathbb{R}^+\) is an increasing continuous function and for all \(x, y \in X\), we have \(\varphi(t) + md_\alpha(x, y) \neq 0\) and \(\varphi(t) \to 0\), whence \(t \to 0\). Now, we show that \((X, \rho, T_{\min})\) is a KM-fuzzy metric space. We prove only the triangular inequality and for all \(x, y, z \in X\), consider the five cases \(x = y = z, x = y \neq z, x = z \neq y, x \neq y = z\) and \(x \neq y \neq z\). In all cases for \(0 \neq \{t, s\}\) is clear, now for \(0 \neq \{t, s\}\) we investigate it. For \(x = y \neq z\), since \(\varphi(t + s) \geq \varphi(s)\), we have \(\varphi(t + s)(\varphi(s) + m\alpha) - \varphi(s)(\varphi(t + s) + m\alpha) \geq 0\) and so \(\varphi(s) + m\alpha \leq \varphi(t + s) + m\alpha\). If \(x \neq y = z\), then \(d_\alpha(x, y) = d_\alpha(y, z) = d_\alpha(z, y) = \alpha\). Since \(\varphi\) is an increasing map, we get that \(md_\alpha(x, y) \leq \max\varphi(t + s)\) and it implies that \(\varphi(t)(\varphi(t + s) + m\alpha) \leq \varphi(t + s)(\varphi(t) + m\alpha)\) and so \(\varphi(t) + m\alpha \leq \varphi(t + s) + m\alpha\), which means that \(\rho(x, y, t) \leq \rho(x, z, t + s)\). By a similar way, \(\rho(z, y, s) \leq \rho(x, z, t + s)\).

The other cases, are proved in a similar way and so \((X, \rho, T_{\min})\) is a KM-fuzzy metric space.

Corollary 3.3. Let \(X\) be an arbitrary set and \(|X| \geq 2\). Then there exists a fuzzy set \(\rho : X^2 \times \mathbb{R}^+ \to [0, 1]\), such that for all \(T \in C_T\), \((X, \rho, T)\) is a KM-fuzzy metric space.

Example 3.4. Let \(X = \{a, b, c\}\). For all \(x, y \in X\), define \(\rho(x, y, 0) = 0\) and \(\rho(x, y, t) = \frac{t^5}{t^5 + d_3(x, y)}\). Then by Corollary 3.3 \((X, \rho, T_{pr})\) is a KM-fuzzy metric space.

3.1 Finite KM-fuzzy metric space based on metric

In this subsection, we apply the concept of finite metric for constructing of KM-fuzzy metric space on any given non-empty set.

Definition 3.5. Let \(X\) be a finite set. We say that \(X\) is a C-graphable set, if \(G = (X, E)\) is a connected graph, where \(E \subseteq X \times X\) and \(G = (X, E)\) is called an X-derived graph. Let \(G_X\) be the set of all connected graphs which are constructed on \(X\) as the set of vertices, so we have the following results.

Let \(G = (X, E)\) be a connected graph. For all \(x, y \in X\), define \(d^\varphi(x, y) = \min\{|P_{x,y}|\text{ where }P_{x,y}\text{ is a path between }x, y\}\). Obviously, \(d^\varphi\) is a metric on \(X\).

Theorem 3.6. Let \(X\) be a finite set and \(|X| \geq 2\). Then there exists a non-discrete metric \(d\) on \(X\) such that \((X, d)\) is a metric space.

Proof. Let \(|X| \geq 2\). Clearly, \(X\) is a C-graphable set and so there exists a graph \(G = (X, E) \in G_X\). For all \(x, y \in X\), define \(d(x, y) = d^\varphi(x, y)\). Clearly \((X, d^\varphi)\) is a metric space.

Corollary 3.7. Let \(n \in \mathbb{N}, X\) be a set and \(|X| = n\).
(i) If \(G = (X, E) \cong K_n \) is the complete graph, then for metric spaces \((X, d^p)\) and \((X, d_1)\), we have \(d^p = d_1\).

(ii) If \(G = (X, E) \cong C_n \) is the cycle graph, then for metric spaces \((X, d^p)\) and \((X, d_1)\), we have \(d_1 \leq d^p \leq d \left[\frac{n}{2} \right] \).

Theorem 3.8. Let \(X \) be a non-empty set. Then there exists a fuzzy subset \(\rho : X^2 \times \mathbb{R}^2 \to [0,1] \), such that \((X, \rho, T_{pr})\) is a \(KM \)-fuzzy metric space.

Proof. Let \(|X| \geq 2\). Then clearly, \(X \) is a \(C \)-graphable set and by Theorem 3.6 \((X, d^p)\) is a metric space. For all \(x, y \in X \) and for all \(0 \neq m, t \in \mathbb{R}^2 \), define \(\rho(x, y, 0) = 0 \) and \(\rho(x, y, t) = \frac{\varphi(t)}{\varphi(t) + md^p(x, y)} \), where \(\varphi : \mathbb{R}^2 \to \mathbb{R}^2 \) is an increasing continuous function, \(\varphi(t) + md^p(x, y) \neq 0 \) and \(\varphi(t) \to 0 \), whence \(t \to 0 \). Now, we show that \((X, \rho, T_{pr})\) is a \(KM \)-fuzzy metric space and in this regard, only prove triangular inequality property. Let \(x, y, z \in X \). For \(0 \in \{t, s\} \) is clear, now for \(0 \notin \{t, s\} \) we investigate it. Since for all \(s, t, m \in \mathbb{R}^\times \), \(\varphi(t + s) \varphi(s)md^p(x, y) + \varphi(t + s) \varphi(s)md^p(y, z) \geq \varphi(t) \varphi(s)md^p(x, z) \) and \(m^2d^p(y, z)d^p(y, z) \varphi(t + s) > 0 \) we get that \(T_{pr}(\frac{\varphi(t)}{\varphi(t) + md^p(x, y)}, \frac{\varphi(s)}{\varphi(s) + md^p(y, z)}) = \frac{\varphi(t + s)}{\varphi(t + s) + md^p(x, z)} \). It follows that \(T_{pr}(\rho(x, y, t), \rho(y, z, s)) = \rho(x, z, t + s) \) and so \((X, \rho, T_{pr})\) is a \(KM \)-fuzzy metric space.

Corollary 3.9. Let \(X \) be a non-empty set. Then there exists a fuzzy subset \(\rho : X^2 \times \mathbb{R}^2 \to [0,1] \), such that for all left-continuous \(T \)-norm \(T \leq T_{pr} \), \((X, \rho, T)\) is a \(KM \)-fuzzy metric space.

