
Iranian Journal of Fuzzy Systems Vol. 8, No. 1, (2011) pp. 145-157 145

VAGUE RINGS AND VAGUE IDEALS

S. SEZER

Abstract. In this paper, various elementary properties of vague rings are
obtained. Furthermore, the concepts of vague subring, vague ideal, vague
prime ideal and vague maximal ideal are introduced, and the validity of some
relevant classical results in these settings are investigated.

1. Introduction

Fuzzy subgroups were introduced in [11] by Rosenfeld as a natural generalization
of the concept of subgroup and have been widely studied. Following this, a new
object related to groups called vague groups was introduced and studied in [2] by
Demirci by forcing the operations of the group to be compatible with a given fuzzy
equality. Although the theory of vague algebraic notions has been established in
[3, 4, 5, 6, 8], the concepts of vague subring and vague ideal have not been studied
yet. So, this work introduces some elementary properties of vague ring, vague
subring, vague ideal, vague prime ideal and vague maximal ideal, and establishes
some new results.
After this introductory Section, Section 2 is devoted to some definitions and

properties related to vague groups and generalized vague subgroups that will be
needed later. In Section 3, the definitions of vague ring and vague subring will be
given and some basic properties of these concepts will be studied. In Section 4, the
definitions of vague ideal, vague prime ideal and vague maximal ideal will be given,
and some basic properties of these concepts will be investigated.

2. Preliminaries

The notions of fuzzy equality, strong fuzzy function, vague group and generalized
vague subgroup and their fundamental properties are introduced in [1, 2, 3, 12, 13,
14]. Our aim in this section is to recall these notions and some of their elementary
properties, which will be needed in this paper.
The symbols “∧” and “∨” will always stand for the minimum and maximum

operations between finitely many real numbers, respectively; and𝑋,𝑌,𝐺will always
stand for crisp and nonempty sets in this paper.
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Definition 2.1. [1] A mapping 𝐸𝑋 : 𝑋 ×𝑋 → [0, 1] is called a fuzzy equality on
𝑋 if the following conditions are satisfied:

(E.1) 𝐸𝑋(𝑥, 𝑦) = 1⇐⇒ 𝑥 = 𝑦 , ∀𝑥, 𝑦 ∈ 𝑋,
(E.2) 𝐸𝑋(𝑥, 𝑦) = 𝐸𝑋(𝑦, 𝑥) , ∀𝑥, 𝑦 ∈ 𝑋 ,
(E.3) 𝐸𝑋(𝑥, 𝑦) ∧ 𝐸𝑋(𝑦, 𝑧) ≤ 𝐸𝑋(𝑥, 𝑧) , ∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

For 𝑥, 𝑦 ∈ 𝑋 , the real number 𝐸𝑋(𝑥, 𝑦) shows the degree of the equality of 𝑥
and 𝑦. One can always define a fuzzy equality on 𝑋 with respect to (abbreviated
to “w.r.t.”) the classical equality of the elements of 𝑋 . Indeed, the mapping 𝐸𝑐

𝑋 :
𝑋 ×𝑋 → [0, 1], defined by

𝐸𝑐
𝑋(𝑥, 𝑦) =

{
1 , 𝑖𝑓 𝑥 = 𝑦
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

is obviously a fuzzy equality on 𝑋 .

Definition 2.2. [3] Let 𝐸𝑋 and 𝐸𝑌 be two fuzzy equalities on 𝑋 and 𝑌 , respec-
tively. Then a fuzzy relation ∘̃ from 𝑋 to 𝑌 (i.e., a fuzzy subset ∘̃ of 𝑋 × 𝑌 ) is
called a strong fuzzy function from 𝑋 to 𝑌 w.r.t. the fuzzy equalities 𝐸𝑋 and 𝐸𝑌 ,
denoted by ∘̃ : 𝑋 ↝ 𝑌 , if the characteristic function 𝜇∘̃ : 𝑋 × 𝑌 → [0, 1] of ∘̃
satisfies the following two conditions:

(F.1) For each 𝑥 ∈ 𝑋, there exists 𝑦 ∈ 𝑌 such that 𝜇∘̃(𝑥, 𝑦) = 1,
(F.2) For each 𝑥1, 𝑥2 ∈ 𝑋, 𝑦1, 𝑦2 ∈ 𝑌 ,

𝜇∘̃(𝑥1, 𝑦1) ∧ 𝜇∘̃(𝑥2, 𝑦2) ∧ 𝐸𝑋(𝑥1, 𝑥2) ≤ 𝐸𝑌 (𝑦1, 𝑦2).

The concepts of vague binary operation on 𝑋 and transitivity of a vague binary
operation are defined as follows.

Definition 2.3. [2, 3]

(i) A strong fuzzy function ∘̃ : 𝑋 × 𝑋 ↝ 𝑋 w.r.t. a fuzzy equality 𝐸𝑋×𝑋

on 𝑋 ×𝑋 and a fuzzy equality 𝐸𝑋 on 𝑋 is called a vague binary opera-
tion on 𝑋 w.r.t. 𝐸𝑋×𝑋 and 𝐸𝑋 . (For all (𝑥1, 𝑥2) ∈ 𝑋 × 𝑋, 𝑥3 ∈ 𝑋,
𝜇∘̃((𝑥1, 𝑥2), 𝑥3) will be denoted by 𝜇∘̃(𝑥1, 𝑥2, 𝑥3) for the sake of simplicity.)

