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LINEAR OBJECTIVE FUNCTION OPTIMIZATION WITH THE

MAX-PRODUCT FUZZY RELATION INEQUALITY

CONSTRAINTS

A. ABBASI MOLAI

Abstract. In this paper, an optimization problem with a linear objective

function subject to a consistent finite system of fuzzy relation inequalities us-
ing the max-product composition is studied. Since its feasible domain is non-

convex, traditional linear programming methods cannot be applied to solve it.

We study this problem and capture some special characteristics of its feasi-
ble domain and optimal solutions. Some procedures are proposed to reduce

and decompose the original problem into several sub-problems with smaller

dimensions. Combining the procedures, a new algorithm is proposed to solve
the original problem. An example is also provided to show the efficiency of

the algorithm.

1. Introduction

The notion of Fuzzy Relation Equations (FRE) based on the max-min composi-
tion was first investigated by Sanchez (1976). He studied conditions and theoretical
methods to resolve fuzzy relations on fuzzy sets defined as mappings from sets into
complete Brouwerian lattices. Some theorems about the existence and determina-
tion of solutions of certain basic fuzzy relation equations were presented in his work.
However, the obtained solution in the work is only the derived greatest element in
the max-min fuzzy relation equations.

Sanchez’s work has shed some light on this important subject. Then many re-
searchers have been trying to explore the problem and develop solution procedures
(for instance, see references, [1, 3, 4, 6, 8, 9, 11, 13, 14, 17, 18, 19, 20, 21, 23, 26]).
Fuzzy relation equations are a special case of Fuzzy Relation Inequalities (FRI).
Some researchers extended the study of fuzzy relation equations and problems re-
lated to them into fuzzy relation inequalities (for instance, see references, [10, 12,
15, 27, 28]). Their applications can be seen in many areas, for instance, fuzzy con-
trol, fuzzy decision-making, fuzzy symptom diagnosis and especially fuzzy medical
diagnosis (see references, [2, 5, 16, 22]). In some applications, we require to con-
sider FRE and FRI as constraints of an optimization problem. At first, Fang and
Li [8] were confronted such a model in the textile industry. They obtained a lin-
ear objective function minimization model with the FRE constraints and proposed
a branch-and-bound algorithm to solve it. Recently, Zhang et al. [28] extended
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the model to a linear objective function optimization model with the max-min
FRI constraints. The max-min composition is commonly used when a system re-
quires conservative solutions in the sense that the goodness of one value cannot
compensate the badness of another value. In reality, there are situations that al-
low compensatability among the values of a solution vector. In this case, the min
operator is not the best choice for the intersection of fuzzy sets. Instead, the max-
product composition is preferred since it can yield better, or at least equivalent,
results (see references, [7, 25, 29]). Therefore, it is motivated to study the linear
objective function optimization problem with the max-product FRI constraints.

Zhang et al. [28] designed an algorithm to solve the problem under a determinate
condition. Guo and Xia [10] presented an approach to solve the problem based on
a necessary optimality condition. The obtained results by Zhang et al. [28] and
Guo and Xia [10] are true for the problem with the max-min composition. But
they cannot be correct for the problem with the max-product composition, in a
general case. On the other hand, since the feasible domain has a unique maximal
point and finitely many minimal points, we need to verify its every minimal point
to obtain an optimal solution. For large scale problems, too many minimal and
quasi-minimal points must be verified to find an optimal solution. Hence, we are
motivated to design a new algorithm for its resolution. First of all, some procedures
are proposed to simplify the original problem and some optimal solution compo-
nents of the original problem are directly obtained without solving the original
problem. Determining the components, the size of the original problem is reduced.
Some procedures are also proposed to decompose the reduced problem into several
sub-problems with smaller dimensions. Then an algorithm is proposed to solve the
sub-problems. Combining the procedures and the algorithm, a new algorithm is
proposed to solve the original problem.

2. Linear Programming Problem with FRI Constraints

First of all, we formulate the linear programming problem with the FRI con-
straints in the following subsection.

2.1. Formulation of the Problem. Let A = [aij ] and B = [bij ] be m× n and
m× l fuzzy matrices, respectively. Also, let d1 = (d1

1, ..., d
1
n)t ∈ [0, 1]n and d2 =

(d2
1, ..., d

2
l )t ∈ [0, 1]l be two fuzzy vectors. A system of fuzzy relation inequalities is

to find vectors x = (x1, ..., xm) ∈ [0, 1]m such that

xoA ≥ d1, (1)

xoB ≤ d2, (2)

where the notation ”o” denotes the max-product composition. In other words, the
feasible solution set of the system (1)-(2) is a set of vectors x ∈ [0, 1]m such that

max
i∈m
{xi.aij} ≥ d1j , for j ∈ n (3)

max
i∈m
{xi.bij} ≤ d2j , for j ∈ l (4)



Linear Objective Function Optimization with the Max-product Fuzzy Relation ... 49

where k,∀k ∈ N , is defined as k = {1, ..., k}. We are now ready to formu-
late the Linear Programming Problem with FRI Constraints (LPPFRIC). Let
c = (c1, ..., cm) ∈ Rm be an m-dimensional vector where the component ci denotes
the weight (or cost) corresponding to the variable xi, for each i ∈ m. LPPFRIC is
formulated as follows:

Z = Min c.xt,
(5)

s.t. xoA ≥ d1,
(6)

xoB ≤ d2,
(7)

x ∈ [0, 1]m.
(8)

We will now study the structure of its feasible solution set in the next subsection.

