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DISCRETE TOMOGRAPHY AND FUZZY INTEGER

PROGRAMMING

F. JARRAY

Abstract. We study the problem of reconstructing binary images from four
projections data in a fuzzy environment. Given the uncertainly projections, we
want to find a binary image that respects as best as possible these projections.
We provide an iterative algorithm based on fuzzy integer programming and
linear membership functions.

1. Introduction

Discrete Tomography (DT) deals with the reconstruction of digital images from
their projections. The projections of an image are defined by the number of pixels
of the colors on each line. Digital images are most commonly represented by inte-
ger matrices. The problem of reconstructing monocolored images (black and white)
from two projections is well known [14]. However, image processing in general and
image reconstruction in particular is often characterized by uncertain and possi-
bly inconsistent information. Since fuzzy programming is considered appropriate
for solving real-world problems it seems reasonable to apply fuzzy programming
methods to the reconstruction problem.

In this paper, we propose a fuzzy approach for reconstructing binary images,
which, instead of reconstructing projections exactly as in the deterministic recon-
struction problem, recovers them as much as possible.

The remainder of this paper is organized as follows. First, in Section 2, we briefly
review fuzzy set theory and fuzzy programming and then, in Section 3, we present
the problem of discrete tomography and image reconstruction. In Section 4, we
discuss the application of fuzzy programming in image reconstruction and finally
conclude the last section with a summary of our results.

2. Fuzzy Programming

Fuzzy linear programming (FLP) can be defined as linear programming with un-
certain parameters and where a violation of constraints is permitted upto a degree.
FLP was introduced to handle real-world problems when the available information
is not exact. Verdegay [16] classified fuzzy programming into the following four
categories: (1) a crisp objective and fuzzy constraints, (2) a fuzzy objective and
crisp constraints, (3) a fuzzy objective and fuzzy constraints, (4) fuzzy parameters
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or coefficients. In this paper, we adopt the fuzzy linear program model with a crisp
objective and fuzzy constraints.

There are several methods for solving FLP problems [19, 15, 5, 10]. The methods
of converting FLP into conventional mathematical programming seem to be the
main approaches of resolution.

Fuzzy integer linear programming (FILP) can be considered the fuzzy linear pro-
gramming where the variables are restricted to integer values. It has been studied
by some authors [13, 1] and solved with relevant algorithms. Herrera and Verdegay
[7] proposed three models for dealing with FILP problems and then showed how to
reduce each of them to a crisp integer linear programming problem.

The conventional model of FILP with a crisp objective and fuzzy constraints can
be stated as:

𝑃

⎧⎨
⎩

𝑚𝑎𝑥 𝑐𝑥
𝑠.𝑡.
𝐴𝑥 ≾ 𝑏
𝑥𝑖 ∈ ℕ 𝑖 = 1, . . . , 𝑛

where 𝐴 is a 𝑚× 𝑛 constraints matrix. For 𝑖 = 1, . . . ,𝑚, we denote the 𝑖th row of
𝐴 by 𝐴𝑖, and the 𝑖th constraint of P by 𝐴𝑖𝑥 ≾ 𝑏𝑖 .

The symbol ≾ , a fuzzy version of ≤, is called “fuzzy less than or equal to”. It
means that constraints may be violated, but, depending on the constraint, these
violations may have different degrees of importance.

To handle fuzzy constraints, we first convert them into crisp constraints using
suitable membership functions. Various types of membership functions [18, 19]
have been proposed. However, a linear membership function is usually considered.
The effect of the nonlinearity of the membership functions will be accumulated, not
into the structure of the constraints (which shall remain linear) but into the right
hand side of the constraints. Therefore, we define a linear membership function for
the 𝑖th constraint as follows:

𝜇𝑖(𝑥) =

⎧⎨
⎩

1 𝑖𝑓 𝐴𝑖𝑥 ≤ 𝑏𝑖
1− 𝐴𝑖𝑥−𝑏𝑖

𝑑𝑖
𝑖𝑓 𝑏𝑖 ≤ 𝐴𝑖𝑥 ≤ 𝑏𝑖 + 𝑑𝑖

0 𝑖𝑓 𝐴𝑖𝑥 ≥ 𝑏𝑖 + 𝑑𝑖 (1)

where 𝑑𝑖 > 0, 𝑖 = 1, . . . ,𝑚 are subjectively chosen constants of admissible
violations. 𝜇𝑖(𝑥) is the degree to which 𝑥 satisfies the 𝑖th constraint.

