^{}Department of Mathematics, Yazd University, Yazd, Iran

Abstract

In a ternary semihyperring, addition is a hyperoperation and multiplication is a ternary operation. Indeed, the notion of ternary semihyperrings is a generalization of semirings. Our main purpose of this paper is to introduce the notions of fuzzy hyperideal and fuzzy bi-hyperideal in ternary semihyperrings. We give some characterizations of fuzzy hyperideals and investigate several kinds of them.

[1] R. Ameri and H. Hedayati, On k-hyperideals of semihyperrings, J. Discrete Math. Sci. Cryptogr., 10 (2007), 41-54. [2] S. M. Anvariyeh and B. Davvaz, Strongly transitive geometric spaces associated to hypermodules, Journal of Algebra, 322 (2009), 1340-1359. [3] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, - Relation on hypermodules and fundamental modules over commutative fundamental rings, Communications in Algebra, 36(2) (2008), 622-631. [4] S. K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems, 81 (1996), 383-393. [5] A. Chronowski, On ternary semigroups of lattice homomorphisms, Quasigroups Related Systems, 3 (1996), 55-72. [6] A. Chronowski, Congruences on ternary semigroups, Ukrainian Math. J., 56 (2004), 662-681. [7] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, 1993. [8] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003. [9] G. Crombez, On (n,m)-rings, Abh. Math. Semin. Univ. Hamburg, 37 (1972), 180-199. [10] G. Crombez and J. Timm, On (n,m)-quotient rings, Abh. Math. Semin. Univ. Hamburg, 37 (1972), 200-203. [11] B. Davvaz, Fuzzy Hv-groups, Fuzzy Sets and Systems, 101 (1999), 191-195. [12] B. Davvaz, Fuzzy Hv-submodules, Fuzzy Sets and Systems, 117 (2001), 477-484. [13] B. Davvaz, Hyperideals in ternary semihyperrings, submitted. [14] B. Davvaz, P. Corsini and V. Leoreanu-Fotea, Fuzzy n-ary subpolygroups, Computers & Mathematics with Applications, 57 (2009), 141-152. [15] B. Davvaz, P. Corsini and V. Leoreanu-Fotea, Atanassov’s intuitionistic (S, T)-fuzzy n-ary subhypergroups and their properties, Information Sciences, 179 (2009), 654-666. [16] B. Davvaz and V. Leoreanu, Applications of interval valued fuzzy n-ary polygroups with respect to t-norms (t-conorms), Computers & Mathematics with Applications, 57 (2009), 1413-1424. [17] B. Davvaz, J. Zhan and K. P. Shum, Generalized fuzzy Hv-ideals of Hv-rings, Int. J. General Systems, 37(3) (2008), 329-346. [18] B. Davvaz, J. Zhan and K. P. Shum, Generalized fuzzy Hv-submodules endowed with interval valued membership functions, Information Sciences, 178(15) (2008), 3147-3159. [19] B. Davvaz, Approximations in n-ary algebraic systems, Soft Computing, 12 (2008), 409-418. [20] B. Davvaz, Rings derived from semihyper-rings, Algebras Groups Geom., 20 (2003), 245-252. [21] B. Davvaz, Some results on congruences in semihypergroups, Bull. Malays. Math. Soc., 23(2) (2000), 53-58. [22] B. Davvaz and V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, USA, 2007. [23] B. Davvaz and V. Leoreanu-Fotea, Binary relations on ternary semihypergroups, Communications in Algebra, to appear.

