SOME FIXED POINT THEOREMS FOR SINGLE AND MULTI
VALUED MAPPINGS ON ORDERED NON-ARCHIMEDEAN
FUZZY METRIC SPACES

I. ALTUN

Abstract. In the present paper, a partial order on a non- Archimedean fuzzy
metric space under the Łukasiewicz t-norm is introduced and fixed point theo-
rems for single and multivalued mappings are proved.

1. Introduction and Preliminaries

Research in the field of fixed point theory on fuzzy metric spaces ([1], [2], [3],
[6], [7], [8], [16]) has been developed following the definition such spaces [5], [10],
[20], the Generally, this theory is concerned with contractive or contractive type
mappings ([9], [11], [12], [13], [14], [17], [19]).

In this paper we introduce a partial order on a non-Archimedean fuzzy metric
space (in the sense of Kramosil and Michalek) under the Łukasiewicz t-norm and
prove a fixed point theorem for single-valued nondecreasing mappings. Similar
results are obtained for multivalued mappings.

For the sake of completeness, we first recall some notions from the theory of
fuzzy metric spaces.

Definition 1.1. [18] A binary operation $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a continuous t-norm if $([0, 1], *)$ is an Abelian topological monoid with the unit 1 such that
$a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0, 1]$.

Definition 1.2. [10] A fuzzy metric space (in the sense of Kramosil and Michalek)
is a triple $(X, M, *)$, where X is a nonempty set, $*$ is a continuous t-norm and M is a fuzzy set on $X^2 \times [0, \infty)$, satisfying the following properties:

(KM-1) $M(x, y, 0) = 0, \forall x \in X$
(KM-2) $M(x, y, t) = 1, \forall t > 0$ iff $x = y$
(KM-3) $M(x, y, t) = M(y, x, t), \forall x, y \in X$ and $t > 0$
(KM-4) $M(x, y, \cdot) : [0, \infty) \rightarrow [0, 1]$ is left continuous, $\forall x, y \in X$
(KM-5) $M(x, z, t + s) \geq M(x, y, t) * M(y, z, s), \forall x, y, z \in X, \forall t, s > 0$.

We will refer to such spaces as FM-spaces.

If in the above definition, the triangular inequality (KM-5) is replaced by

(NA) $M(x, z, \max\{t, s\}) \geq M(x, y, t) * M(y, z, s), \forall x, y, z \in X, \forall t, s > 0$

Received: August 2008; Revised: May 2009; Accepted: June 2009
Key words and phrases: Fixed point, Partial order, Fuzzy metric space.
or, equivalently,
\[M(x, z, t) \geq M(x, y, t) \ast M(y, z, t), \forall x, y, z \in X, \forall t > 0 \]
then the triple \((X, M, \ast)\) is called a non-Archimedean fuzzy metric space. It is easy
to check that the triangular inequality (NA) implies (KM-5), that is, every non-
Archimedean fuzzy metric space is itself a fuzzy metric space.

Definition 1.3. [5], [18] Let \((X, M, \ast)\) be a fuzzy metric space. A sequence \(\{x_n\}\)
in \(X\) is called an \(M\)-Cauchy sequence, if for each \(\varepsilon \in (0, 1)\) and \(t > 0\) there exists
\(n_0 \in \mathbb{N}\) such that \(M(x_n, x_m, t) > 1 - \varepsilon\) for all \(m, n \geq n_0\). A sequence \(\{x_n\}\) in a fuzzy
metric space \((X, M, \ast)\) is said to be convergent to \(x \in X\) if \(\lim_{n \to \infty} M(x_n, x, t) = 1\)
for all \(t > 0\). An FM space \((X, M, \ast)\) is called \(M\)-complete if every \(M\)-Cauchy
sequence is convergent.

2. Fixed point Theory for Single-valued Mappings

We first prove the following lemma.

Lemma 2.1. Let \((X, M, \ast)\) be a non-Archimedean fuzzy metric space with \(a \ast b \geq \max\{a + b - 1, 0\}\) and \(\phi : X \times [0, \infty) \to \mathbb{R}\). Define the relation "\(\preceq\)" on \(X\) as follows:
\[x \preceq y \iff M(x, y, t) \geq 1 + \phi(x, t) - \phi(y, t), \forall t > 0. \]
Then "\(\preceq\)" is a (partial) order on \(X\), called the partial order induced by \(\phi\).