3.2 Operations on \(KM \)-fuzzy metric spaces

In this subsection, we extend \(KM \)-fuzzy metric spaces to union and product of \(KM \)-fuzzy metric spaces. Let \((X_1, \rho_1, T)\) and \((X_2, \rho_2, T)\) be \(KM \)-fuzzy metric spaces, \((x_1, y_1), (x_2, y_2) \in X_1 \times X_2\) and \(t \in \mathbb{R}^2 \). For an arbitrary \(T \in \mathcal{C}_T \), define \(T(\rho) : (X_1 \times X_2)^2 \times \mathbb{R}^2 \to [0,1] \) by \(T(\rho)((x_1, y_1), (x_2, y_2), t) = T(\rho_1(x_1, x_2, t), \rho_2(y_1, y_2, t)) \). So we have the following theorem.

Theorem 3.10. Let \((X_1, \rho_1, T)\) and \((X_2, \rho_2, T)\) be \(KM \)-fuzzy metric spaces. Then \((X_1 \times X_2, T_{min}(\rho), T)\) is a \(KM \)-fuzzy metric space.

Proof. Let \((x_1, y_1), (x_2, y_2), (x_3, y_3) \in X_1 \times X_2\) and \(t, s \in \mathbb{R}^2 \).

(i) Since for all \(x_1, x_2 \in X_1, y_1, y_2 \in X_2, \rho_1(x_1, x_2, 0) = 0 \) and \(\rho_2(y_1, y_2, 0) = 0 \), we have \(T_{min}(\rho)((x_1, y_1), (x_2, y_2), 0) = 0 \).

(ii) \(T_{min}(\rho)((x_1, y_1), (x_2, y_2), t) = 1 \) if and only if \(T_{min}(\rho_1(x_1, x_2, t), \rho_2(y_1, y_2, t)) = 1 \) if and only if \(\rho_1(x_1, x_2, t) = \rho_2(y_1, y_2, t) = 1 \) if and only if \((x_1, y_1) = (x_2, y_2)\).

(iii) It is clear that \(T_{min}(\rho) \) is a commutative map.

(iv) \[
T(T_{min}(\rho)((x_1, y_1), (x_2, y_2), t), T_{min}(\rho)((x_2, y_2), (x_3, y_3), s)) = T(T_{min}(\rho_1(x_1, x_2, t), \rho_2(y_1, y_2, t), T_{min}(\rho_1(x_2, x_3, s), \rho_2(y_2, y_3, s)))
\]

\[
\leq T_{min}(T_{min}(\rho_1(x_1, x_2, t), \rho_2(y_1, y_2, t), T_{min}(\rho_2(y_1, y_2, t), \rho_2(y_2, y_3, s)))
\]

\[
\leq T_{min}(\rho_1(x_1, x_3, t + s), \rho_2(y_1, y_3, t + s))
\]

\[
= T_{min}(\rho)((x_1, y_1), (x_3, y_3), t + s).
\]

(v) Since \(\rho_1, \rho_2 \) are left-continuous maps, we get that \(\rho \) is a left-continuous map.

(vi) Let \(t \to \infty \). Then \(\lim T_{min}(\rho_1(x_1, x_2, t), \rho_2(y_1, y_2, t)) = T_{min}(\lim \rho_1(x_1, x_2, t), \lim \rho_2(y_1, y_2, t)) = T_{min}(1, 1) = 1 \). Thus \((X_1 \times X_2, T_{min}(\rho), T)\) is a \(KM \)-fuzzy metric space.

Let \(X_1 \cap X_2 = \emptyset \), \((X_1, \rho_1, T)\) and \((X_2, \rho_2, T)\) be \(KM \)-fuzzy metric spaces, \(x, y \in X_1 \cup X_2 \) and \(t \in \mathbb{R}^2 \). Consider \(\epsilon(x, y, t) = \bigwedge_{x, u \in X_1, y, v \in X_2} (\rho_1(x, u, t) \land \rho_2(y, v, t)) \), define \(\rho_1 \cup \rho_2 : (X_1 \cup X_2)^2 \times \mathbb{R}^2 \to [0,1] \) by

\[
(\rho_1 \cup \rho_2)(x, y, t) = \begin{cases}
\rho_1(x, y, t) & \text{if } x, y \in X_1, \\
\rho_2(x, y, t) & \text{if } x \in X_2, y \notin X_2, \\
\epsilon(x, y, t) & \text{if } x \in X_1, y \in X_2.
\end{cases}
\]
So we have the following theorem.

Theorem 3.11. Let \((X_1, \rho_1, T)\) and \((X_2, \rho_2, T)\) be \(KM\)-fuzzy metric spaces. Then \((X_1 \cup X_2, \rho_1 \cup \rho_2, T)\) is a \(KM\)-fuzzy metric space, where \(X_1 \cap X_2 = \emptyset\).

Proof. Let \(x, y, z \in X_1 \cup X_2\) and \(t, s \in \mathbb{R}^{\geq 0}\). We only prove the triangular inequality property and other cases are immediate. Let \(x, y \in X_1\) (for \(x, y \in X_2\), one can prove in a similar way), then \(T(\rho_1(x, y, t), (\rho_1 \cup \rho_2)(y, z, s)) = T(\rho_1(x, y, t), (\rho_1 \cup \rho_2)(y, z, s)) \leq T(\rho_1(x, z, t + s) = (\rho_1 \cup \rho_2)(x, z, t + s)). \)

Corollary 3.12. Let \((X_1, \rho, T)\) and \((X_2, \rho, T)\) be \(KM\)-fuzzy metric spaces, where \(X_1 \cap X_2 = \emptyset\). Then \((X_1 \cup X_2, \rho, T)\) is a \(KM\)-fuzzy metric space.

Theorem 3.13. Let \((X, \rho, T)\) be a \(KM\)-fuzzy metric space and \(\varphi\) be a bijection on \(X\). Then there exists a fuzzy subset \(\rho^* : \varphi(X)^2 \times \mathbb{R}^{\geq 0} \to [0, 1]\) such that \((\varphi(X), \rho^*, T)\) is a \(KM\)-fuzzy metric space.

Proof. Let \(x, y, X\) and \(t \in \mathbb{R}^{\geq 0}\). Define \(\rho^* : \varphi(X)^2 \times \mathbb{R}^{\geq 0} \to [0, 1]\) by \(\rho^*(\varphi(x), \varphi(y), t) = \rho(x, y, t)\). It is clear that \((\varphi(X), \rho^*, T)\) is a \(KM\)-fuzzy metric space.

4 \(KM\)-Fuzzy metric graph

In this section, we introduce a novel concept as \(KM\)-fuzzy metric graphs and analyse some their properties. So it is shown that on any simple connected graph there exists a \(KM\)-fuzzy metric graph.