(ii) A vague binary operation ∘̃ on 𝑋 w.r.t. 𝐸𝑋×𝑋 and 𝐸𝑋 is said to be
transitive of the first order if 𝜇∘̃(𝑎, 𝑏, 𝑐) ∧ 𝐸𝑋(𝑐, 𝑑) ≤ 𝜇∘̃(𝑎, 𝑏, 𝑑) for all
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋.

(iii) A vague binary operation ∘̃ on 𝑋 w.r.t. 𝐸𝑋×𝑋 and 𝐸𝑋 is said to be
transitive of the second order if 𝜇∘̃(𝑎, 𝑏, 𝑐) ∧ 𝐸𝑋(𝑏, 𝑑) ≤ 𝜇∘̃(𝑎, 𝑑, 𝑐) for all
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋.

(iv) A vague binary operation ∘̃ on 𝑋 w.r.t. 𝐸𝑋×𝑋 and 𝐸𝑋 is said to be
transitive of the third order if 𝜇∘̃(𝑎, 𝑏, 𝑐) ∧ 𝐸𝑋(𝑎, 𝑑) ≤ 𝜇∘̃(𝑑, 𝑏, 𝑐) for all
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋.

Definition 2.4. [2] Let ∘̃ be a vague binary operation on 𝐺 w.r.t. a fuzzy equality
𝐸𝐺×𝐺 on 𝐺×𝐺 and a fuzzy equality 𝐸𝐺 on 𝐺. Then

(i) 𝐺 together with ∘̃, denoted by < 𝐺, ∘̃, 𝐸𝐺×𝐺, 𝐸𝐺 > or simply < 𝐺, ∘̃ >, is
called a vague semigroup if the characteristic function 𝜇∘̃ : 𝐺×𝐺×𝐺 → [0, 1]
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of ∘̃ fulfills the condition: For all 𝑎, 𝑏, 𝑐, 𝑑,𝑚, 𝑞, 𝑤 ∈ 𝐺,

𝜇∘̃(𝑏, 𝑐, 𝑑) ∧ 𝜇∘̃(𝑎, 𝑑,𝑚) ∧ 𝜇∘̃(𝑎, 𝑏, 𝑞) ∧ 𝜇∘̃(𝑞, 𝑐, 𝑤) ≤ 𝐸𝐺(𝑚,𝑤).

(ii) A vague semigroup < 𝐺, ∘̃ > is called a vague monoid if there exists a two-
sided identity element 𝑒∘̃ ∈ 𝐺, that is an element 𝑒∘̃ satisfying 𝜇∘̃(𝑒∘̃, 𝑎, 𝑎)∧
𝜇∘̃(𝑎, 𝑒∘̃, 𝑎) = 1 for each 𝑎 ∈ 𝐺.

(iii) A vague monoid < 𝐺, ∘̃ > is called a vague group if for each 𝑎 ∈ 𝐺, there ex-
ists a two-sided inverse element 𝑎−1 ∈ 𝐺, that is an element 𝑎−1 satisfying
𝜇∘̃(𝑎−1, 𝑎, 𝑒∘̃) ∧ 𝜇∘̃(𝑎, 𝑎−1, 𝑒∘̃) = 1.

(iv) A vague semigroup < 𝐺, ∘̃ > is said to be commutative (Abelian) if

𝜇∘̃(𝑎, 𝑏,𝑚) ∧ 𝜇∘̃(𝑏, 𝑎, 𝑤) ≤ 𝐸𝐺(𝑚,𝑤)

for each 𝑎, 𝑏,𝑚,𝑤 ∈ 𝐺.

In the rest of this paper, the notation < 𝐺, ∘̃ > always stands for the vague
group < 𝐺, ∘̃ > w.r.t. a fuzzy equality 𝐸𝐺×𝐺 on 𝐺×𝐺 and a fuzzy equality 𝐸𝐺 on
𝐺.

Proposition 2.5. [2] For a given vague group < 𝐺, ∘̃ >, there exists a unique
binary operation in the classical sense, denoted by ∘, on 𝐺 such that < 𝐺, ∘ > is a
group in the classical sense.

The binary operation “∘” in Proposition 2.5 is explicitly given by the equivalence
𝑎 ∘ 𝑏 = 𝑐 ⇐⇒ 𝜇∘̃(𝑎, 𝑏, 𝑐) = 1, ∀𝑎, 𝑏, 𝑐 ∈ 𝐺. (1)

The binary operation “∘”, defined by the equivalence (2), is called the ordinary
description of ∘̃, and is denoted by ∘ = 𝑜𝑟𝑑(∘̃) in [3, 5, 6].
If ∘̃ is a vague binary operation on 𝐺 w.r.t. a fuzzy equality 𝐸𝐺×𝐺 on 𝐺 × 𝐺

and a fuzzy equality 𝐸𝐺 on 𝐺, in the rest of this paper the ordinary description of
∘̃ will be denoted by ∘. In this case, from [3, 5] we have the following property

𝜇∘̃(𝑎, 𝑏, 𝑎 ∘ 𝑏) = 1 and 𝜇∘̃(𝑎, 𝑏, 𝑐) ≤ 𝐸𝐺(𝑎 ∘ 𝑏, 𝑐) , ∀𝑎, 𝑏, 𝑐 ∈ 𝐺. (2)

Theorem 2.6. [2] Let < 𝐺, ∘̃ > be a vague group.