Proof. For all \(x \in X\) and \(t > 0\), \(M(x, x, t) = 1 = 1 + \phi(x, t) - \phi(x, t)\), then \(x \preceq x\), that is, "\(\preceq\)" is reflexive. Again, if \(x, y \in X\), be such that \(x \preceq y\) and \(y \preceq x\), then for all \(t > 0\),
\[M(x, y, t) \geq 1 + \phi(x, t) - \phi(y, t) \]
and
\[M(y, x, t) \geq 1 + \phi(y, t) - \phi(x, t). \]
This shows that \(M(x, y, t) = 1\) for all \(t > 0\), that is, \(x = y\). Thus "\(\preceq\)" is antisymmetric. Now for \(x, y, z \in X\), let \(x \preceq y\) and \(y \preceq z\), then for all \(t > 0\),
\[M(x, y, t) \geq 1 + \phi(x, t) - \phi(y, t) \]
and
\[M(y, z, t) \geq 1 + \phi(y, t) - \phi(z, t). \]
By (1) and (2) we have,
\[M(x, z, t) \geq M(x, y, t) \ast M(y, z, t) \]
\[= \max\{M(x, y, t) + M(y, z, t) - 1, 0\} \]
\[\geq M(x, y, t) + M(y, z, t) - 1 \]
\[\geq 1 + \phi(x, t) - \phi(z, t), \forall t > 0. \]
This shows that \(x \preceq z\). \(\square\)
Example 2.2. Let $X = (0, \infty)$, $a \ast b = ab$ and
\[M(x, y, t) = \frac{\min\{x, y\}}{\max\{x, y\}}, \forall t > 0. \]
Then (X, M, \ast) is an M-complete non-Archimedean fuzzy metric space (see [15]).

Let $\phi : X \times [0, \infty) \to \mathbb{R}$, $\phi(x, t) = \frac{1}{x}$. Then for $x, y \in X$,
\[
\begin{align*}
x \preceq y & \iff M(x, y, t) \geq 1 + \phi(x, t) - \phi(y, t) \\
& \iff M(x, y, t) \geq 1 + 1 - 1 \\
& \iff 1 - M(x, y, t) \leq 1 - \frac{1}{y}.
\end{align*}
\]
It follows that $2 \preceq \frac{1}{2}, 3 \preceq 1, 1 \preceq \frac{1}{3}$ but $3 \not\preceq 5$ and $5 \not\preceq 3$. Therefore X is a partially ordered space.

Example 2.3. Let $X = \mathbb{N} = \{1, 2, \cdots\}$, $a \ast b = ab$ and
\[
M(x, y, t) = \begin{cases}
\frac{x}{y} & \text{if } x \leq y \\
\frac{y}{x} & \text{if } y \leq x
\end{cases}, \forall t > 0.
\]
Then (X, M, \ast) is a non-Archimedean fuzzy metric space ([5]). Also this space is M-complete. Let $\phi : X \times [0, \infty) \to \mathbb{R}$, $\phi(x, t) = x$.

Then it is obvious that $x \preceq y \iff x \leq y$. Therefore X is a partially ordered space. Also X is a totally ordered space. If we define $\phi : X \times [0, \infty) \to \mathbb{R}$, $\phi(x, t) = x - \frac{1}{x}$, then it is again obvious that $x \preceq y \iff x \leq y$. Now, if $\phi : X \times [0, \infty) \to \mathbb{R}$,
\[\phi(x, t) = 1 - \frac{5}{x}, \text{ then } 1 \preceq 2 \preceq 3 \preceq 4 \preceq 5 \preceq 6 \text{ but } 6 \not\preceq 7 \text{ and } 7 \not\preceq 6. \]
Therefore X is a partially ordered space.

Definition 2.4. Let (X, M, \ast) be a fuzzy metric space. If "\preceq" is an order on X, then the fuzzy metric space is called an ordered fuzzy metric space. Let (X, M, \ast) be an ordered fuzzy metric space and let $f : X \to X$ be a mapping. If $x \preceq y$ implies that $fx \preceq fy$, then f is called a nondecreasing mapping.

