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MODELING OF EPISTEMIC UNCERTAINTY IN RELIABILITY

ANALYSIS OF STRUCTURES USING A ROBUST

GENETIC ALGORITHM

M. BAGHERI, M. MIRI AND N. SHABAKHTY

Abstract. In this paper the fuzzy structural reliability index was determined

through modeling epistemic uncertainty arising from ambiguity in statistical

parameters of random variables. The First Order Reliability Method (FORM)
has been used and a robust genetic algorithm in the alpha level optimization

method has been proposed for the determination of the fuzzy reliability index.

The sensitivity level of fuzzy response due to the introduced epistemic uncer-
tainty was also measured using the modified criterion of Shannon entropy. By

introducing bounds of uncertainty, the fuzzy response obtained from the pro-

posed method presented more realistic estimation of the structure reliability
compared to classic methods. This uncertainty interval is of special importance

in concrete structures since the quality of production and implementation of
concrete varies in different cross sections in reality. The proposed method is

implementable in reliability problems in which most of random variables are

fuzzy sets and in problems containing non-linear limit state functions and pro-
vides a precise acceptable response. The capabilities of the proposed method

were demonstrated using different examples. The results indicated the accu-

racy of the proposed method and showed that classical methods like FORM
cover only special case of the proposed method.

1. Introduction

A typical structural reliability analysis deals with models which are mathemat-
ical idealizations of the physical events. The idealization requires the definition of
the basic random variables describing the geometry, loads and material properties.
The mathematical model (G) establishes a relationship between the resistance (R)
and the load (S) of structural components. This function is known as the Limit
State Function (LSF) or performance function (G = R−S). In LSF, we encounter
parameters which do not possess constant values and are of random and vague iden-
tity in nature. Hence, we surely face a sort of uncertainty in the safety assessment
of structures. The nature of uncertainties and the methods of their modeling in
assessing the safety of structures have been of researchers’ interest for many years
[29, 34, 27, 22, 21].

A popular classification of uncertainty, with respect to its sources, distinguishes
between aleatory and epistemic uncertainty [5, 8]. Aleatory uncertainty is the
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representative of unknowns that differ each time we run the same experiment. It
is random in nature and generally related to the uncertainty of the outcome of an
event or experiment. Aleatory uncertainty is primarily associated with objectivity
and cannot be reduced [42]. This type of uncertainty can be modeled with pure
probabilistic methods. Using probabilistic methods employing random variables in
assessing the safety of structures, has been of interest for many years and various
analytical and simulation methods such as FORM [17, 30, 24, 23], SORM [7, 2, 47],
Monte Carlo Simulation (MCS) [10, 36] and Importance Sampling (IS) [14, 45] have
been developed.

Epistemic uncertainty is due to things that we could know in principle but
couldn’t in practice. This may be because we have not measured its quantity accu-
rately, or because our model neglects certain effects or that particular data are de-
liberately hidden. Epistemic uncertainty may be comprised of substantial amounts
of both objectivity and subjectivity simultaneously. This type of uncertainty is
constituted on a non-probabilistic or a mixed of probabilistic and non-probabilistic
mathematical basis. Epistemic uncertainty is a result of lack of adequate knowledge
and information regarding the identity of the problem under investigation and may
be caused by ambiguity in defining statistical parameters of random variables. The
more knowledge about the respective problem, results in less of this uncertainty
[42].

Due to lack of access to precise statistical properties of random variables in struc-
tural reliability problems, we generally encounter a combination of the two types
of uncertainties. This statistical ambiguity may be caused by the small number of
statistical samples, multiplicity of test equipment for determination of mechanical
properties of materials and human errors in the sampling and measurement process
of these properties. Hence, the random variables should simultaneously comprise
both aleatory and epistemic uncertainty in order to have an exact mathematical
model of LSF and consequently a reliable safety index.

Epistemic uncertainty may be modeled using fuzzy sets [48, 40] intervals [1, 41]
convex sets [6, 39] and fuzzy random variables [25, 26, 31]. Furthermore, proba-
bilistic methods do not provide an accurate realistic estimation of the safety level
of structures, because these methods do not integrate epistemic uncertainty in the
process of analyzing structural reliability [18].

