SOME PROPERTIES OF T-FUZZY GENERALIZED SUBGROUPS

Document Type: Research Paper

Authors

1 Department of Mathematics, University of Bojnord, Bojnord, Iran

2 Department of Mathematics, Shahid Beheshti University, Tehran, Iran

Abstract

In this paper, we deal with Molaei’s generalized groups. We define
the notion of a fuzzy generalized subgroup with respect to a t-norm (or
T-fuzzy generalized subgroup) and give some related properties. Especially,
we state and prove the Representation Theorem for these fuzzy generalized
subgroups. Next, using the concept of continuity of t-norms we obtain a correspondence
between TF(G), the set of all T-fuzzy generalized subgroups of a
generalized group G, and the set of all T-fuzzy generalized subgroups of the
corresponding quotient generalized group. Subsequently, we study the quotient
structure of T-fuzzy generalized subgroups: we define the notion of a
T-fuzzy normal generalized subgroup, give some related properties, construct
the quotient generalized group, state and prove the homomorphism theorem.
Finally, we study the lattice of T-fuzzy generalized subgroups and prove that
TF(G) is a Heyting algebra.

Keywords


[1] R. Ameri, M. Bakhshi, S. A. Nematollahzadeh and R. A. Borzooei, Fuzzy (strong) congruence
relations on a hypergroupoid and hyper BCK-algebra, Quasigroups and Related Systems, 15
(2007), 11-24.
[2] J. M. Anthony and H. Sherwood, A characterization of fuzzy subgroups, Fuzzy Sets and
Systems, 7 (1982), 297-305.
[3] M. Bakhshi and R. A. Borzooei, Lattice structure on fuzzy congruence relations of a hypergroupoid,
Inform. Sci., 177(16) (2007), 3305-3313.
[4] G. Birkhoff, Lattice theory, Amer. Math. Soc., Providence, R. I., 1967.
[5] R. A. Borzooei, M. Bakhshi and M. Mashinchi, Lattice structure on some fuzzy algebraic
systems, Soft Computing, 12(8) (2008), 739-749.
[6] R. A. Borzooei, G. R. Rezaei, M. R. Molaei and M. M. Zahedi, Characterization of generalized
groups of orders 2 and 3, Pure Math. Appl., 11(4) (2000), 1-74.
[7] E. P. Klement and R. Mesiar, Logical, algebraic, analytic and probabilistic aspects of triangular
norms, Elsevier, Netherlands, 2005.

[8] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Sysems, 8 (1982),
133-139.
[9] M. Mehrabi, M. R. Molaei and A. Oloomi, Generalized subgroups and homomorphisms, Arab
J. Math. Sci., 6(2) (2000), 1-7.
[10] M. R. Molaei, Generalized groups, Buletinul Institului Polithnic Din Iasi, Tomul XLV(XLIX),
(1999), 21-24.
[11] J. N. Mordeson, K. R. Bhutani and A. Rosenfeld, Fuzzy group theory, Springer-Verlag Berlin
Heidelberg, Netherlands, 2005.
[12] N. P. Mukherjee and P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inform. Sci.,
34 (1984), 225-239.
[13] M. T. Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Systems, 24 (1987),
79-86.
[14] H. T. Nguyen and E. A.Walker, A first course in fuzzy logic, 3rd ed. Chapman and Hall/CRC,
USA, Florida, 2006.
[15] E. H. Roh, B. Davvaz and K. H. Kim, T-fuzzy subhypernear-rings of hypernear-rings, Sci.
Math. Jpn., 61(3) (2005), 535-545.
[16] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
[17] S. Sessa, On fuzzy subgroups and fuzzy ideals under triangular norms: short communiction,
Fuzzy Sets and Systems, 13 (1984), 95-100.
[18] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
[19] J. Zhang, On properties of fuzzy hyperideals in hypernear-rings with t-norms, J. Appl. Math.
Comput., 20 (2006), 255-277.