In a deterministic program, each admissible solution is either optimal or not.
However, in a fuzzy program each feasible solution has a degree (membership) of
optimality, i.e. the set of optimal solutions is a fuzzy set. Thus solving the fuzzy
program 𝑃 consists in determining the membership function, 𝜆(𝑥), of the set of
optimal solutions.

We denote by 𝑋𝑖(𝛼) = {𝑥 ∈ 𝑅𝑛∣𝜇𝑖(𝑥) ≥ 𝛼} the 𝛼−cut associated with the 𝑖th
constraint of P. It is easy to verify that 𝑋𝑖(𝛼) = {𝑥 ∈ 𝑅𝑛∣𝐴𝑖𝑥 ≤ 𝑏𝑖 + (1 − 𝛼)𝑑𝑖}.
We write 𝑋𝑖(𝛼) = {𝑥 ∈ 𝑅𝑛∣𝜇𝑖(𝑥) ≥ 𝛼} and, for simplicity, put 𝛼 = 1− 𝜃.
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Figure 1. Membership of the Constraints

Compared with the number of methods of solving fuzzy linear programs, the
literature on fuzzy integer programming [4, 7] is not abundant. Herrera and Verde-
gay [7] reduce the program 𝑃 to the auxiliary parametric program, 𝑃𝜃, where the
variables belong to the ordinary set 𝑋(𝛼).

𝑃𝜃

⎧⎨
⎩

𝑚𝑎𝑥 𝑐𝑥
𝑠.𝑡.
𝐴𝑖𝑥 ≤ 𝑏𝑖 + 𝜃𝑑𝑖, 𝑖 = 1, . . . ,𝑚
𝑥𝑖 ∈ ℕ 𝑖 = 1, . . . , 𝑛

Many approaches have been proposed for solving 𝑃𝜃 [2, 11]. In practice, we want
to find the optimal solution of 𝑃𝜃, for each 𝜃 or 𝛼, and also obtain the interval of
𝜃 for which this optimal solution remains optimal.

We denote by 𝑆(𝜃) = {𝑥 ∈ 𝑅𝑛∣𝑥 optimal for𝑃𝜃}. Then 𝑆(𝜃) is the set of optimal
solutions for 𝑃𝜃.

According to Orlovski [12], a fuzzy optimal solution of 𝑃 is the fuzzy set defined
by the membership function

𝜆(𝑥) =

{
sup𝑥∈𝑆(𝜃) 𝛼 𝑖𝑓 𝑥 ∈ ∪𝜃𝑆(𝜃)

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 (2)

3. Discrete Tomography and Deterministic Reconstruction

A 2D discrete set is a finite subset of the integer lattice ℤ
2 defined up to a

translation. Discrete sets are most commonly represented by binary matrices or
binary images. We suppose that the vertical axis is up-down directed and that the
upper left corner is the position (1, 1).

A lattice direction is a vector 𝑣 = (𝑎, 𝑏) ∈ ℤ
2∖(0, 0) such that 𝑎 and 𝑏 are coprime.

A lattice line in direction 𝑣 is a line that is parallel to 𝑣 and passes through at
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least one point of ℤ
2. We denote by ℒ𝑣 the set of lattice lines in direction 𝑣.

The projection of the discrete set 𝐴 in the direction 𝑣 is defined by the following
function:

𝒫𝑣
𝐴 : ℒ𝑣 → ℕ such that 𝒫𝑣

𝐴(𝑙) = ∣(𝑖, 𝑗) ∈ ℤ
2 : (𝑖, 𝑗) ∈ 𝐴 ∩ 𝑙∣ for every lattice line

𝑙 in direction 𝑣. In this work, we will focus mainly on the set of lattice directions
{(1, 0), (0, 1), (1, 1), (−1, 1)}. In practice, the projections of a discrete set 𝐴 (binary
matrix) of size 𝑚× 𝑛 in these directions are often represented by the vectors 𝐻 =
(ℎ1, . . . , ℎ𝑚), 𝑉 = (𝑣1, . . . , 𝑣𝑛), 𝐷 = (𝑑1, . . . , 𝑑𝑚+𝑛−1) and 𝐴 = (𝑎1, . . . , 𝑎𝑚+𝑛−1)
respectively called the horizontal, the vertical, the diagonal and the antidiagonal
projections. The elements of these vectors are:

ℎ𝑖 =
∑𝑛

𝑗=1 𝐴𝑖𝑗 , 𝑖 = 1, . . . ,𝑚 the number of ones on row 𝑖.