A variety of mathematical approaches have been formulated, besides pure prob-
abilistic, to take account of the available information as naturally as possible us-
ing fuzzy sets. These approaches combined aleatory and epistemic uncertainties
in the process of analysis and safety assessment of structures. Fuzzy analysis
[32, 16], fuzzy finite element [28, 35, 11], fuzzy optimization [38], and fuzzy re-
liability [33, 46, 12, 15], may be pointed out from these approaches.

In fuzzy structural reliability, random variables are modeled as fuzzy sets and
fuzzy reliability index can be determined using methods such as the extension
principle [44], sampling [20], vertex [9], function approximation [19], and alpha
level optimization [32]. Sampling method is not computationally efficient in high
dimensional problems because an appropriate sampling requires a large number
of samples [20]. Vertex method is limited to monotonic and continuous functions
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and does not yield an accurate response in problems with discontinuous and non-
monotonic functions. Function approximation method substitutes the objective
function with an approximate function called response surface. Thus, the accuracy
of the response depends on the substituted function.

From the above methods, it is only optimization method which is not limited
to a certain type of functions and results the accurate response [20]. However,
existing optimizations methods are predominantly gradient- based, complicated and
computationally expensive [32, 33]. In this paper an alternative method has been
proposed in order to arrive at a precise response and decrease the computational
burden. Through introducing bounds of uncertainty, the obtained fuzzy reliability
index provides a more realistic estimation of structural reliability compared to pure
probabilistic methods.

2. Basic First Order Reliability Method

The main problem of structural reliability analysis is to estimate the failure
probability of a structural component by evaluating the following integral [34]:

Pf =

∫
G(X)≤0

fX(X1, ..., Xn)dX1...dXn (1)

where Pf is the failure probability, X1, ..., Xn are the basic random variables, X
is the n-dimensional vector of random variables, G(X) is the LSF (G(X) ≤ 0 defines
the failure domain of structural components) and fX is the Joint Probability Den-
sity Function (JPDF) for the basic random variables. The failure and safe regions
are shown in Figure 1. The integration of equation (1) is highly complex. Since
there is no analytical solution for general cases available, approximation methods
are generally used for these problems [34, 27, 21]. Evaluating the failure probability
of the performance function is feasible with the simulation or sampling methods,
such as MCS and IS.

In MCS the standard space is randomly sampled with numerous independent
samples. These samples are then transformed to the original space and an estimate
of failure probability is finally obtained from the sample mean. It is necessary
to note that MCS requires large samples for small failure probabilities. To meet
this disadvantage, reliability analysis based on simulation methods in combination
with an adaptive low order polynomial response surface are extended using neural
networks and splines [10]. This methodology makes use of the capability of an
ANN to approximate a function for reproducing structural behavior, allowing the
computation of performance measures at a much lower cost.

Another technique in this regard is IS [14, 45]. For an IS analysis, the samples
are produced around the design point coming from a previous FORM analysis.
Thus, IS requires previous information about the failure regions to be useful, more-
over it faces challenges with high-dimension problems. However these methods
are extremely computer intensive for complex physical simulations, such as dy-
namic problems, finite element methods, low failure probability and determination
of fuzzy structural reliability analysis [4].
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Since in this study the large number of reliability analysis has to be done, using
simulation methods such as MCS and even improved ones entails a huge compu-
tational burden as it is too time consuming even for a simple structure. Therefor
FORM as an iterative method has been used.

FORM aims at using a first-order approximation of the LSF in the standard
normal space at the so-called design point U∗, which is the limit-state surface
closest point to the origin [17]. The coordinate of design point can be found using
the following constrained optimization problem.

U∗ = arg min{‖U‖|G(U) = 0} (2)

where G(U) is the LSF in the standard normal space. By using the design point,
the Hasofer-Lind reliability index (β) is computed as follows:

β = αTU∗ (3)

where α = −∇UG(U∗)
‖∇UG(U∗)‖ is the negative normalized gradient vector which is called

sensitivity factor and ∇U is the gradient operator (Figure 1). It represents the
distance from the origin to the design point in the standard space. The first order
approximation of failure probability is defined as follows: Pf = Φ(−β) where Φ(.)
is the standard normal cumulative distribution function.