Definition 4.1. Let \((V, \rho, T)\) be a \(KM\)-fuzzy metric space and \(G^* = (V, E)\) be a simple graph. Then \(G = (\sigma, \mu, \rho, T)\) is called a \(KM\)-fuzzy metric graph (a strong \(KM\)-fuzzy metric graph) on \(G^*\), if \(\sigma : V \to [0, 1], \mu : E \to [0, 1]\), there exists some time \(t \in \mathbb{R}^{\geq 0}\) (for \(t = 0\), we call starting time) such that for all \(xy \in E\), we have \(T(\mu(xy), T(\sigma(x), \sigma(y))) \leq \rho(x, y, t)(T(\mu(xy), T(\sigma(x), \sigma(y))) = \rho(x, y, t))\). We call \(\sigma\) as a \(KM\)-fuzzy metric vertex set of \(G\) and \(\mu\) as a \(KM\)-fuzzy metric edge set of \(G\).

Proposition 4.2. Let \(G = (\sigma, \mu, \rho, T)\) be a \(KM\)-fuzzy metric graph on \(G^* = (V, E)\). Then for all \(xy \in E\), for starting time we have \(\mu(xy) = 0\) or \(\sigma(x) = 0\) or \(\sigma(y) = 0\).

Proof. Let \(xy \in E\). Since \(G = (\sigma, \mu, \rho, T)\) is a \(KM\)-fuzzy metric graph on \(G^* = (V, E)\), we get that \(T(\mu(xy), T(\sigma(x), \sigma(y))) \leq \rho(x, y, 0)\). Hence \(T(\mu(xy), T(\sigma(x), \sigma(y))) = 0\) and so \(\mu(xy) = 0\) or \(\sigma(x) = 0\) or \(\sigma(y) = 0\).

Let \(G = (\sigma, \mu, \rho, T)\) be a \(KM\)-fuzzy metric graph on \(G^* = (V, E)\). Consider \(\alpha_{\min} = \bigwedge_{xy \in E} T(\mu(xy), T(\sigma(x), \sigma(y)))\). Then we have the following theorem.

Theorem 4.3. Let \((V, \rho, T)\) be a \(KM\)-fuzzy metric space, \(G^* = (V, E)\) be a simple graph and \(G = (\sigma, \mu, \rho, T)\) be a \(KM\)-fuzzy metric graph on \(G^* = (V, E)\). For any \(\alpha \leq \alpha_{\min}, G^\alpha = (\sigma^\alpha, \mu^\alpha)\) is a subgraph of \(G^* = (V, E)\), where \(\sigma^\alpha = \{x \in V \mid \sigma(x) \geq \alpha\}\) and \(\mu^\alpha = \{xy \in E \mid \mu(xy) \geq \alpha\}\).

Proof. Let \(xy \in E\). Since \(T(\mu(xy), T(\sigma(x), \sigma(y))) \leq T_{\min}(\mu(xy), T(\sigma(x), \sigma(y)))\), we get that \(\mu(xy) \geq \alpha_{\min} \geq \alpha, \sigma(x) \geq \alpha_{\min} \geq \alpha\) and \(\sigma(y) \geq \alpha_{\min} \geq \alpha\). Hence for any \(\alpha \leq \alpha_{\min}\), we have \(\mu^\alpha \leq \sigma^\alpha \times \sigma^\alpha\) and so \(G^\alpha = (\sigma^\alpha, \mu^\alpha)\) is a subgraph of \(G^* = (V, E)\).

Theorem 4.4. Let \((V, \rho, T)\) be a \(KM\)-fuzzy metric space and \(G^* = (V, E)\) be a simple graph.

(i) If \(\mu \leq \rho\), then \(G = (\sigma, \mu, \rho, T)\) is a \(KM\)-fuzzy metric graph on \(G^*\).

(ii) If \(T = T_{\min}\), \(G = (\sigma, \mu, T_{\min})\) is a \(KM\)-fuzzy metric graph on \(G^*\) and \(\mu > \rho\), then \(G = (\sigma, \mu)\) is not a fuzzy graph on \(G^*\).
(iii) If \(T = T_{\min} \) and \(G = (\sigma, \mu, \rho, T_{\min}) \) is a strong KM-fuzzy metric graph on \(G^* \), then \(G = (\sigma, \mu) \) is a KM-fuzzy graph on \(G^* \) if and only if \(\rho \equiv \mu \).

Proof. Let \(x, y \in V \). Then for some \(t \in \mathbb{R}_{\geq 0} \):

(i) Since \(T(\mu(xy), T(\sigma(x), \sigma(y))) \leq \mu(xy) \), then \(\mu \leq \rho \) implies that \(T(\mu(xy), T(\sigma(x), \sigma(y))) \leq \rho(x, y, t) \). So \(G = (\sigma, \mu, \rho, T) \) is a KM-fuzzy metric graph on \(G^* \).

(ii) Let \(G = (\sigma, \mu) \) be a fuzzy graph on \(G^* \). For all \(xy \in E \), since \(G = (\sigma, \mu, \rho, T_{\min}) \) is a KM-fuzzy metric graph on \(G^* \), using \(\mu(xy) \leq T_{\min}(\sigma(x), \sigma(y)) \), we get that \(\mu(xy) = T_{\min}(\mu(xy), T_{\min}(\sigma(x), \sigma(y))) \leq \rho(x, y, t) \) which it is a contradiction.

(iii) If \(G = (\sigma, \mu) \) is a fuzzy graph on \(G^* \) if and only if for all \(xy \in E \), \(\mu(xy) \leq T_{\min}(\sigma(x), \sigma(y)) \) if and only if \(T_{\min}(\mu(xy), T_{\min}(\sigma(x), \sigma(y))) = \mu(xy) \) if and only if \(\rho(x, y, t) = \mu(xy) \).

Corollary 4.5. Let \(G = (\sigma, \mu, \rho, T) \) be a KM-fuzzy metric connected graph on \(G^* = (V, E) \). Then for starting time \(G = (\sigma, \mu) \) is not a fuzzy graph on \(G^* \).

Theorem 4.6. Let \((V, \rho, T) \) be a KM-fuzzy metric space, \(G^* = (V, E) \) be a simple graph and \(xy \in E \). Then for \(\sigma : V \to [0,1] \) and \(\mu : E \to [0,1] \),

(i) If \(\sigma(x) + \sigma(y) \leq 1 \), then \(G = (\sigma, \mu, \rho, T_{\min}) \) is a KM-fuzzy metric graph on \(G^* \).

(ii) If \(\mu(xy) + 1 \leq \mu(xy) + \sigma(x) + \sigma(y) \leq 2 \), then \(G = (\sigma, \mu, \rho, T_{\min}) \) is a KM-fuzzy metric graph on \(G^* \).

Proof. Let \(x, y \in V \). Then for some \(t \in \mathbb{R}_{\geq 0} \):

(i) \(T_{\min}(\mu(xy), T_{\min}(\sigma(x), \sigma(y))) \)

(ii) \(T_{\min}(\mu(xy), T_{\min}(\sigma(x), \sigma(y))) = \mu(xy) \) if and only if \(\rho(x, y, t) = \mu(xy) \).