𝑣𝑗 =
∑𝑚

𝑖=1 𝐴𝑖𝑗 , 𝑗 = 1, . . . , 𝑛 the number of ones on column 𝑗.
𝑑𝑘 =

∑
𝑚−𝑖+𝑗=𝑘 𝐴𝑖𝑗 , 𝑘 = 1, . . . ,𝑚+𝑛− 1 the number of ones on line 𝑚− 𝑖+ 𝑗 = 𝑘.

𝑎𝑘 =
∑

𝑖+𝑗=𝑘+1 𝐴𝑖𝑗 , 𝑘 = 1, . . . ,𝑚+ 𝑛− 1 the number of ones on line 𝑖+ 𝑗 = 𝑘 + 1.

The reconstruction problem of a binary image from its orthogonal projections
is defined as follows: given two vectors 𝐻 and 𝑉 , decide whether there is at least
one binary image whose horizontal projection is described by 𝐻 and whose vertical
projection is described by 𝑉 . It is well known that this problem is polynomial
[14]. However, the reconstruction problem of a binary images from three or more
directions is NP-complete [6].

A deterministic formulation of the reconstruction problem of a binary images
from the horizontal, the vertical, the diagonal and the antidiagonal projections
(𝐻,𝑉,𝐷,𝐴) is as follows: The binary decision variable 𝑥𝑖𝑗 is equal to the value of
the cell (𝑖, 𝑗).

⎧⎨
⎩

∑𝑛
𝑗=1 𝑥𝑖𝑗 = ℎ𝑖, 𝑖 = 1, . . . ,𝑚∑𝑚
𝑖=1 𝑥𝑖𝑗 = 𝑣𝑗 , 𝑗 = 1, . . . , 𝑛∑
𝑚−𝑖+𝑗=𝑘 𝑥𝑖𝑗 = 𝑑𝑘, 𝑘 = 1, . . . , 𝑚+ 𝑛− 1∑
𝑖+𝑗=𝑘+1 𝑥𝑖𝑗 = 𝑎𝑘, 𝑘 = 1, . . . ,𝑚+ 𝑛− 1

𝑥𝑖𝑗 ∈ {0, 1}
The four constraints guarantee the satisfaction of the four projections.
In general, the tomography reconstruction with a limited number of projections,

appears as a highly underdetermined ill-posed problem. The projections data gen-
erated are initially noisy. A variety of deterministic binary images reconstruction
methods have been considered in the literature, each using different noisy model
and additional constraints[8, 3, 9]. To handle the reconstruction with errors in mea-
surement and noise, we introduce the following equivalent integer linear program,
called best-inner- fit (BIF), which is better suited to handle vagueness [17].

𝐵𝐼𝐹

⎧⎨
⎩

𝑚𝑎𝑥
∑𝑚

𝑖=1

∑𝑛
𝑗=1 𝑥𝑖𝑗∑𝑛

𝑗=1 𝑥𝑖𝑗 ≤ ℎ𝑖, 𝑖 = 1, . . . , 𝑚∑𝑚
𝑖=1 𝑥𝑖𝑗 ≤ 𝑣𝑗 , 𝑗 = 1, . . . , 𝑛∑
𝑚−𝑖+𝑗=𝑘 𝑥𝑖𝑗 ≤ 𝑑𝑘, 𝑘 = 1, . . . ,𝑚+ 𝑛− 1∑
𝑖+𝑗=𝑘+1 𝑥𝑖𝑗 ≤ 𝑎𝑘, 𝑘 = 1, . . . ,𝑚+ 𝑛− 1

𝑥𝑖𝑗 ∈ {0, 1}
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4. Combining Fuzzy Programming and Discrete Tomography

We shall consider the reconstruction problem of images from four projections.
The deterministic formulation of this problem has been presented in the previous
section. The Fuzzy formulation problem is as follows:

𝐹𝑃

⎧⎨
⎩

𝑚𝑎𝑥
∑𝑚

𝑖=1

∑𝑛
𝑗=1 𝑥𝑖𝑗∑𝑛

𝑗=1 𝑥𝑖𝑗 ≾ ℎ𝑖, 𝑖 = 1, . . . ,𝑚∑𝑚
𝑖=1 𝑥𝑖𝑗 ≾ 𝑣𝑗 , 𝑗 = 1, . . . , 𝑛∑
𝑚−𝑖+𝑗=𝑘 𝑥𝑖𝑗 ≾ 𝑑𝑘, 𝑘 = 1, . . . ,𝑚+ 𝑛− 1∑
𝑖+𝑗=𝑘+1 𝑥𝑖𝑗 ≾ 𝑎𝑘, 𝑘 = 1, . . . ,𝑚+ 𝑛− 1

𝑥𝑖𝑗 ∈ {0, 1}

To solve 𝐹𝑃 , we start by fuzzfying the constraints and choosing a membership
function [7]. For all the constraints we suppose that the membership is linear and
has the form (1). The permitted violations for constraints are either randomly
chosen or fixed constants. Once the violations are fixed, we build the auxiliary
parametric program:

𝐹𝑃𝜃

⎧⎨
⎩

𝑚𝑎𝑥
∑𝑚

𝑖=1

∑𝑛
𝑗=1 𝑥𝑖𝑗∑𝑛

𝑗=1 𝑥𝑖𝑗 ≤ ℎ𝑖 + 𝜃𝑑ℎ𝑖, 𝑖 = 1, . . . ,𝑚∑𝑚
𝑖=1 𝑥𝑖𝑗 ≤ 𝑣𝑗 + 𝜃𝑑𝑣𝑗 , 𝑗 = 1, . . . , 𝑛∑
(𝑚−𝑖)+𝑗=𝑘 𝑥𝑖𝑗 ≤ 𝑑𝑘 + 𝜃𝑑𝑑𝑘, 𝑘 = 1, . . . ,𝑚+ 𝑛− 1∑
𝑖+𝑗=𝑘+1 𝑥𝑖𝑗 ≤ 𝑎𝑘 + 𝜃𝑑𝑎𝑘, 𝑘 = 1, . . . ,𝑚+ 𝑛− 1

𝑥𝑖𝑗 ∈ {0, 1}

where 𝑑ℎ𝑖 and 𝑑𝑣𝑗 are the violations on row 𝑖 and column 𝑗 and 𝑑𝑑𝑘 and 𝑑𝑎𝑘 are
the violations on lines 𝑚− 𝑖+ 𝑗 = 𝑘 and 𝑖+ 𝑗 = 𝑘 + 1 respectively.

To find the fuzzy optimal solution to the program 𝐹𝑃 , we apply the approach
of Bailey and Gillett [2] on the program 𝐹𝑃𝜃. Roughly speaking, this approach
first sets 𝜃 = 1 and solves 𝐹𝑃(𝜃=1). Then it determines the minimal value of 𝜃,
say 𝜃∗ such that the optimal solution remains feasible. Thus the optimal solution
for 𝐹𝑃(𝜃=1) will be optimal for the family of problems 𝐹𝑃𝜃 for 𝜃∗ < 𝜃 ≤ 1. Now
it solves the program 𝐹𝑃(𝜃∗−𝜖). The new optimal solution is tested as before, to
determine the value of 𝜃, say 𝜃∗∗, which allows it to stay feasible. This optimal
solution will be optimal in the interval (𝜃∗∗, 𝜃∗]. The procedure is iterated until
𝜃 ≤ 𝜖. Thus this approach gives the optimal solution of 𝐹𝑃𝜃 for every value of 𝜃.
The parameter 𝜖 is called the step size of the method.

We denote by 𝑥𝑙 the optimal solution of 𝐹𝑃𝜃 when 𝜃 belongs to an interval
𝐼𝑙, 𝑙 = 1, . . . , 𝐿 where 𝐿 is the number of interval of 𝜃 needed to solve 𝐹𝑃𝜃 and
determine the membership degree, 𝜆(𝑥𝑙) for 𝑥𝑙 by (2). To get a crisp approximate

solution 𝑥 to 𝐹𝑃 , we introduce a cost matrix 𝑐 =
∑𝑙

𝑙=1 𝑥
𝑙, i.e, the sum of all the

fuzzy optimal solutions. The matrix 𝑥 should be as near as possible to the matrix
𝑐. Hence 𝑥 is an optimal solution of the following deterministic integer program:
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𝐷𝑃