Theorem 2.5. Let (X, M, \ast) be an M-complete non-Archimedean fuzzy metric space with $a \ast b \geq \max\{a + b - 1, 0\}$, $\phi : X \times [0, \infty) \to \mathbb{R}$ be a function bounded from above and "\preceq" the partial order induced by ϕ. If $f : X \to X$ is a continuous nondecreasing function with $x_0 \preceq fx_0$ for some $x_0 \in X$, then f has a fixed point in X.

Proof. Consider a point $x_0 \in X$ satisfying $x_0 \preceq fx_0$. We define a sequence $\{x_n\}$ in X such that $x_n = fx_{n-1}$ for $n = 1, 2, \cdots$. Then, since f is nondecreasing we have $x_0 \preceq x_1 \preceq x_2 \preceq \cdots$, that is the sequence $\{x_n\}$ is nondecreasing. By the
definition of "≤" we have, ∀t > 0, φ(x₀, t) ≤ φ(x₁, t) ≤ φ(x₂, t) ≤ ···. In other words, for all t > 0, the sequence \{φ(xₙ, t)\} is nondecreasing in ℝ. Since φ is bounded from above, \{φ(xₙ, t)\} is convergent and hence it is Cauchy. So, for all ε > 0, there exists n₀ ∈ ℕ such that for all m > n > n₀ and t > 0 we have |φ(xₙ, t) − φ(xₙ⁻¹, t)| ≤ φ(xₙ⁻¹, t) − φ(xₙ⁻₂, t) < ε. Since xₙ ≤ xₙ⁻¹, it follows that

\[M(xₙ, xₙ⁻¹, t) = 1 + φ(xₙ⁻¹, t) - φ(xₙ, t) = 1 - [φ(xₙ, t) - φ(xₙ⁻¹, t)] > 1 - ε. \]

This shows that the sequence \{xₙ\} is Cauchy in X and since X is M-complete, it converges to a point z ∈ X. Consequently, by the continuity of f, we have fz = z. □

Example 2.6. Let (X, M, *) be as in Example 2.3 and φ : X × [0, ∞) → ℝ, φ(x, t) = 1 − \frac{5}{x}. Define A = \{1, 2, · · · , 5\} and B = \{6, 7, · · · \}. Now if x, y ∈ A and x ≤ y, then x ≤ y. If x ∈ A and y ∈ B then x ≤ y. If x, y ∈ B, then x and y are not comparable. Now define f : X → X,

\[fx = \begin{cases}
 x + 1 & \text{if } x ≤ 5 \\
 6 & \text{if } x > 5
\end{cases} \]

It is clear that f is continuous and nondecreasing. Also 1 ≤ 2 = f1 and all the conditions of Theorem 2.5 are satisfied. Therefore, f has a fixed point.

3. Fixed point Theory for Multi-valued Mappings

In the following we provide multivalued versions of the preceding theorem. The results are related to those in [4].

Let X be a topological space and ≤ be a partial order on X. Let \(2^X\) denote the family of all nonempty subsets of X.

Definition 3.1. [4] Let A and B be two nonempty subsets of X. Then

(R-1) If for every a ∈ A, there exists b ∈ B such that a ≤ b, then A ⪯₁ B.
(R-2) If for every b ∈ B, there exists a ∈ A such that a ≤ b, then A ⪯₂ B.
(R-3) If A ⪯₁ B and A ⪯₂ B, then A ⪯ B.

Remark 3.2. [4] The relations ⪯₁ and ⪯₂ are different. For example, let X = ℝ, A = [\frac{1}{2}, 1], B = [0, 1], ≤ be usual order on X, then A ⪯₁ B but A ⪯₂ B; if A = [0, 1], B = [0, \frac{1}{2}], then A ⪯₂ B while A ⪯₁ B.

Remark 3.3. [4] ⪯₁, ⪯₂ and < are reflexive and transitive, but are not antisymmetric. For instance, let X = ℝ, A = [0, 3], B = [0, 1] ∪ [2, 3], ≤ be the usual order on X, then A < B and B < A, but A ≠ B. Hence, they are not partial orders on \(2^X\).
Definition 3.4. [4] A multi-valued operator \(T : X \to 2^X \) is called order closed if, for monotone sequences \(\{u_n\} \) and \(\{v_n\} \) in \(X \), \(u_n \to u_0, v_n \to v_0 \) and \(v_n \in Tu_n \) imply \(v_0 \in Tu_0 \).