Figure 1. First Order Reliability Method

2.1. The Hasofer-Lind Iteration Procedure. Hasofer and Lind [17] proposed
a general method for computing the reliability index which was defined on the basis
of the shortest distance of LSF from the origin of the standard normal space where
the basic random variables are uncorrelated. The correlated variables should be
transformed into the uncorrelated ones by Nataf or Rosenblatt transformation [27].
The iterative process is as follows:

a) Formulate the LSF for all uncorrelated random variables Xi(i = 1, ..., n)
in the form of G(X) = 0.
b) Transform the original design space X to the standard normal space U ,

using the Rackwitz-Fiessler transformation method [34]: X−µ(X)
σ(X) . where

µ(X) and σ(X) are mean and standard deviation of random variable re-
spectively.
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c) Express the LSF in terms of αi and β noting that Ui = αiβ.
d) Calculate β and each αi as a function of αi and β.
e) Obtain an initial design point U∗ by assuming numerical values for β
and αi, noting that the αi values should satisfy

∑n
i=1(αi)

2 = 1.
f) Calculate numerical values of αi and β using function derived in step
(d).
g) If |βi − βi−1| ≤ ε (ε = 10−5 in this paper), then stop the iteration and
calculate the failure probability Pf = Φ(−β). Otherwise, let βi−1 = βi and
go to step (f).

3. Review of Genetic Operators

The fundamental concepts of genetic algorithm were developed in 1989 [13]. In
the genetic algorithm, each individual is introduced by a string called chromosomes.
Each chromosome is formed of a number of genes [13]. The fitness of each indi-
vidual corresponds to the value of the objective function at that point. Genetic
algorithm initiates the search with a random sample population and random oper-
ators. These random operators namely fitness, selection, crossover, and mutation
were explained in detail in [43]. Selection is the process of selecting two parents
for crossover. Selection aims at selecting fitter parents leading to reproduction of
children with higher fitness. Three different types of selection methods were used in
this paper: Roulette wheel, Tournament selection, and the hybrid combinations of
these methods [3]. Chromosomes which are selected from the initial population for
reproduction are called parents [13]. The initial population was produced randomly
and the numbers of generated populations were selected between 10 to 50.

The probability of a chromosome taking part in the subsequent reproduction is
proportional to its fitness level. Thus, a fitter chromosome is more likely to partic-
ipate in reproduction. Crossover acts upon two chromosomes which are randomly
selected and generates two new chromosomes through replacing their genes from a
point which is also selected randomly [13].

The main operator in creating a new generation in the multiplication stage is
crossover. Its frequency is controlled by cross-over probability Pc. Basically this
probability should have a large value. In this paper the probability was considered
as Pc = 0.8. Also a hybrid combination of Arithmetic cross-over (AMXO) and
Average Convex cross-over (ACXO) methods was used [3]. Each of the children
resulted from this operator possesses a part of the parent’s characteristics. Mutation
is a process in which a part of a gene randomly changes. This operator should be
used with low probability, generally Pm varies from 0.01 to 0.1.

4. Fundamental Concepts of Fuzzy Analysis

In this section, basic concepts of fuzzy analysis which have been used in this
paper are briefly described.

4.1. Fuzzy Set. A fuzzy set is defined via its membership function. The mem-
bership function assigns the elements of the universe set U to the fuzzy set Ã by
assigning a value from the interval [0,1] which is written as : µA(x) : U → [0, 1].
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By means of membership function the properties of crisp sets such as subset, com-
plement and union may be generalized to fuzzy sets [40].

4.2. Triangular Fuzzy Number. Triangular fuzzy numbers have always been of
interest for engineering problems mainly owing to their computationally efficient.
These numbers are typically presented as X̃ =< a, b, c >, where a is the lower
bound, b is the middle value and c is the upper bound of the fuzzy triangular
number [40], (Figure 2-a). Owning to their membership function, modeling the
epistemic uncertainty of structural parameters by triangular fuzzy numbers seems
to be more realistic in safety assessment process.

4.3. The α-Cut of Fuzzy Number. The α-cut of the fuzzy number X̃, is a crisp
set and encompasses elements which corresponding membership degree is more than
α [31], (Figure 2-b). In the other words:

Xα = {x ∈ X̃|µX(x) ≥ α} (4)

For α ∈ (0, 1].