⎧⎨
⎩

𝑚𝑎𝑥
∑𝑚

𝑖=1

∑𝑛
𝑗=1 𝑐𝑖𝑗𝑥𝑖𝑗∑𝑛

𝑗=1 𝑥𝑖𝑗 ≤ ℎ𝑖, 𝑖 = 1, . . . ,𝑚∑𝑚
𝑖=1 𝑥𝑖𝑗 ≤ 𝑣𝑗 , 𝑗 = 1, . . . 𝑛∑
𝑚−𝑖+𝑗=𝑘 𝑥𝑖𝑗 ≤ 𝑑𝑘, 𝑘 = 1, . . . ,𝑚+ 𝑛− 1∑
𝑖+𝑗=𝑘+1 𝑥𝑖𝑗 ≤ 𝑎𝑘, 𝑘 = 1, . . . ,𝑚+ 𝑛− 1

𝑥𝑖𝑗 ∈ {0, 1}
The reconstruction algorithm is as follows:

——————————————————–
Heuristics Fuzzy-Reconstruction
Set 𝜃 = 1; 𝜖 = 0.15;𝑙 = 1 𝑐𝑖𝑗 = 1∀𝑖, 𝑗
While 𝜃 > 0 do
Compute 𝑥𝑙 solution to 𝐹𝑃𝜃.
Compute the smallest value 𝜃∗ for with 𝑥𝑙 remains feasible for 𝐹𝑃𝜃.
Set 𝜃 = 𝜃∗ − 𝜖, 𝑐𝑖𝑗 = 𝑐𝑖𝑗 + 𝑥𝑙𝑖𝑗∀𝑖, 𝑗.
𝑙 = 𝑙 + 1.

End while
Compute 𝑥 solution to 𝐷𝑃 .
———————————————————

5. Computational Results

To simulate the noise in the process of measurement of the projection, we inde-
pendently added a random noise from a normal distribution with average 𝜇 = 0
and variance 𝜎2 = 1 to each perfect projection. All the violations were fixed and
equal to 2.

The experiment was conducted as follows: We first selected a subset of im-
ages, determined the projections of each image and randomly added noise. Then
we applied our heuristics to find the approximate images. Finally, we compared
the results of our heuristics and the results obtained by solving the deterministic
program 𝐵𝐼𝐹 . The images in Table 1 are an example.

The main criterion for evaluating the performance of our heuristics is the ability
to reconstruct binary images and to eliminate noise. Several measures of the dif-
ference between two binary images 𝑀 and 𝑀 ′ of size 𝑚 × 𝑛 have been proposed.
Here we use the relative mean error:

𝑅𝑀𝐸 =
∑𝑚

𝑖=1

∑𝑛
𝑗=1 ∣𝑀𝑖𝑗−𝑀 ′

𝑖𝑗∣∑
𝑚
𝑖=1

∑
𝑛
𝑗=1 𝑀𝑖𝑗

100%.

Since, we have a stochastic heuristic, we repeated each test 10 times and esti-
mated it by the mean of the 10 𝑅𝑀𝐸 values. In general, the choice of the step 𝜖 is
application-dependent. In our heuristic, we set 𝜖 = 0.15. Table 1 shows an example
of reconstruction. For each pair of original and reconstruction images, we give the
optimal objective value of obtained by 𝐹𝑃 .

The quality of reconstruction is not very good because the number of projections
is small. A more accurate reconstruction can be obtained by increasing the number
of projections, but the problem will be harder to solve.
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Size Original image Reconstruction

(40*40)

(40*40)

(128*128)

Table 1. Original Images and their Reconstructions

Size MRE (BIF) MRE (FP) CPU(FP)

40*40 21 20 127
40*40 26 25 134
128*128 6 5 200
256*256 4 3 480
256*256 4 3 625

Table 2. The Error Values Mre Measured on the Reconstructed Images

The results of our computational experiments are summarized in Table 2. The
columns in order show the size of the original image, the MRE obtained for the
program 𝐵𝐼𝐹 , the MRE obtained by the fuzzy approach 𝐹𝑃 and the total CPU
time in seconds for the program 𝐹𝑃 . All results were obtained using a PC with 3.8
Ghz processor and 512 Mbs of RAM.

Without any expert knowledge, the results obtained by both programs 𝐵𝐼𝐹 and
𝐹𝑃 are quite similar. However, the program 𝐹𝑃 gives a smaller MRE in all cases
in Table 2.

6. Conclusion

In this paper, we have introduced a new approach based on the use of fuzzy
integer programming for reconstructing binary images using expert knowledge. The
heuristics can be adapted to solve other cases of noisy projections when only some
directions are noisy.
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