(i) If the vague binary operation ∘̃ is transitive of the second order, then 𝐸𝐺(𝑎, 𝑏)
= 𝐸𝐺(𝑎

−1, 𝑏−1) for all 𝑎, 𝑏 ∈ 𝐺.
(ii) 𝜇∘̃(𝑏−1, 𝑎−1, 𝑢)∧𝜇∘̃(𝑎, 𝑏, 𝑣) ≤ 𝐸𝐺(𝑢, 𝑣

−1)∧𝐸𝐺(𝑣, 𝑢
−1) for all 𝑎, 𝑏, 𝑢, 𝑣 ∈ 𝐺.

For a given fuzzy equality 𝐸𝐺 on 𝐺 and for a crisp subset 𝐴 of 𝐺, the restriction
of the mapping 𝐸𝐺 to 𝐴×𝐴, denoted by 𝐸𝐴, is obviously a fuzzy equality on 𝐴.

Definition 2.7. [13] Let < 𝐺, ∘̃ > be a vague group and 𝐴 be a nonempty, crisp
subset of 𝐺. Let ⊙̃ be a vague binary operation on 𝐴 such that

𝜇⊙̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∘̃(𝑎, 𝑏, 𝑐), ∀𝑎, 𝑏, 𝑐 ∈ 𝐴.

If < 𝐴, ⊙̃ > is itself a vague group w.r.t. the fuzzy equalities 𝐸𝐴×𝐴 on 𝐴×𝐴 and
𝐸𝐴 on 𝐴, then < 𝐴, ⊙̃ > is said to be a generalized vague subgroup of < 𝐺, ∘̃ >,
denoted by < 𝐴, ⊙̃ >

v.s≤ < 𝐺, ∘̃ >.
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For a given vague group < 𝐺, ∘̃ >, because of the uniqueness of the identity and
the inverse of an element of < 𝐺, ∘̃ >, it can be easily seen that if < 𝐴, ⊙̃ >

v.s≤ <
𝐺, ∘̃ >, then the identity of < 𝐴, ⊙̃ > and the inverse of 𝑥 ∈ 𝐴 w.r.t. < 𝐴, ⊙̃ > are
the identity of < 𝐺, ∘̃ > and the inverse of 𝑥 ∈ 𝐴 w.r.t. < 𝐺, ∘̃ >, i.e., 𝑒𝐴 = 𝑒𝐺 and
𝑥−1
𝐴 = 𝑥−1

𝐺 , respectively.

Example 2.8. Let 𝛼 ∈ [0, 1) be a fixed number, and set 𝑥∙ = 1
𝑀𝑎𝑥(𝑥,1) ∧𝑀𝑖𝑛(𝑥, 1)

for any 𝑥 ∈ ℝ+. For 𝑥, 𝑦, 𝑢, 𝑣, 𝑧 ∈ ℝ+, considering the fuzzy equalities

𝐸ℝ+(𝑥, 𝑦) =

{
1 , 𝑖𝑓 𝑥 = 𝑦

𝛼 ∨ ( 1
𝑥∙ ∧ 1

𝑦∙ ) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

on ℝ+ and

𝐸ℝ+×ℝ+((𝑥, 𝑦), (𝑢, 𝑣)) =

{
1 , 𝑖𝑓 (𝑥, 𝑦) = (𝑢, 𝑣)

𝛼 ∨ [(𝑥2)∙ ∧ (𝑦2)∙ ∧ (𝑢2)∙ ∧ (𝑣2)∙] , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
on ℝ+ × ℝ+. And, for 𝑥, 𝑦, 𝑢, 𝑣, 𝑧 ∈ ℚ+, considering the fuzzy equalities 𝐸ℚ+(𝑥, 𝑦) =
𝐸ℝ+(𝑥, 𝑦) on ℚ+ and

𝐸ℚ+×ℚ+((𝑥, 𝑦), (𝑢, 𝑣)) = 𝐸ℝ+×ℝ+((𝑥, 𝑦), (𝑢, 𝑣))

on ℚ+ ×ℚ+. For 𝑛 ∈ ℕ+, we obtain that the fuzzy relations ∘̃ and ⊙̃𝑛 on
ℝ+ × ℝ+ × ℝ+ and ℚ+ ×ℚ+ ×ℚ+, defined by

𝜇∘̃(𝑥, 𝑦, 𝑧) =
{

1 , 𝑖𝑓 𝑧 = 𝑥.𝑦
𝛼.(𝑥∙ ∧ 𝑦∙ ∧ 𝑧∙) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and

𝜇⊙̃𝑛
(𝑥, 𝑦, 𝑧) =

{
1 , 𝑖𝑓 𝑧 = 𝑥.𝑦

𝛼
𝑛 .(𝑥

∙ ∧ 𝑦∙ ∧ 𝑧∙) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

are vague binary operations on ℝ+ and ℚ+, respectively; furthermore, < ℝ+, ∘̃ >
and < ℚ+, ⊙̃𝑛 > are vague groups from [7, 12]. Due to the definitions of 𝜇⊙̃𝑛

(𝑥, 𝑦, 𝑧)

and 𝜇∘̃(𝑥, 𝑦, 𝑧), we have 𝜇⊙̃𝑛
(𝑥, 𝑦, 𝑧) ≤ 𝜇∘̃(𝑥, 𝑦, 𝑧) for each 𝑥, 𝑦, 𝑧 ∈ ℚ+, i.e., <

ℚ+, ⊙̃𝑛 >
v.s≤ < ℝ+, ∘̃ >.