[24] B. Davvaz and A. Salasi, A realization of hyperrings, Communications in Algebra, 34(12) (2006), 4389-4400. [25] B. Davvaz and T. Vougiouklis, Commutative rings obtained from hyperrings (Hv-rings) with -relations, Communications in Algebra, 35(11) (2007), 3307-3320. [26] B. Davvaz and T. Vougiouklis, n-Ary hypergroups, Iranian Journal of Science and Technology, Transaction A, 30(A2) (2006), 165-174. [27] B. Davvaz, W. A. Dudek and S. Mirvakili, Neutral elements, fundamental relations and n-ary hypersemigroups, International Journal of Algebra and Computation, 19(4) (2009), 567-583. [28] B. Davvaz, W. A. Dudek and T. Vougiouklis, A generalization of n-ary algebraic systems, Communications in Algebra, 37 (2009), 1248-1263. [29] V. N. Dixit and S. Dewan, A note on quasi and bi-ideals in ternary semigroups, Internat. J. Math. & Math. Sci., 18 (1995), 501-508. [30] W. D¨ornte, Untersuchungen ¨uber einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1928), 1-19. [31] W. A. Dudek, Idempotents in n-ary semigroups, Southeast Asian Bull. Math., 25 (2001), 97-104. [32] W. A. Dudek On the divisibility theory in (m, n)-rings, Demonstratio Math., 14 (1981), 19-32. [33] T. K. Dutta and S. Kar, On regular ternary semirings, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific, New Jersey, (2003), 343-355. [34] K. Is´eki, Ideals in semirings, Proc. Japan Acad., 34 (1958), 29-31. [35] E. Kasner, An extension of the group concept, Bull. Amer. Math. Soc., 10 (1904), 290-291. [36] O. Kazancı, S. Yamak and B. Davvaz, The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets, Information Sciences, 178(10) (2008), 2349-2359. [37] D. H. Lehmer, A ternary analogue of abelian groups, American J. Math., 59 (1932), 329-338. [38] D. H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math., 59 (1932), 329-338. [39] V. Leoreanu-Fotea and B. Davvaz, Roughness in n-ary hypergroups, Information Sciences, 178 (2008), 4114-4124. [40] V. Leoreanu-Fotea and B. Davvaz, n-hypergroups and binary relations, European Journal of Combinatorics, 29 (2008), 1027-1218. [41] W. G. Lister, Ternary rings, Trans. Amer. Math. Soc., 154 (1971), 37-55. [42] W. J. Liu, Fuzzy Invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133-139. [43] F. Marty, Sur une generalization de la notion de group, 8th Congress Math. Scandenaves, Stockholm, (1934), 45-49. [44] V. Maslov, New superposition principle for optimization problems, Sem. sur les Equations avec D´eriv´ees Partielles 1985/6, Centre Math´ematique de l’Ecole Polytechnique Palaiseau, esp. 24, 1986. [45] S. Mirvakili and B. Davvaz, Relations on Krasner (m, n)-hyperrings, European Journal of Combinatorics, to appear. [46] S. Mirvakili, S. M. Anvariyeh and B. Davvaz, On -relation and transitivity conditions of , Communications in Algebra, 36 (2008), 1695-1703. [47] D. Monk and F. M. Sioson, m-semigroups, semigroups, function representations, Fund. Math., 59 (1966), 233-241. [48] A. Nakassis, Expository and survey article recent results in hyperring and hyperfield theory, Internat. J. Math. Math. Sci., 11 (1988), 209-220. [49] P. M. Pu and Y. M. Liu, Fuzzy topology I, neighborhood structure of a fuzzy point and Moors-Smith convergence, J. Math. Anal., 76 (1980), 571-599. [50] E. L. Post, Polyadic groups, Trans. Amer. Math. Soc., 48 (1940), 208-350. [51] F. Poyatos, The Jordan-H¨older theorem for A-semimodules (Spanish), Rev. Mat. Hisp.- Amer., 32(4) (1972), 251-260; ibid. 33(4) (1973) 36-48; ibid. 33(4) (1973), 122-132. [52] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517. [53] S. A. Rusakov, Some applications of n-ary group theory, Belaruskaya Navuka, Minsk, 1998.

[54] M. K. Sen and M. R. Adhikari, On k-ideals of semirings, Internat. J. Math. & Math. Sci., 15 (1992), 347-350. [55] F. M. Sioson, Ideal theory in ternary semigroups, Math. Jpn., 10 (1965), 63-84. [56] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, USA, 1994. [57] T. Vougiouklis, On some representations of hypergroups, Ann. Sci. Univ. Clermont-Ferrand II Math., 26 (1990), 21-29. [58] T. Vougiouklis, The fundamental relation in hyperrings, the general hyperfield, Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, (1991), 203-211. [59] X. H. Yuan, C. Zhang and Y. H. Ren, Generalized fuzzy groups and many valued applications, Fuzzy Sets and Systems, 138 (2003), 205-211. [60] M. M. Zahedi, M. Bolurian and A. Hasankhani, On polygroups and fuzzy subpolygroups, J. Fuzzy Math., 3 (1995), 1-15.