Figure 2. a-Triangular Fuzzy Number, b-α-Cut of the Fuzzy Number

4.4. The Extension Principle. The extension principle is one of the fundamental
concepts in fuzzy sets. It explains the way, functions and mathematical operators
can be extended to fuzzy sets. Assume f as a function from X to Y , that is f :
X → Y and y = f(x1, x2, ..., xn) [31]. When f operates on fuzzy sets Ã1, Ã2, ..., Ãn,
the result would be a fuzzy subset B in Y space which is determined by equation
(5):

B = f(A1, A2, ..., An) = {(y, µB(y))|y = f(x1, x2, ..., xn)} (5)

where

µB(y) = {
max[min(µA1

(x1)),(µA2
(x2)),...,(µAn (xn))] iff−1(y)6=0

0 iff−1(y)=0 (6)

where, f−1(y) is the inverse function of y and µB(y) is the membership function
of y = f(x1, x2, ..., xn). In order to employ the extension principle, the fuzzy num-
bers should be discretized to their α-cuts. The purpose of this discretization is the
approximation of a fuzzy set to a number of crisp sets, in a way that mathematical
operators are carried out separately for each element of the Xα sets and the final
result is determined by equation (6).
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4.5. The α-Level Optimization Method. Using the extension principle in ap-
plied engineering problems with complex non-linear functions entails a large com-
putational burden. Thus as previously noted, optimization methods based on the
discretization of fuzzy variables have been developed as a substitute for the ex-
tension principle [20]. If the analysis algorithm is defined as y = f(x1, x2, ..., xn),
the same α-cuts of fuzzy input variables, constitute a spatial shape which is called
the crisp subspace Xαk . The elements of α-cut set Yαk corresponding to the fuzzy
output can be obtained if the input variables are convex [32].

in other words, the above interval knowing the smallest and largest elements
would be specified [31, 32]. Typically there are two optimum points xopt in Xαk

which yield the smallest and largest elements of the Yαk interval. Thus, determining
these points turns into a constraint optimization problem that aims at finding
optimums in the crisp subspace, Figure 3. In which x1opt and x2opt yields the
minimum and maximum elements of the Yαk interval respectively. The objective
functions of the above optimization problem are defined as equations (7) and (8),
while the (x1, x2, ..., xn) ∈ Xαk is considered as a constrain.

y = f(x1, x2, ..., xn)→Max (x1, x2, ..., xn) ∈ Xαk (7)

y = f(x1, x2, ..., xn)→Min (x1, x2, ..., xn) ∈ Xαk (8)

Figure 3. Crisp Subspace and Optimum Points

However,the existing optimization methods in this regard are complicated and
computationally expensive [32]. Hence in this paper a robust genetic algorithm is
adopted in order to overcome these challenges. While in classic optimization meth-
ods a complicated directional optimization procedure is applied. In the proposed
method the crisp subspace related to each α-cut is formed and the inside points
are then located exactly. Whilst in the classic α-level optimization methods, points
inside the crisp subspace are produced randomly.
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5. The Proposed Method

In the proposed method, the form of LSF was initially determined in the standard
normal space. Then the mean and standard deviation of random variables which
were modeled as fuzzy triangular numbers were discretized to their α-cuts. If the
respective reliability problem consists of two, three, and n fuzzy random variables,
the crisp subspace would take the shape of a rectangle, cube, and an n-dimensional
hyper cuboid respectively. The entire points inside this subspace were used as inputs
to the analysis algorithm in order to determine the corresponding interval of the
respective fuzzy responses for the same α-cuts, that is Yαk , Figure 4. Assembling
these intervals for the values αk ∈ (0, 1] yields the membership function of fuzzy
outputs.

Figure 4. Three Dimensional Crisp Subspace, Analysis
Algorithm, Interval Yαk

The Xiαk
sets were discretized in to m equal parts in order to determine the

points inside the Xαk , thus (m + 1) points were specified on each set. When the
problem has n fuzzy random variables, n(m+ 1) points on Xiαk

sets are obtained.

All the cases of (m + 1)n distinct combinations were specified in order to increase
the accuracy of the proposed method and they were located inside the crisp sub-
space, Figure 5. Consequently, the crisp subspace was discretized into a number of
rectangular cubes in the three-dimensional case whose corner points were the in-
puts of the FORM algorithm. For each of these points, the output of the reliability
analysis problem would be one of the elements of the interval Yαk .