Proposition 2.9. [13] Let < 𝐺, ∘̃ > be a vague group. If < 𝐴, ⊙̃ >
v.s≤ < 𝐺, ∘̃ >

and < 𝐵, ∙̃ > v.s≤ < 𝐴, ⊙̃ >, then < 𝐵, ∙̃ > v.s≤ < 𝐺, ∘̃ >.
Proposition 2.10. [13] Let < 𝐺, ∘̃ > be a vague group, ∅ ∕= 𝐴 ⊆ 𝐺 and let ⊙̃ be a
vague binary operation on 𝐴. Then

< 𝐴, ⊙̃ >
v.s≤ < 𝐺, ∘̃ > ⇔ (𝑖) For each 𝑥 ∈ 𝐴 , 𝑥−1 ∈ 𝐴, 𝑎𝑛𝑑

(𝑖𝑖) 𝜇⊙̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∘̃(𝑎, 𝑏, 𝑐) , ∀𝑎, 𝑏, 𝑐 ∈ 𝐴.

Corollary 2.11. [13] Let < 𝐺, ∘̃ > be a vague group and ∙̃ be a vague binary
operation on 𝐺 such that 𝜇∙̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∘̃(𝑎, 𝑏, 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝐺. Let 𝑒∘̃ be an

identity element of 𝐺. Then, < {𝑒∘̃}, ∘̃ >
v.s≤ < 𝐺, ∘̃ > and < 𝐺, ∙̃ > v.s≤ < 𝐺, ∘̃ >.
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Corollary 2.12. [13] Let < 𝐺, ∘̃ > be a vague group, and let < 𝐴𝑗 , ∙̃𝑗 >
v.s≤ <

𝐺, ∘̃ > for all 𝑗 ∈ 𝐽 . If ★̃ is a vague binary operation on
∩
𝑗∈𝐽

𝐴𝑗 such that

𝜇★̃(𝑥, 𝑦, 𝑧) ≤
⋀
𝑗∈𝐽

𝜇∙̃𝑗 (𝑥, 𝑦, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈
∩
𝑗∈𝐽

𝐴𝑗 ,

then <
∩
𝑗∈𝐽

𝐴𝑗 , ★̃ >
v.s≤ < 𝐴𝑗 , ∙̃𝑗 >.

3. Vague Rings

In a similar fashion to classical algebra, the notion of vague ring can be given in
the following way:

Definition 3.1. Let 𝐸ℋ×ℋ and 𝐸ℋ be fuzzy equalities on ℋ×ℋ and ℋ, respectively.
Let ∘̃, ∙̃ be two vague binary operations on ℋ. Then, the 3-tuple < ℋ, ∘̃, ∙̃ > is called
a vague ring w.r.t. 𝐸ℋ×ℋ and 𝐸ℋ if the following three conditions are satisfied:

(VR.1) < ℋ, ∘̃ > is a commutative vague group,
(VR.2) < ℋ, ∙̃ > is a vague semigroup,
(VR.3) < ℋ, ∘̃, ∙̃ > satisfies distributive laws, i.e., ∀𝑎, 𝑏, 𝑐, 𝑑, 𝑡, 𝑥, 𝑦, 𝑧 ∈ ℋ,

𝜇∙̃(𝑥, 𝑦, 𝑎) ∧ 𝜇∙̃(𝑥, 𝑧, 𝑏) ∧ 𝜇∘̃(𝑎, 𝑏, 𝑐) ∧ 𝜇∘̃(𝑦, 𝑧, 𝑑) ∧ 𝜇∙̃(𝑥, 𝑑, 𝑡) ≤ 𝐸ℋ(𝑡, 𝑐),

𝜇∙̃(𝑥, 𝑧, 𝑎) ∧ 𝜇∙̃(𝑦, 𝑧, 𝑏) ∧ 𝜇∘̃(𝑎, 𝑏, 𝑐) ∧ 𝜇∘̃(𝑥, 𝑦, 𝑑) ∧ 𝜇∙̃(𝑑, 𝑧, 𝑡) ≤ 𝐸ℋ(𝑡, 𝑐).

(VR.4) A vague ring < ℋ, ∘̃, ∙̃ > is said to be a vague ring with identity if there
exists 𝑒∙̃ ∈ ℋ such that 𝜇∙̃(𝑥, 𝑒∙̃, 𝑥) ∧ 𝜇∙̃(𝑒∙̃, 𝑥, 𝑥) = 1 for each 𝑥 ∈ ℋ.