(iii) Because \(\mu(xy) + 1 \leq \mu(xy) + \sigma(x) + \sigma(y) \leq 2 \), we get that \(\sigma(x) + \sigma(y) \geq 1 \) and by item (i), have \(T_{\min}(\mu(xy), T_{\min}(\sigma(x), \sigma(y))) = 0 \). It follows that \(G = (\sigma, \mu, \rho, T_{\min}) \) is a KM-fuzzy metric graph on \(G^* \).

Theorem 4.7. Let \(G^* = (V, E) \) be a simple connected graph. Then there exists a KM-fuzzy metric graph on \(G^* \).

Proof. Let \(\varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) be an increasing continuous function. By Corollary 3.9 for a fuzzy subset \(\rho : V^2 \times \mathbb{R}_{\geq 0} \to [0,1] \) by \(\rho(x, y, t) = \frac{\varphi(t)}{\varphi(t) + d^\rho(x, y)} \) if \(t > 0(\varphi(t) \geq 2) \), there exists a continuous t-norm \(T = T_{pr} \), such that \((V, \rho, T) \) is a KM-fuzzy metric space. Consider \(n = \max \{d^\rho(x, y) \mid xy \in E \} \) and for any fuzzy subset \(\sigma : V \to [0,1] \), define \(\sigma' : V \to [0,1] \) by \(\sigma'(x) = 10^{-n-2}\sigma(x) \) and \(\mu : E \to [0,1] \) by \(\mu(xy) = \sigma'(x) + \sigma'(y) \). By Corollary 3.9, since for all \(x, y \in V, \sigma(x) + \sigma(y) \leq 2 \), we get that \(T(\mu(xy), T(\sigma'(x), \sigma'(y))) \leq T_{pr}(\mu(xy), T_{pr}(\sigma'(x), \sigma'(y))) = (\sigma'(x) + \sigma'(y))(\sigma'(x)\sigma'(y)) = (\sigma(x) + \sigma(y))\sigma(x)\sigma(y)10^{-3n-6} \leq \frac{\varphi(t)}{\varphi(t) + d^\rho(x, y)} \). Therefore, for after starting time \(G = (\sigma', \mu, \rho, T) \) is a KM-fuzzy metric graph on \(G^* \).

Example 4.8. Let \(X = \{a, b, c, d, e\} \). Consider an \(X \)-derived graph \(G^* = (X, E) \) in Figure 1. For all \(x, y \in X \), take \(\varphi(t) = t \), in Theorem 3.8. Thus \((X, \rho, T_{pr}) \) is a KM-fuzzy metric space. Define a fuzzy subset \(\sigma = \{(a,0.1), (b,0.2), (c,0.3), (d,0.4), (e,0.5)\} \) and so for half time \(t = \frac{1}{2} \), obtain a KM-fuzzy metric graph on \(\{a, b, c, d, e\} \)-derived graph \(G = (X, E) \) in Figure 2.

![Figure 1: \{a, b, c, d, e\}-derived graph \(G^* = (X, E) \).](image-url)
In this section, for any given two KM-fuzzy metric graphs, define some product operations and show that the product of KM-fuzzy metric graphs is a KM-fuzzy metric graph. From now on, we consider $G_1 = (\sigma_1, \mu_1, \rho_1, T)$, $G_2 = (\sigma_2, \mu_2, \rho_2, T)$ as KM-fuzzy metric graphs on simple graphs $G_1^* = (V_1, E_1)$ and $G_2^* = (V_2, E_2)$, respectively.

Definition 4.9. Let G_1, G_2 be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively. Define the categorical product (tensor product) of fuzzy subsets $\sigma_1 \times \sigma_2 : V(G_1^* \times G_2^*) \to [0,1]$ by $(\sigma_1 \times \sigma_2)(x_1, x_2) = T_{\min}(\sigma_1(x_1), \sigma_2(x_2))$ and $\mu_1 \times \mu_2 : E(G_1^* \times G_2^*) \to [0,1]$ by $(\mu_1 \times \mu_2)((x_1, x_2),(y_1, y_2)) = T_{\min}(\mu_1(x_1 y_1), \mu_2(x_2 y_2))$.

Example 4.10. Consider the KM-fuzzy metric spaces $(V_1 = \{-1, -2\}, \rho_1, T_{pr})$, $(V_2 = \{3, 4, 5\}, \rho_2, T_{pr})$, where $\rho_1(-1, -1, t > 0) = 1, \rho_1(-2, -2, t > 0) = 1, \rho_1(-1, -2, t > 0) = \frac{1+t}{2+t}, \rho_1(x, y, 0) = 0$, $x, y \in V_1$ and for all $x, y \in \{3, 4, 5\}$, $\rho_2(x, y, t) = \begin{cases} \min(x, y) + t & \text{if } t > 0 \\ \max(x, y) + t & \text{if } t = 0 \end{cases}$. For the KM-fuzzy metric graphs $G_1 = (\sigma_1, \mu_1, \rho_1, T_{pr})$ in unit time $t_1 = 1$ and $G_2 = (\sigma_2, \mu_2, \rho_2, T_{pr})$ in unit time $t_2 = 1$ on G_1^* and G_2^* in Figure 3 we obtain the KM-fuzzy metric graph $G_1 \times G_2$ in Figure 4.

Theorem 4.11. Let G_1 and G_2 be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively. Then $G_1 \times G_2 = (\sigma_1 \times \sigma_2, \mu_1 \times \mu_2, T_{\min}(\rho), T)$ is a KM-fuzzy metric graph on $G_1^* \times G_2^*$.

![Figure 2: KM-fuzzy metric graph $G = (\sigma, \mu, \rho, T_{pr})$ on half time $\frac{1}{2}$.](image)

![Figure 3: KM-fuzzy metric graphs $G_1 = (\sigma_1, \mu_1, \rho_1, T_{pr}), G_2 = (\sigma_2, \mu_2, \rho_2, T_{pr})$ for $t = 1$.](image)