Figure 5. Discretization of Random Variables, Distinct
Cases a and b
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As mentioned before, the interval Yαk knowing the smallest and largest elements
would be specified. Two optimum points xoptαkl and xoptαkr in the crisp subspace
which eventuate the smallest and largest elements of the interval are presented in
Figure 6. If all of the fuzzy random variables X̃i are convex and uncorrelated, the
search for optimum points encompasses all of the regions within the crisp subspace.
Otherwise, this search would be limited to certain regions of the subspace such as
boundary regions. In the proposed method, the search for the optimum points was
conducted via a robust genetic algorithm in order to decrease the computational
cost.

Figure 6. Optimum Points in the Three Dimensional
Crisp Subspace

The initial population was generated by randomly selecting some points from
the crisp subspace. In the three dimensional case, each of the selected cubes played
the role of a chromosome comprising of three genes in the optimization process of
the genetic algorithm. An initial fitness value was assigned to each chromosome
considering the reliability index which that chromosome yields. Fitter parents
for reproducing the next generation were selected through comparing the fitness
value of chromosomes, and the subsequent generation was produced using crossover
and mutation random operators and the fitness level of the new generation was
determined, Figure 7. By comparing the fitness of chromosomes, fitter parents
were selected for reproducing the next generation and through employing crossover
and mutation operators, the subsequent generation was reproduced. This process
carries on until the convergence conditions were satisfied and the search process
stopped. The above procedure was repeated for all cuts αk ∈ (0, 1] of the input
random variables and the membership degree function of fuzzy reliability index was
determined. In the proposed method, due to the uncertainty bounds defined for
random variables, the numeric value of the fuzzy output for membership degree
equal to one (αk = 1), indicated the results obtained from the classic method of
first order reliability method.

The proposed method can be implemented in the reliability problems where most
of variables are modeled as fuzzy sets and in problems having non-linear limit state
functions. In summary, the proposed method comprises the following steps in order
to determine the membership function of the fuzzy reliability index.
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Figure 7. Schematic of Chromosomes and Crossover Operator

a) Formulation of the fuzzy limit state function in the standard normal

space, G̃(u) = 0.
b) Formation of the corresponding crisp subspace Xαk , by creating identical
α-cuts on all fuzzy random variables.
c) Random selection of the initial population and assigning an initial fitness
value to each chromosome of the population.
d) Selection of parents and reproduction of the new generation using crossover
and mutation operators.
e) Determining fitness values for each chromosome of the population.
f) Iteration of steps (d) and (e) until the convergence criterion is fulfilled.
g) Saving the minimum (βαkl) and maximum (βαkr) values of interval (βαk).
h) Increasing the value of αk and iteration from step (b) while αk ∈ [0, 1).
i) Assembling the results obtained from step (g) and the formation of the
membership function of fuzzy response.

Schematic flowchart of the proposed method is shown in Figure 8.

5.1. Verification of the Proposed Method. In order to verify the proposed
method an illustrative example was taken from [31]. It was proposed to determine
the fuzzy reliability index of the simple steel beam under the concentrated load
shown in Figure 9-a. Failure mode was considered according to the first order
plastic joint theory. Figure 9-b shows the corresponding failure mechanism. The
limit state function was defined according to equation (9).

G(P, FY ) = FY −
L1L2

WPL(L1 + L2)
P (9)

where P and FY are concentrated load and yield stress of steel respectively. The
values for L1 and L2 are listed in Figure 9-a. The plastic moment of resistance
is WPL = 3.66 × 10−4m3. The structural resistance characterized via the fully
plastic moment MPL was determined by MPL = FYWPL. The random variable P
follows a type-I extreme value distribution whiles random variable FY is lognormally
distributed. In this example, random variables are statistically independent and
their fuzzy distribution properties are presented in Table 1. The mean value of
FY was considered to be µFY = 28.8 × 104 kNm2 . Fuzzy reliability indices obtained
from the proposed method and reference [31] were plotted in Figure 10. The results
showed the accuracy of the proposed method.
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Figure 8. Flowchart of the Proposed Method