(VR.5) A vague ring < ℋ, ∘̃, ∙̃ > is said to be a commutative (Abelian) if

𝜇∙̃(𝑥, 𝑦, 𝑠) ∧ 𝜇∙̃(𝑦, 𝑥, 𝑡) ≤ 𝐸ℋ(𝑠, 𝑡) , ∀𝑥, 𝑦, 𝑠, 𝑡 ∈ ℋ.
In this work, since the particular integral, commutative cqm-lattice is being

studied ([0, 1],≤,∧), Definition 3.1 corresponds to a special case of Definition 7.12
in [3].
In the rest of this paper, the notation < ℋ, ∘̃, ∙̃ > always stands for the vague

ring < ℋ, ∘̃, ∙̃ > w.r.t. 𝐸ℋ×ℋ and 𝐸ℋ. If < ℋ, ∘̃, ∙̃ > is a vague ring, then we
denote the inverse of 𝑎 by −𝑎 w.r.t. the vague group < ℋ, ∘̃ >; additionally if
< ℋ, ∙̃ > is a vague group, then we denote the inverse of 𝑎 by 𝑎−1 w.r.t. the vague
group < ℋ, ∙̃ >.
Example 3.2. Let < ℋ, ∘, ∙ > be a ring. For 𝑥, 𝑦, 𝑎, 𝑏 ∈ ℋ and 𝛼, 𝛽, 𝛾, 𝜈 ∈ ℝ such
that 0 ≤ 𝜈 ≤ 𝛾 ≤ 𝛽 ≤ 𝛼 < 1, considering the fuzzy equalities

𝐸ℋ(𝑎, 𝑏) :=
{
1 , 𝑎 = 𝑏
𝛼 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

on ℋ and

𝐸ℋ×ℋ((𝑎, 𝑏), (𝑥, 𝑦)) :=
{
1 , (𝑎, 𝑏) = (𝑥, 𝑦)
𝛽 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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on ℋ×ℋ. And, considering the vague binary operations

∘̃ : ℋ×ℋ ↝ ℋ , 𝜇∘̃(𝑎, 𝑏, 𝑐) :=
{
1 , 𝑎 ∘ 𝑏 = 𝑐
𝛾 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and

∙̃ : ℋ×ℋ ↝ ℋ , 𝜇∙̃(𝑎, 𝑏, 𝑐) :=
{
1 , 𝑎 ∙ 𝑏 = 𝑐
𝜈 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

In this case, it is clearly seen that < ℋ, ∘̃, ∙̃ > is a vague ring from the inequality
in (2) and the condition (𝐸.3).

Proposition 3.3. [3] If < ℋ, ∘̃, ∙̃ > is a vague ring, then < ℋ, ∘, ∙ > is a ring.

From classical algebra, we know that if < ℋ, ∘, ∙ > is a ring, and 𝑒∘ and 𝑒∙
are identity elements of < 𝐻, ∘ > and < 𝐻, ∙ >, respectively; then the following
properties are satisfied for all 𝑥, 𝑦 ∈ ℋ:

(1) 𝑥 ∙ 𝑒∘ = 𝑒∘ ∙ 𝑥 = 𝑒∘
(2) (−𝑥) ∙ (−𝑦) = 𝑥 ∙ 𝑦
(3) 𝑥 ∙ (−𝑦) = (−𝑥) ∙ 𝑦 = −(𝑥 ∙ 𝑦)
(4) 𝑥 ∙ (𝑦 − 𝑧) = (𝑥 ∙ 𝑦)− (𝑥 ∙ 𝑧) and (𝑥− 𝑦) ∙ 𝑧 = (𝑥 ∙ 𝑧)− (𝑦 ∙ 𝑧)
(5) (−𝑒∙) ∙ 𝑥 = −𝑥 and (−𝑒∙) ∙ (−𝑒∙) = 𝑒∙ .

The following proposition states that these five properties are satisfied for vague
rings under appropriate conditions:

Proposition 3.4. Let < ℋ, ∘̃, ∙̃ > be a vague ring and 𝑒∘̃ an identity element
of the vague group < ℋ, ∘̃ >. Then, the following statements are satisfied for all
𝑚,𝑛, 𝑡, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧 ∈ ℋ.

(1) 𝜇∙̃(𝑥, 𝑒∘̃,𝑚) ∧ 𝜇∙̃(𝑒∘̃, 𝑥, 𝑛) ≤ 𝐸ℋ(𝑚,𝑛).
(2) 𝜇∙̃(−𝑥,−𝑦,𝑚) ∧ 𝜇∙̃(𝑥, 𝑦, 𝑛) ≤ 𝐸ℋ(𝑚,𝑛).
(3) If the vague binary operation ∘̃ is transitive of the second order, then

𝜇∙̃(𝑥,−𝑦,𝑚) ∧ 𝜇∙̃(𝑥, 𝑦, 𝑛) ≤ 𝐸ℋ(𝑚,−𝑛) and 𝜇∙̃(−𝑥, 𝑦,𝑚) ∧ 𝜇∙̃(𝑥, 𝑦, 𝑛)
≤ 𝐸ℋ(𝑚,−𝑛).

(4) Let the vague binary operation ∘̃ be transitive of the second and third orders.
(i) If the vague binary operation ∙̃ is transitive of the second order, then

𝜇∘̃(𝑦,−𝑧, 𝑢) ∧ 𝜇∙̃(𝑥, 𝑢,𝑚) ∧ 𝜇∙̃(𝑥, 𝑦, 𝑣) ∧ 𝜇∙̃(𝑥, 𝑧, 𝑡) ∧ 𝜇∘̃(𝑣,−𝑡, 𝑛) ≤ 𝐸ℋ(𝑚,𝑛).

(ii) If the vague binary operation ∙̃ is transitive of the third order, then

𝜇∘̃(𝑥,−𝑦, 𝑢) ∧ 𝜇∙̃(𝑢, 𝑧,𝑚) ∧ 𝜇∙̃(𝑥, 𝑧, 𝑣) ∧ 𝜇∙̃(𝑦, 𝑧, 𝑡) ∧ 𝜇∘̃(𝑣,−𝑡, 𝑛) ≤ 𝐸ℋ(𝑚,𝑛).