![Figure 4: KM-fuzzy metric graph $G_1 \times G_1 = (\sigma_1 \times \sigma_2, \mu_1 \times \mu_2, T_{\min}(\rho), T_{pr})$ for $t = 1$.](image)
Proof. Firstly, by Theorem 3.10 $(V_1 \times V_2, T_{min}(\rho), T)$ is a KM-fuzzy metric space. Let $(x_1, x_2), (y_1, y_2) \in E(G_1^* \times G_2^*)$. Since G_1 is a KM-fuzzy metric graph on G_1^* and G_2 is a KM-fuzzy metric graph on G_2^*, for some $t_1, t_2 \in \mathbb{R}^0$, we get that $T((\mu_1 \otimes \mu_2)((x_1, x_2)(y_1, y_2)), T((\sigma_1 \otimes \sigma_2)(x_1, x_2), (\sigma_1 \otimes \sigma_2)(y_1, y_2))) \leq T(\mu_1(x_1, y_1), T(\sigma_1(x_1), \sigma_1(y_1))) \leq \rho_1(x_1, y_1, t_1)$ and $T((\mu_1 \otimes \mu_2)((x_1, x_2)(y_1, y_2)), T((\sigma_1 \otimes \sigma_2)(x_1, x_2), (\sigma_1 \otimes \sigma_2)(y_1, y_2))) \leq T(\mu_2(x_2, y_2), T(\sigma_2(x_2), \sigma_2(y_2))) \leq \rho_2(x_2, y_2, t_2)$. Consider $t = \max\{t_1, t_2\}$, so by Theorem 2.4 we obtain $T((\mu_1 \otimes \mu_2)((x_1, x_2)(y_1, y_2)), (\sigma_1 \otimes \sigma_2)(y_1, y_2)) \leq T_{min}(\rho_1(x_1, y_1, t_1), \rho_2(x_2, y_2, t_2)) \leq T_{min}(\rho(x_1, x_2), (y_1, y_2), t)$. Thus $G_1 \otimes G_2 = (\sigma_1 \otimes \sigma_2, \mu_1 \otimes \mu_2, T_{min}(\rho), T)$ is a KM-fuzzy metric graph on $G_1^* \times G_2^*$.

Definition 4.12. Let G_1, G_2 be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively. Define the Cartesian product (or product) fuzzy subsets $\sigma_1 \otimes \sigma_2 : V_1 \times V_2 \rightarrow [0, 1]$ by $(\sigma_1 \otimes \sigma_2)(x_1, x_2) = T_{min}(\sigma_1(x_1), \sigma_2(x_2))$ and $\mu_1 \otimes \mu_2 : E_1 \times E_2 \rightarrow [0, 1]$ by $(\mu_1 \otimes \mu_2)((x, x_2)(y, y_2)) = T_{min}(\mu_1(x_1), \mu_2(x_2), (y_1, y_2)) = T_{min}(\mu_1(x_1, y_1), \mu_2(x_2, y_2))$.

Example 4.13. Consider the KM-fuzzy metric graphs G_1 and G_2 in Example 4.10. So we obtain the KM-fuzzy metric graph $G_1 \otimes G_2$ in Figure 5.

![Figure 5: KM-fuzzy metric graph $G_1 \otimes G_2$](image)

Theorem 4.14. Let G_1 and G_2 be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively.

(i) If $(G_1^* \otimes G_2^*, T(\rho), T)$ is a KM-fuzzy metric space, then $T(\rho) = \rho_1$ or $T(\rho) = \rho_2$, where $T \in C_T$.

(ii) $G_1 \otimes G_2 = (\sigma_1 \otimes \sigma_2, \mu_1 \otimes \mu_2, T_{min}(\rho), T)$ is a KM-fuzzy metric graph on $G_1^* \otimes G_2^*$.

Proof. (i) Let $(x_1, x_2), (y_1, y_2) \in E(G_1^* \otimes G_2^*)$. Then $x_1 = y_1$ and $x_2 = y_2$ or $x_1 = y_1$ and $x_2 = y_2$. If $x_1 = y_1$ and $x_2 = y_2$, then $T(\rho)((x_1, x_2), (y_1, y_2), t) = T(\rho_1(x_1, y_1, t_1), \rho_2(x_2, y_2, t_2)) = T(\rho_1(x_1, y_1, t_1), \rho_2(x_2, y_2, t_2)) = \rho_1(x_1, y_1, t_1).$

(ii) Firstly, by Theorem 3.10 $(V_1 \times V_2, T_{min}(\rho), T)$ is a KM-fuzzy metric space. Let $(x_1, x_2), (y_1, y_2) \in E(G_1^* \otimes G_2^*)$. Since G_1 is a KM-fuzzy metric graph on G_1^* and G_2 is a KM-fuzzy metric graph on G_2^*, for some $t_1, t_2 \in \mathbb{R}^0$, give $t = \max\{t_1, t_2\}$, so by item (i) and Theorem 2.4 we get that $T((\mu_1 \otimes \mu_2)((x_1, x_2)(y_1, y_2)), T((\sigma_1 \otimes \sigma_2)(x_1, x_2), (\sigma_1 \otimes \sigma_2)(y_1, y_2))) \leq T(\mu_1(x_1, y_1), T(\sigma_1(x_1), \sigma_1(y_1))) \leq \rho_1(x_1, y_1, t_1)$ and $T((\mu_1 \otimes \mu_2)((x_1, x_2)(y_1, y_2)), T((\sigma_1 \otimes \sigma_2)(x_1, x_2), (\sigma_1 \otimes \sigma_2)(y_1, y_2))) \leq T(\mu_2(x_2, y_2), T(\sigma_2(x_2), \sigma_2(y_2))) \leq \rho_2(x_2, y_2, t_2)$. Thus $G_1 \otimes G_2 = (\sigma_1 \otimes \sigma_2, \mu_1 \otimes \mu_2, T_{min}(\rho), T)$ is a KM-fuzzy metric graph on $G_1^* \otimes G_2^*$.

Definition 4.15. Let G_1, G_2 be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively. Define the semistrong product of fuzzy subsets $\sigma_1 \otimes \sigma_2 : V_1 \times V_2 \rightarrow [0, 1]$ by $(\sigma_1 \otimes \sigma_2)(x_1, x_2) = T_{min}(\sigma_1(x_1), \sigma_2(x_2))$ and $\mu_1 \otimes \mu_2 : E_1 \times E_2 \rightarrow [0, 1]$ by $(\mu_1 \otimes \mu_2)((x, x_2)(y, y_2)) = T_{min}(\mu_1(x_1), \mu_2(x_2, y_2))$.

$(\sigma_1 \otimes \sigma_2)(x_1, x_2) = T_{min}(\sigma_1(x_1), \sigma_2(x_2))$, $(\mu_1 \otimes \mu_2)((x, x_2)(y, y_2)) = T_{min}(\mu_1(x_1, y_1), \mu_2(x_2, y_2))$.

Example 4.16. Consider the KM-fuzzy metric graphs G_1 and G_2 in Example 4.10. So we obtain the KM-fuzzy metric graph $G_1 \ast G_2$ in Figure 6.

Theorem 4.17. Let G_1 and G_2 be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively. Then $G_1 \ast G_2 = (\sigma_1 \ast \sigma_2, \mu_1 \ast \mu_2, T_{\min}(\rho), T_{pr})$ is a KM-fuzzy metric graph on $G_1^* \ast G_2^*$.

Proof. It is similar to Theorems 4.11 and 4.14.

