Roldan, A., Martnez-Moreno, J., Roldan, C. (2013). ON INTERRELATIONSHIPS BETWEEN FUZZY
METRIC STRUCTURES. Iranian Journal of Fuzzy Systems, 10(2), 133-150. doi: 10.22111/ijfs.2013.616

Antonio Roldan; Juan Martnez-Moreno; Concepcion Roldan. "ON INTERRELATIONSHIPS BETWEEN FUZZY
METRIC STRUCTURES". Iranian Journal of Fuzzy Systems, 10, 2, 2013, 133-150. doi: 10.22111/ijfs.2013.616

Roldan, A., Martnez-Moreno, J., Roldan, C. (2013). 'ON INTERRELATIONSHIPS BETWEEN FUZZY
METRIC STRUCTURES', Iranian Journal of Fuzzy Systems, 10(2), pp. 133-150. doi: 10.22111/ijfs.2013.616

Roldan, A., Martnez-Moreno, J., Roldan, C. ON INTERRELATIONSHIPS BETWEEN FUZZY
METRIC STRUCTURES. Iranian Journal of Fuzzy Systems, 2013; 10(2): 133-150. doi: 10.22111/ijfs.2013.616

ON INTERRELATIONSHIPS BETWEEN FUZZY
METRIC STRUCTURES

^{1}Department of Statistics and Operations Research, University of Jaen, Campus Las Lagunillas, s/n, E-23071, Jaen, Spain

^{2}Department of Mathematics, University of Jaen, Campus Las Lagunillas, s/n, E-23071, Jaen, Spain

^{3}Department of Statistics and Operations Research, University of Granada, Campus Fuentenueva s/n, E-18071, Granada, Spain

Abstract

Considering the increasing interest in fuzzy theory and possible applications, the concept of fuzzy metric space concept has been introduced by several authors from different perspectives. This paper interprets the theory in terms of metrics evaluated on fuzzy numbers and defines a strong Hausdorff topology. We study interrelationships between this theory and other fuzzy theories such as intuitionistic fuzzy metric spaces, Kramosil and Michalek's spaces, Kaleva and Seikkala's spaces, probabilistic metric spaces, probabilistic metric co-spaces, Menger spaces and intuitionistic probabilistic metric spaces, determining their position in the framework of theses different theories.

[1] H. Adibi, Y. J. Cho, D. O'Regan and R. Saadati, Common xed point theorems in L-fuzzy metric spaces, Appl. Math. Comput., 182 (2006), 820{828. [2] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos Soliton Fract, 29 (2006), 1073{1078. [3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87{96. [4] F. Castro-Company and S. Romaguera, Experimental results for information system based on accesses locality via intuicionist fuzzy metrics, Open Cybern. Syst. J., 2 (2008), 158{172. [5] Y. J. Cho, M. T. Grabiec and V. Radu, On nonsymmetric topological and probabilistic struc- tures, Nova Science Publishers, Inc., New York, 2006. [6] Z. Deng, Fuzzy pseudo metric spaces, J. Math. Anal. Appl., 86 (1982), 74{95. [7] G. Deschrijver and E. E. Kerre, On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision, Information Sciences, 177 (2007), 1860{1866. [8] D. Dubois and H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9(6) (1978), 613{ 626. [9] M. S. El Naschie, On the verications of heteritic strings theory and (1) theory, Chaos Soliton Fract, 11(2) (2000), 2397{2407. [10] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69 (1979), 205{230. [11] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395{399. [12] D. Gomez, J. Montero and J. Ya~nez, A coloring fuzzy graph approach for image classication, Information Sciences, 176(24) (2006), 3645{3657. [13] M. T. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395{399. [14] M. T. Grabiec, Y. J. Cho and R. Saadati, Families of quasi-pseudo-metrics generated by probabilistic quasi-pseudo-metric spaces, Surveys in Mathematics and its Applications, 2 (2007), 123{143. [15] V. Gregori, S. Morillas and A. Sapena, Examples of fuzzy metrics and applications, Fuzzy Sets and Systems, 170 (2011), 95{111. [16] V. Gregori, S. Romaguera and P. Veereamani, A note on intuitionistic fuzzy metric spaces, Chaos Soliton Fract, 28 (2006), 902{905. [17] H. L. Huang and F. G. Shi, L-fuzzy numbers and their properties, Information Sciences, 178 (2008), 1141{1151. [18] H. Huang and C. Wu, On the triangle inequalities in fuzzy metric spaces, Information Sciences, 177(4) (2007), 1063{1072. [19] M. Imdad, J. Ali and M. Hasan, Common xed point theorems in modied intuitionistic fuzzy metric spaces, Iranian Journal of Fuzzy Systems, 9(5) (2012), 77-92. [20] O. Kaleva, On the convergence of fuzzy sets, Fuzzy Sets Syst., 17(1985), 53{65. [21] O. Kaleva, A comment on the completion of fuzzy metric spaces, Fuzzy Sets and Systems, 159 (2008), 2190{2192. [22] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215{229. [23] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336{344. [24] H. Y. Li, CLM-Fuzzy topological spaces, Iranian Journal of Fuzzy Systems, to appear.