(5) If < ℋ, ∘̃, ∙̃ > is a vague ring with identity 𝑒∙̃, then 𝜇∙̃(−𝑒∙̃, 𝑥,−𝑥) = 1 =
𝜇∙̃(−𝑒∙̃,−𝑒∙̃, 𝑒∙̃).

Proof. (1): Since < ℋ, ∘̃, ∙̃ > is a vague ring, < ℋ, ∘, ∙ > is a ring from Proposition
3.3. Thus, 𝑒∘̃ ∙ 𝑥 = 𝑥 ∙ 𝑒∘̃ = 𝑒∘̃ for all 𝑥 ∈ ℋ. So, using the inequality in (2) and
the condition (𝐸.3), we can write

𝜇∙̃(𝑥, 𝑒∘̃,𝑚) ∧ 𝜇∙̃(𝑒∘̃, 𝑥, 𝑛) ≤ 𝐸ℋ(𝑥 ∙ 𝑒∘̃,𝑚) ∧ 𝐸ℋ(𝑒∘̃ ∙ 𝑥, 𝑛)
≤ 𝐸ℋ(𝑒∘̃,𝑚) ∧𝐸ℋ(𝑒∘̃, 𝑛)
≤ 𝐸ℋ(𝑚,𝑛) , ∀𝑚,𝑛 ∈ ℋ.



Vague Rings and Vague Ideals 151

(2): By using the inequality in (2) and the condition (𝐸.3), we get the following
inequalities

𝜇∙̃(−𝑥,−𝑦,𝑚) ∧ 𝜇∙̃(𝑥, 𝑦, 𝑛) ≤ 𝐸ℋ((−𝑥) ∙ (−𝑦),𝑚) ∧ 𝐸ℋ(𝑥 ∙ 𝑦, 𝑛)
= 𝐸ℋ(𝑥 ∙ 𝑦,𝑚) ∧𝐸ℋ(𝑥 ∙ 𝑦, 𝑛)
≤ 𝐸ℋ(𝑚,𝑛) , ∀𝑥, 𝑦,𝑚, 𝑛 ∈ ℋ.

(3): We suppose that the vague binary operation ∘̃ is transitive of the second
order. In this case, we have 𝐸ℋ(𝑥 ∙ 𝑦, 𝑛) = 𝐸ℋ(−(𝑥 ∙ 𝑦),−𝑛) from Theorem 2.6, so
we can write the following inequalities from the inequality in (2) and the condition
(𝐸.3),

𝜇∙̃(𝑥,−𝑦,𝑚) ∧ 𝜇∙̃(𝑥, 𝑦, 𝑛) ≤ 𝐸ℋ(𝑥 ∙ (−𝑦),𝑚) ∧ 𝐸ℋ(𝑥 ∙ 𝑦, 𝑛)
= 𝐸ℋ(−(𝑥 ∙ 𝑦),𝑚) ∧ 𝐸ℋ(−(𝑥 ∙ 𝑦),−𝑛)
≤ 𝐸ℋ(𝑚,−𝑛)

and

𝜇∙̃(−𝑥, 𝑦,𝑚) ∧ 𝜇∙̃(𝑥, 𝑦, 𝑛) ≤ 𝐸ℋ((−𝑥) ∙ 𝑦,𝑚) ∧ 𝐸ℋ(𝑥 ∙ 𝑦, 𝑛)
= 𝐸ℋ(−(𝑥 ∙ 𝑦),𝑚) ∧ 𝐸ℋ(−(𝑥 ∙ 𝑦),−𝑛)
≤ 𝐸ℋ(𝑚,−𝑛).

(4): (i) From classical algebra, we know that 𝐸ℋ(𝑥 ∙ (𝑦 ∘ (−𝑧)),𝑚) = 𝐸ℋ((𝑥 ∙
𝑦) ∘ (−(𝑥 ∙ 𝑧)),𝑚) for all 𝑥, 𝑦, 𝑧,𝑚 ∈ ℋ. Since the vague binary operation ∘̃ is
transitive of the second order, by making use of Theorem 2.6, we get 𝐸ℋ(𝑥∙ 𝑧, 𝑡) =
𝐸ℋ(−(𝑥 ∙ 𝑧),−𝑡) for all 𝑥, 𝑧, 𝑡 ∈ ℋ.
If we denote

𝛼 = 𝜇∘̃(𝑦,−𝑧, 𝑢) ∧ 𝜇∙̃(𝑥, 𝑢,𝑚) ∧ 𝜇∙̃(𝑥, 𝑦, 𝑣) ∧ 𝜇∙̃(𝑥, 𝑧, 𝑡) ∧ 𝜇∘̃(𝑣,−𝑡, 𝑛),
then we get the following inequalities by using the vague binary operation ∘̃ is
transitive of the second and third orders, the vague binary operation ∙̃ is transitive
of the second order, the inequality in (2) and the condition (𝐸.3).