Figure 9. a-Simple Steel Beam, b-Failure Mechanism of Beam

5.2. Uncertainty Measure of Fuzzy Output. The obtained fuzzy output in-
dicated the effect of taking epistemic uncertainty in the safety assessment process
into consideration. In other words, this response revealed the sensitivity rate of
safety index to the epistemic uncertainty introduced in the structural reliability
assessment process. In this paper, the modified Shannon entropy criterion [31] for
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Figure 10. Comparison of Fuzzy Reliability Indices

Fuzzy Random Variable Fuzzy Mean Fuzzy S.D

P̃ (kN) < 47, 50, 52 > < 4.5, 5, 6 >

F̃Y (×104 kNm2 ) - < 2.2, 2.64, 2.8 >

Table 1. Fuzzy Distribution Properties of the Random Variables

measuring uncertainty was used in order to estimate the rate of this sensitivity. Us-
ing the criterion, according to equation (10) the uncertainty level of the reliability
index is measured.

Hu(β̃) = −k
∫ βα0r

βα0l

[µ(β) log(µ(β)) + (1− µ(β)) log(1− µ(β))]dβ (10)

where βα0l and βα0r are the smallest and the largest value of fuzzy reliability
index in the support α-cut respectively, and k is a constant value. The more the
value of Hu(β̃), the larger interval of uncertainty is covered by the fuzzy output
and the more its sensitivity to epistemic uncertainty in the process of structure
reliability analysis and vice versa.

6. Numerical Examples

In this section, one mathematical and two engineering examples are presented
and fuzzy reliability indices were determined in order to indicate the efficiency of
the proposed method. In addition, the sensitivity level of fuzzy response due to the
epistemic uncertainty introduced in the safety assessment process was evaluated.

Example 6.1. A 3-span continuous steel beam with 5 meters length span, under
uniform distributed load w was investigated according to the following LSF [34],
Figure 11.

G(L,w,E, I) =
L

360
− 0.0069

wL4

EI
(11)

where L is the span length, w is the uniform distributed load, E is the modulus
of elasticity, and I is the moment of inertia of the beam section. The term L

360 is the



Modeling of Epistemic Uncertainty in Reliability Analysis of Structures Using ... 35

Figure 11. Three Span Continuous Steel Beam

allowable deflection of the beam under dead load and the value 0.0069wL
4

EI is the
maximum deflection of the beam caused by the distributed load. The fuzzy mean
and fuzzy standard deviation of all random variables were modeled via fuzzy trian-
gular numbers in order to determine the membership function of fuzzy reliability
index. The random variables were normal and statistically independent. Fuzzy dis-
tribution properties of random variables are presented in Table 2. In this example,
the crisp subspace was a six-dimensional hyper cuboid. In the analysis process, each
αk ∈ (0, 1] was divided into five equal intervals. Figure 12 shows the membership
function of the obtained fuzzy response. As shown, the smallest and largest ele-
ments of interval Yiαk were determined for five α-cuts of αk = 0, 0.2, 0.4, 0.6, 0.8. As
shown in the Figure 12 the value of the obtained fuzzy response for the membership
degree αk = 1 is exactly the same as the result presented in [34]. It can be seen from
the Figure 12 that the results of the FORM method are only a special case of those
obtained by the proposed method. As shown in Figure 12, the reliability index
comprises the interval [2.257,3.937] considering the epistemic uncertaintiy which is
more realistic than 3.173 obtained from classic methods. It would then be easy
to derive a design reliability index using standard defuzzification procedures [31].
In this paper fuzzy reliability indices have been defuzzified using centroid method
which yields the crisp value as the center of the area below the membership function
of the fuzzy response. The target reliability index of this example was βT = 3.11.
The result for the uncertainty measure of the fuzzy output using equation (10) was

equal to Hu(β̃) = 0.839k.

Fuzzy Random Variable Fuzzy Mean Fuzzy S.D

W̃ (kNm ) < 8.5, 10, 11 > < 0.36, 0.4, 0.46 >

Ẽ(×107 kNm2 ) < 1.7, 2, 2.2 > < 0.45, 0.5, 0.575 >

Ĩ(×10−4m4) < 6.8, 8, 8.8 > < 1.35, 1.5, 1.735 >

Table 2. Fuzzy Distribution Properties of the Random

Variables of Example 6.1

Example 6.2. In this example, the fuzzy reliability analysis of a reinforced concrete
beam was determined. The LSF of the beam was demonstrated by equation (12),
[34]:

G(AS , FY , FC , Q) = ASFY d− 0.59
(ASFY )2

Fcb
−Q (12)

where AS , FY , FC , and Q are steel reinforcement area, yield stress of the steel,
compressive strength of concrete and the total moment respectively. Parameters of
b and d are the width and height of the section which are considered to be 12 and 19
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Figure 12. Membership Function of the Fuzzy Reliability
Index of Example 6.1

inches respectively. The random variables are normal, statistically independent and
their statistical properties are presented in Table 3. The crisp subspace was an eight-
dimensional hyper cuboid in this example. Each αk ∈ (0, 1] was divided into five
equal intervals in the analysis process. Figure 13 shows the membership function
of the fuzzy response obtained from the proposed method and the lower and upper
bounds for each of the five α-cuts. As shown in the Figure 13, the numeric value of
the obtained fuzzy reliability index for the membership degree αk = 1 was exactly
the same as with the result presented in [34]. As shown in Figure 13, the reliability
index contains the support interval [0.863,3.846], whereas that of the classic method
FORM equals 2.35. The fuzzy reliability index of the proposed method offers more
acceptable estimation of structural safety by introducing bounds of uncertainty.
This uncertainty is of great importance particularly in concrete structures owing to
the variation in the production quality and implementation of concrete in different
cross sections. The target reliability index of this example was βT = 2.328. The
uncertainty measure of fuzzy output using equation (10) wasHu(β̃) = 1.490k, where
indicated high sensitivity of the reliability index to the epistemic uncertainty. This
relatively large interval of uncertainty for the fuzzy reliability index can be seen in
Figure 13.

Fuzzy Random Variable Fuzzy Mean Fuzzy S.D

ÃS(in2) < 3.468, 4.08, 4.488 > < 0.072, 0.08, 0.092 >

F̃Y (ksi) < 37.4, 44, 48.4 > < 4.158, 4.62, 5.313 >

F̃C(ksi) < 2.652, 3.12, 3.432 > < 0.396, 0.44, 0.506 >

Q̃(k − in) < 1744.2, 2052, 2257.2 > < 221.4, 246, 282.9 >

Table 3. Fuzzy Distribution Properties of the Random

Variables of Example 6.2

Example 6.3. In order to assay the proposed method for non-normal random
variables, the following mathematical LSF has been taken from [37]:

G(X1, X2, X3) = X1X2 − 78.12X3 (13)
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Figure 13. Membership Function of the Fuzzy Reliability

Index of Example 6.2

In which X1 and X2 are lognormally distributed whereas X3 follows a type-I
extreme value distribution. The random variables are statistically independent and
their fuzzy statistical properties are shown in Table 4. In this example the lower
and upper bounds of the fuzzy reliability index for each of the five α-cuts were
determined from within the six-dimensional crisp subspace. Figure 14 shows the
membership function of the fuzzy reliability index for each of the five α-cuts. As
shown in Figure 14 the membership degree of fuzzy reliability index for αk = 1
is the same as the result offered in [43]. The uncertainty measure of fuzzy output

using equation (10) also resulted Hu(β̃) = 0.376k. Also the target reliability index
of this example was βT = 4.614.

Fuzzy Random Variable Fuzzy Mean Fuzzy S.D

X̃1(×107) < 1.7, 2, 2.2 > < 0.45, 0.5, 0.575 >

X̃2(×10−4) < 0.85, 1, 1.1 > < 0.18, 0.2, 0.23 >

X̃3 < 3.4, 4, 4.4 > < 0.9, 1, 1.15 >

Table 4. Fuzzy Distribution Properties of the Random

Variables of Example 6.3

7. Conclusion

In this paper, modeling the epistemic uncertainty of random variables via fuzzy
triangular numbers in the FORM reliability method has been brought into focus. A
robust heuristic algorithm has been proposed to determine optimum points resulting
from the corresponding crisp subspace of the entire variables. The implementation
of the proposed method leads to the definition of certain bounds for the reliabil-
ity index, resulting in more realistic values of the corresponding indices compared
to pure probabilistic methods. This uncertainty interval is of special importance
in concrete structures since the quality of the production and implementation of
concrete varies in different cross sections in reality. Whilst it was not taken into
account in classic methods of reliability.
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Figure 14. Membership Function of the Fuzzy Reliability
Index of Example 6.3
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