Theorem 3.5. Let \((X,M,\ast)\) be an \(M \)-complete non-\(\ast \)-Archimedean fuzzy metric space with \(a \ast b \geq \max\{a+b-1,0\} \), \(\phi : X \times [0,\infty) \to \mathbb{R} \) a function bounded from above and \(\preceq \) a partial order induced by \(\phi \). Suppose \(F : X \to 2^X \) is an order closed operator with \(\{x_0\} \prec_1 Fx_0 \) for some \(x_0 \in X \). If \(\forall x,y \in X, x \preceq y \implies Fx \prec_1 Fy \) (that is, \(F \) is nondecreasing with respect to \(\prec_1 \)), then \(F \) has a fixed point in \(X \).

Proof. Since \(Fx \) is nonempty for all \(x \in X \), there exists \(x_1 \in Fx_0 \) such that \(x_0 \preceq x_1 \).

Now since \(Fx_0 \prec_1 Fx_1 \), there exists \(x_2 \in Fx_1 \) such that \(x_1 \preceq x_2 \). Continuing this process, we get an increasing sequence \(\{x_n\} \), which satisfies \(x_{n+1} \in Fx_n \). By the definition of \(\preceq \), we have \(\phi(x_n,t) \leq \phi(x_{n+1},t) \leq \phi(x_2,t) \leq \cdots \forall t > 0 \). In other words, for all \(t > 0 \) the sequence \(\{\phi(x_n,t)\} \) is nondecreasing in \(\mathbb{R} \). Since \(\phi \) is bounded from above, \(\{\phi(x_n,t)\} \) is convergent and hence Cauchy. So, for all \(\varepsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that for all \(m > n > n_0 \) and \(t > 0 \) we have \(|\phi(x_m,t) - \phi(x_n,t)| = \phi(x_m,t) - \phi(x_n,t) < \varepsilon \). Therefore, since \(x_n \preceq x_m \),

\[
M(x_n,x_m,t) \geq 1 + \phi(x_n,t) - \phi(x_m,t) \\
= 1 - [\phi(x_m,t) - \phi(x_n,t)] \\
> 1 - \varepsilon.
\]

This shows that the sequence \(\{x_n\} \) is Cauchy in \(X \) and since \(X \) is \(M \)-complete, it converges to a point \(z \in X \). Consequently, since \(F \) is order closed, we have \(z \in Fz \) and \(x_{n+1} \in Fx_n \).

We can similarly prove the following theorem.

Theorem 3.6. Let \((X,M,\ast)\) be an \(M \)-complete non-\(\ast \)-Archimedean fuzzy metric space with \(a \ast b \geq \max\{a+b-1,0\} \), \(\phi : X \times [0,\infty) \to \mathbb{R} \) a function bounded from below and \(\preceq \) the partial order induced by \(\phi \). Suppose \(F : X \to 2^X \) is an order closed operator with \(Fx_0 \prec_2 \{x_0\} \) for some \(x_0 \in X \). If \(\forall x,y \in X, x \preceq y \implies Fx \prec_2 Fy \) (\(F \) is nondecreasing with respect to \(\prec_2 \)), then \(F \) has a fixed point in \(X \).

Example 3.7. Let \((X,M,\ast)\) be as in Example 2.3 and \(\phi : X \times [0,\infty) \to \mathbb{R} \), \(\phi(x,t) = 1 - \frac{x}{x} \). Define \(A = \{1,2,\cdots,5\} \) and \(B = \{6,7,\cdots\} \). Now if \(x,y \in A \) and \(x \preceq y \), then \(x \preceq y \). If \(x \in A \) and \(y \in B \) then \(x \preceq y \). If \(x,y \in B \), then \(x \) and \(y \) are not comparable.

Now define \(F : X \to 2^X \),

\[
Fx = \{6,x+1\}.
\]

It is clear that \(F \) is order closed and \(\{1\} \prec_1 \{2,6\} = F1 \). Also, if \(x \preceq y \) then \(Fx \prec_1 Fy \), and all the conditions of Theorem 3.5 are satisfied. Therefore, \(F \) has a fixed point.

Acknowledgements. The author is thankful to the referees for their valuable comments for modifying the first version of this paper.
References

Ishak Altun, Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey
E-mail address: ialtun@kku.edu.tr, ishakaltun@yahoo.com