𝛼 ≤ 𝐸ℋ(𝑦 ∘ (−𝑧), 𝑢) ∧ 𝜇∙̃(𝑥, 𝑢,𝑚) ∧𝐸ℋ(𝑥 ∙ 𝑦, 𝑣) ∧ 𝐸ℋ(𝑥 ∙ 𝑧, 𝑡) ∧ 𝜇∘̃(𝑣,−𝑡, 𝑛)
≤ 𝜇∙̃(𝑥, 𝑦 ∘ (−𝑧),𝑚) ∧ 𝐸ℋ(𝑥 ∙ 𝑦, 𝑣) ∧ 𝐸ℋ(𝑥 ∙ 𝑧, 𝑡) ∧ 𝜇∘̃(𝑣,−𝑡, 𝑛)
≤ 𝜇∙̃(𝑥, 𝑦 ∘ (−𝑧),𝑚) ∧ 𝐸ℋ(𝑥 ∙ 𝑦, 𝑣) ∧ 𝐸ℋ(−(𝑥 ∙ 𝑧),−𝑡) ∧ 𝜇∘̃(𝑣,−𝑡, 𝑛)
≤ 𝐸ℋ(𝑥 ∙ (𝑦 ∘ (−𝑧)),𝑚) ∧𝐸ℋ(𝑥 ∙ 𝑦, 𝑣) ∧ 𝜇∘̃(𝑣,−(𝑥 ∙ 𝑧), 𝑛)
≤ 𝐸ℋ(𝑥 ∙ (𝑦 ∘ (−𝑧)),𝑚) ∧ 𝜇∘̃(𝑥 ∙ 𝑦,−(𝑥 ∙ 𝑧), 𝑛)
≤ 𝐸ℋ(𝑥 ∙ (𝑦 ∘ (−𝑧)),𝑚) ∧𝐸ℋ((𝑥 ∙ 𝑦) ∘ (−(𝑥 ∙ 𝑧)), 𝑛)
≤ 𝐸ℋ(𝑚,𝑛).

(ii) Since the vague binary operation ∘̃ is transitive of the second order, we have
𝐸ℋ(𝑦∙𝑧, 𝑡) = 𝐸ℋ(−(𝑦∙𝑧),−𝑡) for all 𝑥, 𝑦, 𝑧, 𝑡 ∈ ℋ from Theorem 2.6. Furthermore,
because < ℋ, ∘, ∙ > is a ring, we can write that 𝐸ℋ((𝑥 ∘ (−𝑦)) ∙ 𝑧,𝑚) = 𝐸ℋ((𝑥 ∙
𝑧) ∘ (−(𝑦 ∙ 𝑧)),𝑚) for all 𝑥, 𝑦, 𝑧,𝑚 ∈ ℋ. If we denote

𝛽 = 𝜇∘̃(𝑥,−𝑦, 𝑢) ∧ 𝜇∙̃(𝑢, 𝑧,𝑚) ∧ 𝜇∙̃(𝑥, 𝑧, 𝑣) ∧ 𝜇∙̃(𝑦, 𝑧, 𝑡) ∧ 𝜇∘̃(𝑣,−𝑡, 𝑛),
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then we can write the following inequalities from the hypothesis, the inequality in
(2) and the condition (𝐸.3).

𝛽 ≤ 𝐸ℋ(𝑥 ∘ (−𝑦), 𝑢) ∧ 𝜇∙̃(𝑢, 𝑧,𝑚) ∧ 𝐸ℋ(𝑥 ∙ 𝑧, 𝑣) ∧𝐸ℋ(𝑦 ∙ 𝑧, 𝑡) ∧ 𝜇∘̃(𝑣,−𝑡, 𝑛)
≤ 𝐸ℋ(𝑥 ∘ (−𝑦), 𝑢) ∧ 𝜇∙̃(𝑢, 𝑧,𝑚) ∧ 𝐸ℋ(𝑥 ∙ 𝑧, 𝑣) ∧𝐸ℋ(−(𝑦 ∙ 𝑧),−𝑡) ∧ 𝜇∘̃(𝑣,−𝑡, 𝑛)
≤ 𝜇∙̃((𝑥 ∘ (−𝑦)), 𝑧,𝑚) ∧𝐸ℋ(𝑥 ∙ 𝑧, 𝑣) ∧𝐸ℋ(−(𝑦 ∙ 𝑧),−𝑡) ∧ 𝜇∘̃(𝑣,−𝑡, 𝑛)
≤ 𝐸ℋ((𝑥 ∘ (−𝑦)) ∙ 𝑧,𝑚) ∧𝐸ℋ(𝑥 ∙ 𝑧, 𝑣) ∧ 𝜇∘̃(𝑣,−(𝑦 ∙ 𝑧), 𝑛)
≤ 𝐸ℋ((𝑥 ∘ (−𝑦)) ∙ 𝑧,𝑚) ∧ 𝜇∘̃(𝑥 ∙ 𝑧,−(𝑦 ∙ 𝑧), 𝑛)
≤ 𝐸ℋ((𝑥 ∘ (−𝑦)) ∙ 𝑧,𝑚) ∧𝐸ℋ((𝑥 ∙ 𝑧) ∘ (−(𝑦 ∙ 𝑧)), 𝑛)
≤ 𝐸ℋ(𝑚,𝑛).