Definition 4.18. Let G_1, G_2 be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively. Define the strong product of fuzzy subsets $\sigma_1 \ast \sigma_2 : V_1 \times V_2 \to [0, 1]$ by $(\sigma_1 \ast \sigma_2)(x, y) = T_{\min}(\sigma_1(x), \sigma_2(y))$ and $\mu_1 \ast \mu_2 : E_1 \times E_2 \to [0, 1]$ by $(\mu_1 \ast \mu_2)((x, x'), (y, y')) = T_{\min}(\mu_1(x, y), \mu_2(x', y'))$.

Example 4.19. Consider the KM-fuzzy metric spaces $(V_1 = \{1, 2\}, \rho_1, T_{\min})$, $(V_2 = \{3, 4, 5\}, \rho_2, T_{\min})$, where for all $x, y \in \{1, 2\}$, $\rho_1(x, y, 0) = 0$, $\rho_1(x, y, t > 0) = \frac{\min\{x, y\} + t}{\max\{x, y\} + t}$ and for all $x, y \in \{3, 4, 5\}$, $\rho_2(x, y, t > 0) = \begin{cases} 1 & \text{if } x = y \\ \frac{1}{9} + \frac{t}{10} & \text{if } x \neq y \end{cases}$. For the KM-fuzzy metric graphs G_1 with $t_1 = 2$ and G_2 with $t_2 = 1$ on G_1^* and G_2^* in Figure 7, we obtain the KM-fuzzy metric graph $G_1 \ast G_2$ in Figure 8.

![Figure 6: KM-fuzzy metric graph $G_1 \ast G_2 = (\sigma_1 \ast \sigma_2, \mu_1 \ast \mu_2, T_{\min}(\rho), T_{pr})$ for $t = 1$.](image)

![Figure 7: KM-fuzzy metric graphs $G_1 = (\sigma_1, \mu_1, T_{\min})$ and $G_2 = (\sigma_2, \mu_2, T_{\min})$ for $t_1 = 2, t_2 = 1$.](image)

Theorem 4.20. Let G_1 and G_2 be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively. Then $G_1 \ast G_2 = (\sigma_1 \ast \sigma_2, \mu_1 \ast \mu_2, T_{\min}(\rho), T)$ is a KM-fuzzy metric graph on $G_1^* \ast G_2^*$.

Proof. It is similar to Theorems 4.11 and 4.14.

Definition 4.21. Let G_1, G_2 be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively. Define the lexicographic product of fuzzy subsets $\sigma_1 \circ \sigma_2 : V_1 \times V_2 \to [0, 1]$ by $(\sigma_1 \circ \sigma_2)(x_1, x_2) = T_{\min}(\sigma_1(x_1), \sigma_2(x_2))$ and $\mu_1 \circ \mu_2 : E_1 \times E_2 \to [0, 1]$ by $(\mu_1 \circ \mu_2)((x, x'), (y, y')) = T_{\min}(\mu_1(x, y), \mu_2(x', y'))$.

Example 4.22. Consider the KM-fuzzy metric graphs $G_1 = (\sigma_1, \mu_1)$ and $G_2 = (\sigma_2, \mu_2)$ in Example 4.10. So we obtain the KM-fuzzy metric graph $G_1 \circ G_2$ in Figure 9.
Theorem 4.26. Let $G_1 = (\sigma_1, \mu_1, T_{1w})$, $G_2 = (\sigma_2, \mu_2, T_{2w})$ be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively. If $G_1^* = (V_1, E_1)$ and $G_2^* = (V_2, E_2)$ are two simple graphs, where $V_1 \cap V_2 = \emptyset$, then $G_1 \cup G_2 = (\sigma_1 \cup \sigma_2, \mu_1 \cup \mu_2, T_{1w} \cup T_{2w})$ is a KM-fuzzy metric graph on $G_1^* \cup G_2^*$.

Proof. It is similar to Theorem 4.11 and 4.14 \hfill \Box

Definition 4.24. Let G_1, G_2 be KM-fuzzy metric graphs on simple graphs G_1^* and G_2^*, respectively. Define the union of fuzzy subsets $\sigma_1 \cup \sigma_2 : V_1 \cup V_2 \to [0, 1]$ and $\mu_1 \cup \mu_2 : E_1 \cup E_2 \to [0, 1]$ by $(\sigma_1 \cup \sigma_2)(x) = \begin{cases} \sigma_1(x) & \text{if } x \in V_1 \setminus V_2 \\ \sigma_2(x) & \text{if } x \in V_2 \setminus V_1 \\ \min(\sigma_1(x), \sigma_2(x)) & \text{if } x \in V_1 \cap V_2 \end{cases}$ and $(\mu_1 \cup \mu_2)(xy) = \begin{cases} \mu_1(xy) & \text{if } xy \in E_1 \setminus E_2 \\ \mu_2(xy) & \text{if } xy \in E_2 \setminus E_1 \\ \min(\mu_1(xy), \mu_2(xy)) & \text{if } xy \in E_1 \cap E_2 \end{cases}$.

Example 4.25. Consider the KM-fuzzy metric spaces $(V_1 = \{-1, -2, 3, 4\}, \rho_1, T_{1w})$, $(V_2 = \{5, 6, 7\}, \rho_2, T_{2w})$, where for all $x, y \in \{-1, -2, 3, 4\}$, $\rho_1(x, y, 0) = 0$, $\rho_1(x, y, t > 0) = \frac{t}{t + d_1(x, y)}$ and for all $x, y \in \{5, 6, 7\}$, $\rho_2(x, y, 0) = 0$, $\rho_2(x, y, t > 0) = \min\{x, y\} + 2t$. Clearly we have the KM-fuzzy metric graphs G_1 with $t_1 = 1$ and G_2 with $t_2 = 3$ on G_1^* and G_2^* in Figure 10. So we obtain a KM-fuzzy metric graphs $G_1 \cup G_2$ with $t = 3$ as in Figure 10.
Definition 4.27. Let G_1, G_2 be KM-fuzzy metric graphs on simple graphs G^*_1 and G^*_2, respectively. Define the semi-ring sum of fuzzy subsets $\sigma_1 \odot \sigma_2 : V_1 \cup V_2 \to [0, 1]$ and $\mu_1 \odot \mu_2 : E_1 \cup E_2 \to [0, 1]$ by $(\sigma_1 \odot \sigma_2)(x) = (\sigma_1 \circ \sigma_2)(x)$ and $(\mu_1 \odot \mu_2)(x,y) = \begin{cases}
mu_1 xy & \text{if } x \in E_1 \setminus E_2 \\
mu_2 xy & \text{if } x \in E_2 \setminus E_1 \\
0 & \text{if } x \in E_1 \cap E_2 \end{cases}$.