2.2. The Structure of Feasible Domain of LPPFRIC. In this subsection, the
structure of the feasible domain of LPPFRIC will be investigated. At first, Czogala
and Pedrycz [5] gave the structure of the solution set of FRE with the max-min
composition. Then Wang et al. [27] presented an algorithm to solve a system of
FRI with the max-min composition. It now becomes well-known that the complete
solution set of a consistent finite system of sup-T equations (or inequalities) can be
determined by a maximum solution and a finite number of minimal solutions [18].
It is necessary to remind that in a general case, over a distributive lattice with the
max-min composition, the number of minimal solutions is not finite [14]. In the
following, the structure of the feasible domain of LPPFRIC is investigated. To do
this, we try to present methods for determination of the maximum solution and
minimal solutions. Doing the work, the feasible domain is completely determined.
First of all, we express the following lemma. The lemma helps us to determine the
feasible solution set of the system (1)-(2).

Lemma 2.1. Let X1 = {x ∈ [0, 1]m|xoA ≥ d1, xoB ≤ d2} and X2 = {x ∈
[0, 1]m|xoB ≤ d2}.Then the maximum solution of two sets X1 and X2 is the same
provided X1 is non-empty.

Proof. Assume that x̂1 and x̂2 are maximum solutions of sets X1 and X2, re-
spectively. By contradiction, assume that x̂1 6= x̂2. Since X1 ⊆ X2, we have
x̂1 ∈ X2. On the other hand, x̂2 is the maximum solution of X2. Hence, it
is concluded that x̂2 ≥ x̂1, x̂2 6= x̂1, and x̂2 /∈ X1. Since x̂2 /∈ X1, there ex-
ists j ∈ n, such that x̂2oaj < d1

j ≤ x̂1oaj . Also, since x̂2 ≥ x̂1, we have

x̂2
i ≥ x̂1

i , for each i ∈ m. On the other hand, we know that 0 ≤ aij ≤ 1, for
each i ∈ m. Hence, it is concluded that for each i ∈ m, x̂2

i .aij ≥ x̂1
i .aij . Therefore,

we have maxi∈m{x̂2
i .aij} ≥ maxi∈m{x̂1

i .aij}. According to the definition of opera-
tion ”o”, we can write x̂2oaj ≥ x̂1oaj . This contradicts x̂2oaj < x̂1oaj . Therefore,
x̂1 = x̂2. �
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In the following, the structure of the feasible domain of the problem (5)-(8), i.e.,
the solution set of FRI (1)-(2), will be investigated. Czogala and Predrycz [5] first
gave the structure of the solution set of FRE. The algorithm for solving FRI was
given by Wang et al. [27]. In a general case, the complete solution set of a consistent
finite system of FRI is determined by a unique maximal solution and finitely many
minimal solutions. Notice that the characteristic of the obtained solution sets with
the max-min operator and the max-product operator are similar, i.e., when the
solution set is not empty, it can be completely determined by a unique maximum
solution and a finite number of minimal solutions (see references, [10, 27]). In
the following, the structure of the feasible domain of the problem (5)-(8), i.e., the
solution set of FRI (1)-(2), will be investigated.

Lemma 2.2. Let X[A,B] = {x ∈ [0, 1]m|xoA ≥ d1, xoB ≤ d2}. If x ∈ X[A,B],
then for each j ∈ n and t ∈ l, we have
I) ∃i0 ∈ IAj s.t. xi0 .ai0j ≥ d1

j ,

II) ∀i ∈ IBt s.t. xi ≤ d2
t

bit
,

where IAj = {i ∈ m|aij ≥ d1
j} and IBt = {i ∈ l|bit ≥ d2

t}.

Proof. Since xoA ≥ d1 and xoB ≤ d2, then for any j ∈ n and t ∈ l, we have
a) ∃i0 ∈ m s.t. xi0 .ai0j ≥ d1

j ,

b) ∀i ∈ m s.t. xi.bit ≤ d2
t .

For any x ∈ X[A,B], the condition (b) is always true for any i ∈ {i ∈ m|bit < d2
t}

and the condition (a) is not true for any i ∈ {i ∈ m|aij < d1
j}. Hence, we can easily

simplify the conditions (a) and (b) as the conditions (I) and (II). �

A direct result of Lemma 2.2 is as follows.