[25] J. Martnez-Moreno, A. Roldan and C. Roldan, A note on the L-fuzzy Banach's contraction principle, Chaos Soliton Fract, 41(5) (2009), 2399{2400. [26] J. Martnez-Moreno, A. Roldan and C. Roldan, KM-Fuzzy approach space, Proceedings of the International Fuzzy Systems Association World Conference, (2009), 1702{1705. [27] K. Menger, Statistical metrics, Proc National Acad Sci of the United States of America, 28 (1942), 535{537. [28] N. N. Morsi, On fuzzy pseudo-normed vector spaces, Fuzzy Sets and Systems, 27 (1988), 351{372. [29] E. Pap, Pseudo-analysis and nonlinear equations, Soft Comput., 6 (2002), 21{32. [30] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Soliton Fract, 22 (2004), 1039{1046. [31] S. Romaguera and P. Tirado, Contraction maps on IFQM-spaces with application to recur- rence equations of quicksort, Electronic Notes in Theoretical Computer Science, 225 (2009), 269{279. [32] R. Saadati, Notes to the paper xed points in intuitionistic fuzzy metric spaces" and its generalization to L-fuzzy metric spaces, Chaos Soliton Fract, 35 (2008), 176{180. [33] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Soliton Fract, 27 (2006), 331{44. [34] R. Saadati, S. Mansour Vaezpour and Y. J. Cho, Quicksort algorithm: application of a xed point theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, J. Comput. Appl. Math., 228 (2009), 219{225. [35] R. Saadati, A. Razani and H. Adibi, A common xed point theorem in L-fuzzy metric spaces, Chaos Soliton Fract, 33 (2007), 358{363. [36] R. Saadati, S. Sedghi and N. Shobe, Modied intuitionistic fuzzy metric spaces and some xed point theorems, Chaos Soliton Fract, 38 (2008), 36{47. [37] B. Schweizer and A. Sklar, Probabilistic metric spaces, Dover Publications, New York, 2005. [38] F. G. Shi, (L;M)-Fuzzy metric spaces, Indian Journal of Mathematics, 52(2) (2010), 231{ 250. [39] F. G. Shi, Regularity and normality of (L;M)-Fuzzy topological spaces, Fuzzy Sets and Systems, 182 (2011), 37{52. [40] L. H. Son, B. C. Cuong, P. L. Lanzi and N. T. Thong, A novel intuitionistic fuzzy clustering method for geo-demographic analysis, Expert Syst. Appl., doi:10.1016/j.eswa.2012.02.167, (2012). [41] P. Tirado, On compactness and G-completeness in fuzzy metric spaces, Iranian Journal of Fuzzy Systems, 9(4) (2012), 151-158. [42] Z. S. Xu, J. Chen and J. Wu, Clustering algorithm for intuitionistic fuzzy sets, Information Sciences, 178 (2008), 3775{3790. [43] Z. Xu, A method based on distance measure for interval-valued intuitionistic fuzzy group decision making, Information Sciences, 180 (2010), 181{190. [44] Y. Xu and H. Wang, The induced generalized aggregation operators for intuitionistic fuzzy sets and their application in group decision making, Appl. Soft. Comput., 12 (2012), 1168{ 1179. [45] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338{353. [46] D. Zhang, A natural topology for fuzzy numbers, J. Math. Anal. Appl., 264(2) (2001), 344{ 353. [47] S. F. Zhang and S. Y. Liu, A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel selection, Expert Syst. Appl., 38 (2011), 11401{11405. [48] Z. Zhanga, J. Yanga, Y. Yea, Y. Huc and Q. Zhang, A type of score function on intuitionistic fuzzy sets with double parameters and its application to pattern recognition and medical diagnosis, Procedia Engineering, 29 (2012), 4336{4342. [49] Z. Zhao and C. Wu, The equivalence of convergences of sequences of fuzzy numbers and its applications to the characterization of compact sets, Information Sciences, 179 (2009), 3018{3025.