Theorem 4.28. Let G_1 and G_2 be KM-fuzzy metric graphs on simple graphs G^*_1 and G^*_2, respectively. If G^*_1 and G^*_2 are two simple graphs, where $V_1 \cap V_2 = \emptyset$, then $G_1 \oplus G_2 = (\sigma_1 \circ \sigma_2, \mu_1 \odot \mu_2, \rho_1 \cup \rho_2, T)$ is a KM-fuzzy metric graph on $G^*_1 \cup G^*_2$.

Definition 4.29. Let G_1, G_2 be KM-fuzzy metric graphs on simple graphs G^*_1 and G^*_2, respectively. Define the join(or suspension) of fuzzy subsets $\sigma_1 + \sigma_2 : V_1 \cup V_2 \to [0, 1]$ and $\mu_1 + \mu_2 : E_1 \cup E_2 \to [0, 1]$ by $(\sigma_1 + \sigma_2)(x) = (\sigma_1 \circ \sigma_2)(x)$ and $(\mu_1 + \mu_2)(x,y) = \begin{cases}
\rho_1 x y & \text{if } x \in E_1 \cup E_2 \\
(\rho_1 \cup \rho_2)(x,y) & \text{if } x \in E'(x \in V_1, y \in V_2) \end{cases}$, where E' is the set of all edges joining the vertices of V_1 and V_2.

Example 4.30. Consider the KM-fuzzy metric graphs $G_1 = (\sigma_1, \mu_1)$ and $G_2 = (\sigma_2, \mu_2)$ in Example 4.10. So we obtain the KM-fuzzy metric graph $G_1 \oplus G_2$ with $t = 1$ in Figure 7.

Theorem 4.31. Let G_1 and G_2 be KM-fuzzy metric graphs on simple graphs G^*_1 and G^*_2, respectively. If G^*_1 and G^*_2 are two simple graphs, where $V_1 \cap V_2 = \emptyset$, then $G_1 + G_2 = (\sigma_1 + \sigma_2, \mu_1 \odot \mu_2, \rho_1 \cup \rho_2, T)$ is a KM-fuzzy metric graph on $G^*_1 + G^*_2$.

Definition 4.32. Let (V, ρ, T) be a KM-fuzzy metric space and $G^* = (V, E)$ be a simple graph. If $G = (\sigma, \mu, \rho, T)$ is a KM-fuzzy metric graph on G^*, then define the complement of fuzzy subsets $\sigma \circ \sigma = (\sigma(x) \cap \sigma(y)) = \rho(x, y, t) - T(\mu(x,y), \sigma(y)))$, where $x, y \in V$ and some $t \in R^{\geq 0}$ that $T(\mu(x,y), \sigma(x), \sigma(y))) \geq \rho(x, y, t)$. We will denote the complement of a KM-fuzzy metric graph $G = (\sigma, \mu, \rho, T)$, by $\overline{G} = (\sigma, \overline{\mu}, \rho, T)$.
Theorem 4.33. Let \((V, \rho, T)\) be a \(KM\)-fuzzy metric space and \(G^* = (V, E)\) be a simple graph. If \(G = (\sigma, \mu, \rho, T)\) is a \(KM\)-fuzzy metric graph on \(G^*\), then \(\overline{G} = (\sigma, \overline{\mu}, \rho, T)\) is a \(KM\)-fuzzy metric graph.

Proof. Let \(x, y \in V\). Since \(G\) is a \(KM\)-fuzzy metric graph on \(G^*\), for some \(t \in \mathbb{R}^\ge\), \(T(\overline{\mu}(xy), T(\sigma(x), \sigma(y))) = T(\rho(x, y, t) - T(\mu(xy), T(\sigma(x), \sigma(y)))) \leq \rho(x, y, t) - T(\mu(xy), T(\sigma(x), \sigma(y))) \leq \rho(x, y, t)\). It follows that \(\overline{G} = (\sigma, \overline{\mu}, \rho, T)\) is a \(KM\)-fuzzy metric graph.

Theorem 4.34. Let \((V, \rho, T_{pr})\) be a \(KM\)-fuzzy metric space, \(G^* = (V, E)\) be a simple graph and \(G = (\sigma, \mu, \rho, T_{pr})\) be a \(KM\)-fuzzy metric graph on \(G^*\). Then

(i) \(\overline{\mu} = \mu\) implies that \(\sigma \equiv 1 \) or \(\mu(xy) = \frac{\rho(x, y, t)}{1 + \sigma(x)\sigma(y)}\), where \(xy \in E\).

(ii) If \(G\) is a strong \(KM\)-fuzzy metric graph, then \(\overline{\mu} = \mu\) implies that \(\rho \equiv \mu\).

Proof. (i), (ii) Let \(x, y \in V\). Then for some \(t \in \mathbb{R}^\ge\), \(\overline{\mu}(xy) = \mu(xy) \Leftrightarrow \rho(x, y, t) - (\rho(x, y, t) - \mu(xy)\sigma(x)\sigma(y))\sigma(x)\sigma(y) = \mu(xy) \Leftrightarrow \rho(x, y, t) - \rho(x, y, t)\sigma(x)\sigma(y) + \mu(xy)\sigma^2(x)\sigma^2(y) = \mu(xy) \Leftrightarrow \rho(x, y, t)(1 - \sigma(x)\sigma(y)) - \mu(xy)(1 - \sigma^2(x)\sigma^2(y)) = 0 \Leftrightarrow (1 - \sigma(x)\sigma(y))(\rho(x, y, t) - \mu(xy)(1 + \sigma(x)\sigma(y))) = 0 \Leftrightarrow (1 - \sigma(x)\sigma(y)) = 0 \text{ or } (\rho(x, y, t) - \mu(xy)(1 + \sigma(x)\sigma(y))) = 0.\) It follows that \(1 - \sigma(x)\sigma(y) = 0\) or \(\rho(x, y, t) - \mu(xy)(1 + \sigma(x)\sigma(y)) = 0\) implies that \(\mu(xy) = \frac{\rho(x, y, t)}{1 + \sigma(x)\sigma(y)}\). In addition, if \(G\) is a strong \(KM\)-fuzzy metric graph, then \(\sigma \equiv 1\) concludes that \(\rho \equiv \mu\) and \(\mu(xy) = \frac{\rho(x, y, t)}{1 + \sigma(x)\sigma(y)}\) implies that \(\mu \equiv 0\) and so \(\rho \equiv \mu\).

Let \((V, \rho, T)\) be a \(KM\)-fuzzy metric spaces and \(G^* = (V, E)\) be a simple graph. For simplify, we denote \(\overline{\mu} = \mu^1, \overline{\mu} = \mu^2\) and for all \(n \in \mathbb{N}, \mu^{n-T} = \mu^n\).