Corollary 2.3. If the solution set of the system (1)-(2) is not empty, then its
maximum solution, i.e., x̂ = (x̂1, ..., x̂m), is as follows:

x̂i =
∧l

j=1{
d2
j

bij
|bij ≥ d2

j} where i = 1, ...,m,

where the minimum over empty set is 1.

Compared to the maximum solution, the minimal solutions of the system (1)-
(2) are more difficult to be obtained. Some concepts and theorems related to the
minimal solutions are given to find the minimal solutions. An algorithm is then
proposed to find the minimal solutions.

Definition 2.4. Suppose that x̂ is the maximum solution of the set X[B], where
X[B] = {x ∈ [0, 1]m|xoB ≤ d2}. We define two sets G(j) and G as follows.

G(j) = {i ∈ IAj |x̂i.aij ≥ d1
j} and G =

∏n
j=1 G(j).

If there exists j ∈ {1, ..., n} such that G(j) = ∅, then G = ∅ and the solution set of
system (1)-(2) is empty.

Definition 2.5. Let e = (e(1), e(2), ..., e(n)) such that e(j) ∈ G(j), for all j ∈ n.
Now, we define vector ex = (ex1

, ex2
, ..., exm

) as follows:

exi
=

∨n
j=1{

d1
j

aij
|e(j) = i},
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where
∨
∅ = 0. If aij = d1

j = 0 then the value
d1
j

aij
is defined zero.

Theorem 2.6. The solution set of the system (1)-(2) is not empty if and only if
G(j) 6= ∅, ∀j ∈ n.

Proof. (Sufficiency) Suppose that G(j) 6= ∅, for any j ∈ n, . For any i satisfying

exi 6= 0, there exists ji such that exi =
d1
ji

aiji
and e(ji) = i. This implies that

exi
=

d1
ji

aiji
≤ x̂i, ∀i ∈ m. Hence, the vector ex solves the system xoB ≤ d2. For any

j ∈ n, one has exij
=

∨n
k=1{

d1
k

aijk
|e(k) = ij} ≥

d1
j

aijj
and hence

∨m
i=1(exi

.aij) ≥ d1
j .

It follows that exoA ≥ d1. Consequently, the vector ex is a solution of the system
(1)-(2).
(Necessity) Suppose that the solution set of the system (1)-(2) is not empty. If
there exists j such that G(j) = ∅, then we have x̂i.aij < d1

j , for each i ∈ m. Hence,

we conclude that for each x◦ ∈ X[B], and i ∈ m, x◦i .aij < d1
i . Therefore, we

have x◦oA < d1. This implies that the solution set of the system (1)-(2) is empty.
This contradicts the assumption that the solution set of the system (1)-(2) is not
empty. �

Theorem 2.7. Suppose that the solution set of the system (1)-(2) is not empty.
Let e ∈ G and x̂ be the maximum solution of the system. Then its solution set is
as follows: S =

⋃
e∈G{x|ex ≤ x ≤ x̂}.

Proof. Assume that x is an arbitrary solution of the system (1)-(2). Then x satisfies
the inequality xoB ≤ d2 and hence x ≤ x̂. On the other hand, x also satisfies the
inequality xoA ≥ d1. Hence, we can write

∨m
i=1(xi.aij) ≥ d1

j , for any j ∈ n. It

results that there exists an ij ∈ m such that xij .aijj ≥ d1
j . We now define the sets

G′(j), for each j ∈ n, and G′, respectively, as: G′(j) = {i ∈ IAj |xi.aij ≥ d1
j} and

G′ =
∏n

j=1 G
′(j). Since xi ≤ x̂i, for each i ∈ m, we have G′(j) ⊆ G(j). Hence,

G′ ⊆ G. Now, let e′ = (e′(1), e′(2), ..., e′(n)) such that e′(j) ∈ G′(j), for each j ∈ n.

We also have xi ≥
∨n

j=1{
d1
j

aij
|e′(j) = i} = e′xi

. The first inequality is concluded the

feasibility x and the second equality is another description of the vector ex in the
set G′. We display it by e′x. Therefore, for x satisfying the system (1)-(2), there
exists e ∈ G such that ex ≤ x. To complete the proof, we show that for each e ∈ G,
the vector ex is a feasible solution of the system (1)-(2). We now suppose that
e ∈ G. Since the feasible solution set of the system (1)-(2) is not empty, according
to Theorem 2.6, for each j ∈ n, there exists i ∈ m such that e(j) = i. Also,

exi =
∨n

k=1{
d1
k

aik
|e(k) = i} ≥ d1

j

aij
. Thus,

∨m
i=1(exi .aij) ≥ d1

j . Hence, exoA ≥ d1. On

the other hand, for any i ∈ m, if exi
6= 0 then there exists j such that e(j) = i

and exi
=

d1
j

aij
. Also, we have x̂i.aij ≥ d1

j , i.e., x̂i ≥
d1
j

aij
. Thus, we conclude that

exi ≤ x̂i. Hence, ex ≤ x̂. Therefore, exoB ≤ d2 and ex is a feasible solution of the
system (1)-(2). �

Theorem 2.7 results that for any e ∈ G, the vector ex is a feasible solution of the
system (1)-(2). We call ex a quasi-minimal solution of the system (1)-(2). Theorem
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2.7 also shows that X[A,B] ⊆ {ex|e ∈ G}, where X[A,B] denotes the set of all the
minimal solutions of the system (1)-(2). We display the set {ex|e ∈ G} by E. With
regard to Theorem 2.7, two important results are obtained as follows.

Corollary 2.8. X[A,B] ⊆ E.

Corollary 2.9. X[A,B] = E0, where E0 is the set of all the minimal elements of
set E.

We now illustrate the process of resolution of the problem (5)-(8), in the next
subsection.

2.3. The Process of Resolution of LPPFRIC. In this subsection, we introduce
two sub-problems. It is then proved that solving the problem (5)-(8) is equivalent
to solving the two sub-problems. The sub-problems are formulated as follows.

Min

m∑
i=1

c+i .xi,
(9)

s.t. xoA ≥ d1,
(10)

xoB ≤ d2,
(11)

xi ∈ [0, 1], i ∈ m,
(12)

and

Min

m∑
i=1

c−i .xi, (13)

s.t. xoB ≤ d2,
(14)

xi ∈ [0, 1], i ∈ m,
(15)

where c+
i = max{ci, 0} and c−i = min{ci, 0}, i = 1, ...,m.

Suppose that x∗ and x∗ are the optimal solutions of (9)-(12) and (13)-(15),
respectively. Define x∗ = (x∗1, ..., x

∗
m) by the following relation:

x∗i =

{
x∗i , ci ≥ 0,

x∗i , ci < 0,
i = 1, ...,m. (16)

In the following theorem, we show that x∗ solves the problem (5)-(8).

Theorem 2.10. The vector x∗ defined by (16) is an optimal solution of the problem
(5)-(8). Furthermore, if ci = 0, then x∗i can also be equal to one of elements of
interval [x∗i , x

∗
i ].

Proof. The proof is similar to the proof of Theorem 2.1. in [10]. �
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With regard to Theorem 2.10, we know that the problem (5)-(8) can be solved by
the resolution of the sub-problems (9)-(12) and (13)-(15). Since the objective func-
tion of (13)-(15) is monotone decreasing, the optimal solution of the sub-problem
(13)-(15) must be the maximum solution of the feasible domain, i.e., X[B]. Simi-
larly, since the objective function of the sub-problem (9)-(12) is monotone increas-
ing, one of the minimal solutions of the feasible domain is the optimal solution of
the sub-problem (9)-(12). Therefore, to solve problem (5)-(8), it is necessary to
obtain the maximum solution and minimal solutions of the system (1)-(2). Hence,
we pay our attention to the maximum solution and the minimal solutions of the
system (1)-(2). Its maximum solution is obtained by Corollary 2.3. Its minimal
solutions can be computed by Theorem 2.7 and Corollary 2.9. In the next section,
we focus on the reduction of search domain of the minimal solutions to find the
optimal solution of the sub-problem (13)-(15).

3. Problem Reduction

In this section, we present some properties that help us in order to reduce the
size of the original problem so that solving the problem is minimized. The key idea
in these reduction procedures is as follows: Some of xi’s can be determined immedi-
ately without solving the problem, only by identifying the special characteristic of
the problem. We capture some special cases of the problem (5)-(8) in the following
lemmas. We can recognize the situations and eliminate them in our considerations.
The original problem is reduced by the reduction procedures.

Lemma 3.1. Suppose that the system (1)-(2) satisfies two following conditions:
I) There exists j0 ∈ n such that |G(j0)| = 1, i.e., for j0 ∈ n, there exists only

one i0 ∈ m such that x̂i0 .ai0j0 ≥ d1
j0

.

II) ∀j ∈ {j ∈ n|x̂i0 .ai0j ≥ d1
j},

d1
j0

ai0j0
≥ d1

j

ai0j
.

Then for each minimal solution x̌ = (x̌1, ..., x̌m), its ith0 component is as: x̌i0 =
d1
j0

ai0j0
.

Proof. According to Corollary 2.8, for each minimal solution x ∈ X[A,B], there
exists e ∈ G such that ex = x, where e(j0) ∈ G(j0) = {i0}. Thus, e(j0) = i0. With

regard to the assumption (II) and Definition 2.5, we have xi0 = exi0
=

d1
j0

ai0j0
. �

Lemma 3.2. Suppose that for each j ∈ n and some i0, i0 ∈ m, we have i0 ∈ G(j),

then one of minimal solutions of the system (1)-(2) is as xi0 =
∨n

j=1{
d1
j

ai0j
|ai0j > d1

j}
and xi = 0 for each i 6= i0.

Proof. It is obvious. �

We now consider two following cases:
Case I: ci ≤ 0.

With attention to Theorem 2.10 and the relation (16), if ci < 0, it is concluded
that x∗i = x̂i and if ci = 0, then x∗i ∈ [x̌i, x̂i].
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Case II: If the mentioned conditions (I) and (II) in Lemma 3.1 are true in the
system (1)-(2), we define the following sets.

J1 = {j ∈ n||G(j)| = 1 and i ∈ G(j) and
d1
j

aij
=

∨n
k=1{

d1
k

aik
}},

I = {i ∈ m|i ∈ G(j) and j ∈ J1},
J2 = {j ∈ n|x̂i.aij ≥ d1

j and i ∈ I}.

We eliminate row i, i ∈ I, and column j, j ∈ J2, from the fuzzy matrix A as well
as the jth element, j ∈ J2, from the updated vector d1. Let A′ and d′1 be the
reduced fuzzy matrix and fuzzy vector corresponding to A and d1, respectively.

Define J = n − J2, and I = m − I. Update G. Let x∗i =
d1
j

aij
, for i ∈ G(j), i ∈ I,

and j ∈ J1. The set J is an updated index set of constraints of an optimization
problem which needs to be solved later by Algorithm 4.1 in the next section. The
updated set G′ is as G′ =

∏
j∈J G(j). The Algorithm 4.1 will be performed on the

matrices A′ and d′1. If d′1 is empty, then all constraints have been satisfied. We
are now left with positive ci’s. Hence, we can assign the minimum value, i.e., zero,
to all xi’s whose values have not been assigned yet. When d′1 is not empty, we
need to proceed further. Details will be discussed in the next section. In a special
case, if A = B and d1 = d2 = b, then the system (1)-(2) is converted to xoA = b.
Also, there are other reductions from the problem. Since these reductions were
considered by Loetamonphong and Fang [19], we don’t repeat them here.

4. An Algorithm for Finding an Optimal Solution

First of all, we see that the problem can sometimes be decomposed into several
sub-problems which can be solved separately. This leads to smaller problems with
smaller search domains.

4.1. Decomposition of the Problem (9)-(12). In this section, a set of con-
straints, say B, which can be satisfied by a certain set of variables, say XB , is
considered. If the decision-making for the selection of variables in the set XB

for satisfying a constraint in B does not depend on the decision-making on the
rest of the problem, then we can solve this part of the problem, separately. Let
k be the number of sub-problems, 1 ≤ k ≤ |J |. We now partition the set J to
k sets as J (1), ..., J (k) such that (1) J = J (1)

⋃
...

⋃
J (k), (2) J (i)

⋂
J (j) = ∅, for

each i, j = 1, ..., k, and i 6= j, (3)
⋂

j∈J(i) G(j) 6= ∅, for each i = 1, ..., k, and (4)

∀p ∈ J − J (i),
⋂

j∈J(i)
⋃
{p}G(j) = ∅. Define

Ω = {G(j)|j ∈ J}, (17)

Ωl = {G(j)|j ∈ J (l)}, l = 1, ..., k, (18)

Ωl

⋂
Ωl′ = ∅, l 6= l′, (19)



Linear Objective Function Optimization with the Max-product Fuzzy Relation ... 55

Ω = Ω1

⋃
Ω2

⋃
...
⋃

Ωk, (20)

Gl =
∏

G(j)∈Ωl

G(j), (21)

I(l) = {i|i ∈ G(j), G(j) ∈ Ωl}, (22)

J (l) = {j|G(j) ∈ Ωl}. (23)

In this method, Ωl contains the sets G(j)’s which have some element(s) in com-
mon and we can decompose the original problem into k sub-problems. The sets
I(l) and J (l) are corresponded to the sets of indices of variables and constraints,
respectively, on which search is performed for sub-problem l by Algorithm 4.1 in
Section 4.2.

4.2. An Algorithm. With regard to Case I and Theorem 2.10, it is sufficient
to solve the sub-problem (9)-(12) with the cost coefficients ci ≥ 0. Corollary 2.8
implies that X[A,B] ⊆ {ex|e ∈ G}. Therefore, the resolution of problem (9)-(12)
is equivalent to finding an e∗ ∈ G such that

m∑
i=1

c+
i .e
∗
xi

= mine∈G{
m∑
i=1

c+
i .exi

}, (24)

We now propose an algorithm to find an optimal solution of problem (5)-(8) with
regard to Corollary 2.8, the special cases and the decomposition procedure.