Theorem 4.35. Let \((V, \rho, T_{pr})\) be a \(KM\)-fuzzy metric space, \(G^* = (V, E)\) be a simple graph and \(G = (\sigma, \mu, \rho, T_{pr})\) be a strong \(KM\)-fuzzy metric graph on \(G^*\). Then

\[
\mu^n(xy) = \begin{cases}
0 & \text{if } n = 1, \\
\rho(x, y, t) & \text{if } n = 2, \\
\mu^{n-1}(xy) + \rho(x, y, t)(-\sigma(x)\sigma(y))^{n-2} & \text{if } n \geq 3.
\end{cases}
\]

Proof. Let \(x, y \in V\). For some \(t \in \mathbb{R}^\ge\), since \(G = (\sigma, \mu, \rho, T_{pr})\) is a strong \(KM\)-fuzzy metric graph on \(G^*\), we get that \(\mu(xy) = \rho(x, y, t) - \mu(xy)\sigma(x)\sigma(y) = 0, \mu^2(xy) = \rho(x, y, t) - 0\sigma(x)\sigma(y) = \rho(x, y, t), \mu^3(xy) = \rho(x, y, t) - \rho(x, y, t)\sigma(x)\sigma(y), \mu^4(xy) = \rho(x, y, t) - (\rho(x, y, t)\sigma(x)\sigma(y)) + \rho(x, y, t)\sigma^2(x)\sigma^2(y),\) and by induction, for all \(n \geq 3\) we get that \(\mu^n(xy) = \mu^{n-1}(xy) + \rho(x, y, t)(-\sigma(x)\sigma(y))^{n-2}.\)

Corollary 4.36. Let \((V, \rho, T_{pr})\) be a \(KM\)-fuzzy metric space, \(G^* = (V, E)\) be a simple graph and \(G = (\sigma, \mu, \rho, T_{pr})\) be a strong \(KM\)-fuzzy metric graph on \(G^*\). Then
Theorem 4.38. Let \(G = (\sigma, \mu, \rho, T) \) be a \(KM \)-fuzzy metric graph on simple graphs \(G^* = (V, E) \), \(G^*_1 = (V_1, E_1) \) and \(G^*_2 = (V_2, E_2) \), respectively.

(i) A bijective mapping \(\varphi : V_1 \rightarrow V_2 \) which for all \(xy \in E_1 \), for all \(t \in \mathbb{R}^{\geq 0} \), \(\sigma_1(x) = \sigma_2(\varphi(x)) \), \(\mu_1(xy) = \mu_2(\varphi(x)\varphi(y)) \) and \(\rho_1(x, y, t) = \rho_2(\varphi(x), \varphi(y), t) \) is called an isomorphism \(\varphi : G_1 \rightarrow G_2 \) of \(KM \)-fuzzy metric graphs and we will denote it by \(G_1 \cong G_2 \).

(ii) \(G \) is said to be a self-complementary \(KM \)-fuzzy metric graph, if \(\overline{G} = (\overline{\sigma}, \overline{\mu}, \overline{\rho}, \overline{T}) \cong G = (\sigma, \mu) \).

Theorem 4.39. Let \((V, \rho, T_{pr}) \) be a \(KM \)-fuzzy metric space, \(G^* = (V, E) \) be a simple graph and \(G = (\sigma, \mu, \rho, T) \) be a \(KM \)-fuzzy metric graph on \(G^* \). Then

(i) Let \(T = T_{\min} \) and \(G = (\sigma, \mu) \) is a fuzzy graph on \(G^* \), then \(\sum_{x \neq y} \mu(xy) = \frac{1}{2} \sum_{x \neq y} \rho(x, y, t) \).

(ii) \(T_{\min} \) is a fuzzy graph on \(G^* \), we get that \(T_{\min}(\mu(xy), T_{\min}(\sigma(x), \sigma(y))) = \mu(xy) \) and by item (i), we have

\[
\sum_{x \neq y} \mu(xy) + \sum_{x \neq y} T_{\min}(\mu(xy), T_{\min}(\sigma(x), \sigma(y))) = \sum_{x \neq y} \rho(x, y, t) \Rightarrow \sum_{x \neq y} \mu(xy) + \sum_{x \neq y} \mu(xy) = 2 \sum_{x \neq y} \mu(xy) = \sum_{x \neq y} \rho(x, y, t).
\]
Proof. Let \((V_1, \rho_1, T), (V_2, \rho_2, T)\) be \(KM\)-fuzzy metric spaces, \(G_1 = (\sigma_1, \mu_1, \rho_1, T)\) and \(G_2 = (\sigma_2, \mu_2, \rho_2, T)\) be isomorphic \(KM\)-fuzzy metric graphs on simple graphs \(G_1^1 = (V_1, E_1)\) and \(G_2^2 = (V_2, E_2)\), respectively. Then there exists a bijective mapping \(\varphi : V_1 \rightarrow V_2\) which for all \(xy \in E_1\), \(\sigma_1(x) = \sigma_2(\varphi(x))\), \(\mu_1(xy) = \mu_2(\varphi(x)\varphi(y))\) and \(\rho_1(x, y, t) = \rho_2(\varphi(x), \varphi(y), t)\). Thus, \(\overline{\mu_1}(xy) = \rho_1(x, y, t) - T(\mu_1(xy), T(\sigma_1(x), \sigma_1(y))) = \rho_2(\varphi(x), \varphi(y), t) - T(\mu_2(\varphi(x)\varphi(y)), T(\sigma_2(\varphi(x)), \sigma_2(\varphi(x)))) = \overline{\mu_2}(\varphi(x)\varphi(y))\). Hence \(\overline{G_1^1} \cong \overline{G_2^2}\). Similarly, we can prove the converse part. \(\square\)

5 Conclusions

The current paper has introduced a novel concept fuzzy algebra as \(KM\)-fuzzy metric graph and a new generalization of graphs based on \(KM\)-fuzzy metric spaces. This work extended and obtained some properties in \(KM\)-fuzzy metric spaces. Also it showed that every non empty set converted to a \(KM\)-fuzzy metric space, the product and union of \(KM\)-fuzzy metric spaces is a \(KM\)-fuzzy metric space, the extended \(KM\)-fuzzy metric spaces are constructed using the some algebraic operations on \(KM\)-fuzzy metric spaces, the concept of complement of \(KM\)-fuzzy metric graph is defined and is investigated some its properties and by using the notation of bijections, the notation of isomorphisms on \(KM\)-fuzzy metric graphs are defined and extracted the self-complementary of \(KM\)-fuzzy metric graphs. We hope that these results are helpful for further studies in theory of graphs. In our future studies, we hope to obtain more results regarding intuitionistic metric graphs, neutrosophic metric graphs, \(KM\)-fuzzy metric hypergraphs, bipolar \(KM\)-fuzzy metric graphs, automorphism \(KM\)-fuzzy metric graphs and their applications.

Acknowledgement

The authors wish to express their appreciation for several excellent suggestions for improvements in this paper made by the referees.

References