Algorithm 4.1. (An Algorithm for Finding an Optimal Solution):

Step 1: Find the maximum solution of the system (1)-(2) by Corollary 2.3.

Step 2: Check the feasibility of the problem (5)-(8) by Theorem 2.6. On the
other hand, if there exists j ∈ n such that G(j) = ∅, then the problem has no
feasible solution and stop!

Step 3: Compute G(j) = {i ∈ Ij |x̂i.aij ≥ d1
i }, for each j ∈ n, which repre-

sents the set of indices xi’s that can satisfy the jth constraint of the fuzzy relation
inequalities. Then compute G.

Step 4: Compute Î = {i ∈ m|ci ≤ 0}. Assign an optimal value x∗i = x̂i, for

i ∈ Î.

Step 5: If the mentioned conditions (I) and (II) in Lemma 3.1 are true for the
system (1)-(2), then define the following sets.

J1 = {j ∈ n||G(j)| = 1 and i ∈ G(j) and
d1
j

aij
=

∨n
k=1{

d1
k

aik
}},

I = {i ∈ m|i ∈ G(j) and j ∈ J1},
J2 = {j ∈ n|x̂i.aij ≥ d1

j and i ∈ I}.

Eliminate row i, i ∈ I, and column j, j ∈ J2, from the fuzzy matrix A as well as
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the jth element, j ∈ J2, from the updated vector d1. Let A′ and d′1 be the reduced
fuzzy matrix and fuzzy vector corresponding to A and d1, respectively. Update G.

Define J = n− J2 and I = m− I. Let x∗i =
d1
j

aij
, for i ∈ G(j), i ∈ I and j ∈ J1. If

d′1 is empty, then all constraints are satisfied. We can assign the minimum value,
i.e., zero, to all xi’s whose values have not been assigned yet and stop!

Step 6: Decompose the problem (if possible) by computing the relations (17)-
(23).

Step 7: Define the sub-problems in Step 6. For each sub-problem l, compute
the vectors ex using the elements Gl. By comparing objective function values in
ex’s, select the optimal solutions for each sub-problem l.

Step 8: Generate optimal solutions for each sub-problem. For each sub-problem

l, define el = (e(j)), j ∈ J (l), with e(j) = i if exi =
d1
j

aij
.

Step 9: Combining the obtained solutions from Steps (4), (5), (7), and (8) and
assigning zero value to unassigned e∗xi

, produce the optimal solution for the problem

(5)-(8). Compute Î ′ = {i ∈ m|ci = 0}. All of the optimal values x∗i , i ∈ Î ′, are
presented as: [e∗xi

, x̂i] and stop!

We now prove the validity of Algorithm 4.1 in the following theorem.

Theorem 4.2. If the feasible domain of problem (5)-(8) is non-empty, then Algo-
rithm 4.1 correctly finds all the optimal solutions of problem (5)-(8).

Proof. In step 1, the maximum solution of feasible domain of problem (5)-(8) is
computed. According to Corollary 2.3, this solution is the maximum solution of
the feasible domain. Then the necessary and sufficient conditions are checked for
feasibility of the problem (5)-(8) according to Theorem 2.6. If the problem is
feasible, the sets G(j), for each j ∈ n, and the set G are computed. In step 4,
with regard to Theorem 2.10, the optimal value of variable xi with negative cost
coefficient, i.e., ci < 0, is equal to the ith component of the maximum solution, i.e.,
x̂i. After finding the optimal values of variables with negative cost coefficients, other
variables have non-negative cost coefficients. In fact, we have found the optimal
solution of sub-problem (13)-(15). We now need to find the optimal solution of
problem (9)-(12). According to Theorem 2.10, one of the minimal solutions of
the feasible domain is an optimal solution of problem (9)-(12). If the conditions
of step 5 are true, then the conditions (I) and (II) in Lemma 3.1 are satisfied.
According to Lemma 3.1, one of the components in all the minimal solutions of
the feasible domain is the same. Therefore, we can determine the optimal value of
the variable corresponding to this component by this lemma. Then we remove this
variable and the rows and columns corresponding to this variable and simplify the
problem. We consecutively apply the mentioned conditions in step 5 and simplify
the problem as far as possible. If all the constraints of the problem are satisfied,
we assign the minimum value to all the xi’s whose values have not been assigned
yet. The obtained solutions for variables of sub-problem (9)-(12) are obviously the
components of a minimal solution. If all the constraints of the problem are not
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satisfied, then we decompose the problem by computing relations (17)-(23) and
form the sub-problems in step 6. If the problem is not decomposable, we will have
a problem (or sub-problem) to solve. For each sub-problem, we compute vectors ex
using the elements Gl. With regard to Theorem 2.7, we can easily find the optimal
solutions for each sub-problem l by producing all the quasi-minimal solutions ex and
comparing objective function values in ex’s. The obtained optimal solutions in steps
4, 5, 7, and 8 produce feasible optimal solutions. Moreover, if Î ′ 6= ∅, then there
exists i ∈ m such that ci = 0. We know that ci.xi = 0 for each value xi ∈ [exi

, x̂i].
Hence, Algorithm 4.1 obtains all the optimal values of problem (5)-(8). �

Remark 4.3. When we produce all the quasi-minimal solutions ex and compare
objective function values in ex’s for sub-problems with non-negative cost coefficients
as (9)-(12), one of the optimal solutions of sub-problems is one of the minimal
solutions. Since for each feasible solution x there exists a minimal solution x̌ such
that x̌ ≤ x, we have c.x̌ ≤ c.x with c ≥ o . Now, according to our procedure,
c.x̌∗ = min{c.x̌|x̌ ∈ X[A,B]} ≤ c.x for each feasible solution x. Since X[A,B] is a
finite set and X[A,B] ⊆ E, vector x̌∗ is one of the minimal solutions.

It is necessary to remind some points about Algorithm 4.1.
1- Optimal Solutions: One of the obtained optimal solutions by Algorithm

4.1 is a combination of the components of the maximum solution and one of the
minimal solutions of the feasible domain of the problem (5)-(8), in a general case.

2- Alternative Optimal Solutions: The alternative optimal solutions of prob-
lem (5)-(8) (if exists) can easily be found with regard to step 7 and step 9. In step
7, by comparing objective function values in ex’s, a part of the alternative optimal
solutions are obtained. In step 9, by computing Î ′ (if Î ′ 6= ∅), we can obtain other
part of the alternative optimal solutions.

4.3. Examples. In this subsection, the algorithm is illustrated by two examples.
Moreover, we illustrate the method of computation of the alternative optimal solu-
tions in Example 4.5.

Example 4.4. Consider the following optimization problem.

min Z = −3x1 + 5x2 + x3 + 2x4 + 3x5 + x6 + 6x7 + 4x8,

subject to xoA ≥ d1,
xoB ≤ d2,
0 ≤ xi ≤ 1, i = 1, ..., 8,

where

A =



0.8 0.6 0.8 0.2 0.65 0.7
0.44 0.5 0.9 0.3 0.5 0.5

1 0.1 0.1 0.9 0.7 0.45
0.9 0.1 0.4 0.6 0.4 0.6
0.89 0.3 0.45 0.9 0.6 0.22
0.25 0.8 0.38 0.7 0.9 0.51
0.25 0.4 0.9 0.1 0.3 0.7
0.36 0.3 0.8 1 0.43 1


, B =



0.8 0.7 0.93 0.8
0.19 0.9 0.78 1
0.65 0.6 0.3 0.9
0.66 0.1 0.89 0.2
0.7 0.27 0.48 0.7
0.5 0.49 0.6 0.4
0.4 0.6 0.7 0.6
0.42 0.3 0.8 0.8


,
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d1 =


0.1
0.2
0.15
0.26
0.14
0.15

 , and d2 =


0.4
0.25
0.16
0.3

 .

Step 1: The maximum solution of the problem is as follows.

x̂ = (0.172, 0.205, 0.333, 0.18, 0.333, 0.267, 0.228, 0.2).

Step 2: For each j ∈ n, G(j) 6= ∅. Therefore, we know that the feasible solution
set of the problem is not empty.

Step 3: Compute the sets G(j), for j ∈ n, as follows: G(1) = {1, 3, 4, 5},G(2) =
{6},G(3) = {2, 7, 8},G(4) = {3, 5},G(5) = {3, 5, 6},and G(6) = {7, 8}. Also, com-

pute G as: G =
∏6

j=1 G(j).

Step 4: Let Î = {1} and e∗x1
= x̂1 = 0.172.

Step 5: Let J1 = {2}, I = {6}, and J2 = {2, 5}. Also, let J = {1, 3, 4, 6} and
I = {1, 2, 3, 4, 5, 7, 8}. Row i, i ∈ I, and column j, j ∈ J2, from the fuzzy matrix A
as well as the jth element, j ∈ J2, from the updated vector d1 is removed. Let A′

and d′ be the reduced fuzzy matrix and fuzzy vector corresponding to A and d1,

respectively. Let e∗x6
=

d1
2

a62
= 0.25 and G′ =

∏
j∈J G(j).

Step 6: Let Ω = {G(1), G(3), G(4), G(6)}, Ω1 = {G(3), G(6)}, and Ω2 = {G(1),
G(4)}. Also, Ω1

⋂
Ω2 = ∅, Ω = Ω1

⋃
Ω2, G1 = G(3) × G(6), G2 = G(1) × G(4),

I(1) = {2, 7, 8}, J (1) = {3, 6}, I(2) = {1, 3, 4, 5}, and J (2) = {1, 4}.

Steps 7,8: Sub-problem 1 is as: G1 = G(3)×G(6) = {(2, 7), (2, 8), (7, 7), (7, 8), (8,
7), (8, 8)} and {e1

x|e1 ∈ G1}= {(0.167, 0.214), (0.167, 0.15), (0.214, 0.214), (0.167,
0.15), (0.187, 0.214), (0.187, 0.187)}. Since (c2, c7, c8) = (5, 6, 4), the optimal so-
lution is as e(3) = e(6) = 8 and e1

x8
= ex8 = 0.187.

Sub-problem 2 is as: G2 = G(1)×G(4) = {(1, 3), (1, 5), (3, 3), (3, 5), (4, 3), (4, 5), (5,
3), (5, 5)} and {e2

x|e2 ∈ G2}= {(0.125, 0.289), (0.125, 0.289), (0.289, 0.289), (0.1, 0.289
), (0.111, 0.289), (0.111, 0.289), (0.112, 0.289), (0.289, 0.289)}. Since (c3, c4, c5) = (1, 2,
3), the optimal solution is as e(4) = 3 and e2

x3
= ex3 = 0.289.

Step 9: From Steps (4), (5), (7), and (8), we conclude that the optimal vector
of e∗x is as follows: e∗x = (0.172, 0, 0.289, 0, 0, 0.25, 0, 0.187).

In this example, we obtain the optimal solution by verifying |G1|+|G2| = 6+8 =
14 quasi-minimal solutions. If we apply the search direct method for this example,
we must verify all of the quasi-minimal solutions, i.e., |G| =

∏6
j=1 |G(j)| = 4× 1×

3× 2× 3× 2 = 144 quasi-minimal solutions.
We now illustrate the method of computation of the alternative optimal solutions

by Algorithm 4.1 with the following example.
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Example 4.5. Consider the problem of Example 4.4 with the following objective
function.

Z = 0x1 + 5x2 + x3 + x4 + 300
289x5 + x6 + 6x7 + 4x8.

Steps 1-6: are the same to steps 1-6 of Example 4.4.

Steps 7,8: Sub-problem 1 is as:G1 = G(3) × G(6) = {(2, 7), (2, 8), (7, 7), (7, 8),
(8, 7), (8, 8)} and {e1

x|e1 ∈ G1} = {(0.167, 0.214), (0.167, 0.15), (0.214, 0.214), (0.167,
0.15), (0.187, 0.214), (0.187, 0.187)}. Since (c2, c7, c8) = (5, 6, 4), the optimal solu-
tion is as e(3) = e(6) = 8 and e1

x8
= ex8

= 0.187.
Sub-problem 2 is as:G2 = G(1)×G(4) = {(1, 3), (1, 5), (3, 3), (3, 5), (4, 3), (4, 5), (5,

3), (5, 5)} and {e2
x|e2 ∈ G2}= {(0.125, 0.289), (0.125, 0.289), (0.289, 0.289), (0.1, 0.289),

(0.111, 0.289), (0.111, 0.289), (0.112, 0.289), (0.289, 0.289)}.
Since (c3, c4, c5) = (1, 1, 300

289 ), the optimal solution is as: e(1) = 4, e(4) = 3 and

e2
x4

= ex4
= 0.111, e2

x3
= ex3

= 0.289.

Step 9: From Steps (4), (5), (7), and (8), we conclude that the optimal vector of
e∗x is as follows: e∗x=(0.172, 0, 0.1, 0, 0.289, 0.25, 0, 0.187) and e∗x=(0.172, 0, 0.289, 0.111,

0, 0.25, 0, 0.187). Also, Î ′ = {1}. Since e∗x1
= x̂1 = 0.172, we have two optimal solu-

tions as follows: {(0.172, 0, 0.1, 0, 0.289, 0.25, 0, 0.187), (0.172, 0, 0.289, 0.111, 0, 0.25, 0,
0.187)}.

5. Conclusions

In this paper, the solution set of a consistent finite system of fuzzy relation
inequalities with max-product composition and an optimization problem with a
linear objective function subject to such fuzzy relation inequalities were studied.
Some components of the optimal solution(s) of the optimization problem were de-
termined under some sufficient conditions. The optimization problem was also
separated into two sub-problems, one with non-negative cost coefficients and the
other with negative cost coefficients. The problem can be further reduced by re-
moving the constraints that have been satisfied. The reduced problem may be
further decomposed into several sub-problems with smaller dimensions which are
then solved separately. Combining the decomposition and reduction procedures,
an algorithm was proposed to solve the original problem. Since the size of original
problem is reduced by the decomposition procedures, the algorithm is very efficient
in the sense that we do not have to enumerate all the quasi-minimal solutions of
the original problem.

Acknowledgements. The author thanks the anonymous reviewers for their valu-
able comments that improved the quality of this paper.
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