(5): It is clear that, if < ℋ, ∘̃, ∙̃ > is a vague ring with identity 𝑒∙̃, then
< ℋ, ∘, ∙ > is a ring with identity 𝑒∙̃. Thus, we get −𝑒∙̃ ∙ 𝑥 = −𝑥 for all 𝑥 ∈ ℋ,
i.e., 𝜇∙̃(−𝑒∙̃, 𝑥,−𝑥) = 1. The result then follows immediately. □

Now, we can define the concept of vague subring which corresponds to the con-
cept of subring in classical algebra as follows:

Definition 3.5. Let < ℋ, ∘̃, ∙̃ > be a vague ring and 𝐴 be a nonempty, crisp subset
of ℋ. Let ⊕̃ and ⊙̃ be two vague binary operations on 𝐴 such that

𝜇⊕̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∘̃(𝑎, 𝑏, 𝑐) , 𝜇⊙̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∙̃(𝑎, 𝑏, 𝑐), ∀𝑎, 𝑏, 𝑐 ∈ 𝐴.

If < 𝐴, ⊕̃, ⊙̃ > is itself a vague ring w.r.t. 𝐸𝐴×𝐴 and 𝐸𝐴, then < 𝐴, ⊕̃, ⊙̃ > is said

to be a vague subring of < ℋ, ∘̃, ∙̃ >, denoted by < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ >.

The following propositions and corollaries state that some results of classical
algebra are also valid for vague algebra.

Proposition 3.6. Let < ℋ, ∘̃, ∙̃ > be a vague ring and 𝐴 ⊆ ℋ. Let ⊕̃ and ⊙̃ be
two vague binary operations on 𝐴. Then the following equivalence is satisfied:

< 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ > ⇔ (𝑖) < 𝐴, ⊕̃ >

v.s≤ < ℋ, ∘̃ >
(𝑖𝑖) 𝜇⊙̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∙̃(𝑎, 𝑏, 𝑐), ∀𝑎, 𝑏, 𝑐 ∈ 𝐴.

Proof. (⇒): Obvious from Definition 3.5.
(⇐): By making use of (𝑖) and (𝑖𝑖), we can write

𝜇⊕̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∘̃(𝑎, 𝑏, 𝑐) and 𝜇⊙̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∙̃(𝑎, 𝑏, 𝑐), ∀𝑎, 𝑏, 𝑐 ∈ 𝐴.

Therefore, it is sufficient to show that < 𝐴, ⊕̃, ⊙̃ > is a vague ring. The conditions
(𝑉 𝑅.1) and (𝑉 𝑅.2) are satisfied for < 𝐴, ⊕̃, ⊙̃ > under the assumptions (𝑖) and
(𝑖𝑖). On the other hand, since < ℋ, ∘̃, ∙̃ > satisfies distributive laws, the condition
(𝑉 𝑅.3) is also obtained for < 𝐴, ⊕̃, ⊙̃ >. Hence, < 𝐴, ⊕̃, ⊙̃ > must be a vague ring,

i.e., < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑟≤< ℋ, ∘̃, ∙̃ >. □

The following corollary explains that the intersection of vague subrings is also a
vague subring.
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Corollary 3.7. Let < ℋ, ∘̃, ∙̃ > be a vague ring and < 𝐴𝑗 , ⊕̃𝑗 , ⊙̃𝑗 >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ >

for all 𝑗 ∈ 𝐽 = {1, 2, ..., 𝑛}. Let 𝐴 =
∩

𝑗∈𝐽 𝐴𝑗, and let ⊕̃ , ⊙̃ be two vague binary
operations on 𝐴 such that

𝜇⊕̃(𝑎, 𝑏, 𝑐) ≤
⋀
𝑗∈𝐽

𝜇⊕̃𝑗
(𝑎, 𝑏, 𝑐) and 𝜇⊙̃(𝑎, 𝑏, 𝑐) ≤

⋀
𝑗∈𝐽

𝜇⊙̃𝑗
(𝑎, 𝑏, 𝑐) ∀𝑎, 𝑏, 𝑐 ∈ 𝐴.

Then, < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ >.

Proof. Because of < 𝐴𝑗 , ⊕̃𝑗 , ⊙̃𝑗 >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ >, we have < 𝐴𝑗 , ⊕̃𝑗 >

v.s≤ < ℋ, ∘̃ >
for all 𝑗 ∈ 𝐽 . Thus, it is clearly seen that, < 𝐴, ⊕̃ >

v.s≤ < ℋ, ∘̃ > from Corollary
2.12 and Proposition 2.9. On the other hand, since 𝜇⊙̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∙̃(𝑎, 𝑏, 𝑐) for all

𝑎, 𝑏, 𝑐 ∈ 𝐴, we obtain < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ > from Proposition 3.6. □

Corollary 3.8. Let < ℋ, ∘̃, ∙̃ > be a vague ring and 𝑒∘̃ be an identity element of
< ℋ, ∘̃ >. Let ⊕̃ and ⊙̃ be two vague binary operations on ℋ such that 𝜇⊕̃(𝑥, 𝑦, 𝑧) ≤
𝜇∘̃(𝑥, 𝑦, 𝑧), 𝜇⊙̃(𝑥, 𝑦, 𝑧) ≤ 𝜇∙̃(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ ℋ. Then the following proper-
ties are satisfied:

(a) < {𝑒∘̃}, ∘̃, ∙̃ >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ > (b) < ℋ, ⊕̃, ⊙̃ >

𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ >

Proof. We know that < {𝑒∘̃}, ∘̃ >
v.s≤ < ℋ, ∘̃ > and < ℋ, ⊕̃ >

v.s≤ < ℋ, ∘̃ > from
Corollary 2.11. Using the inequalities in hypothesis and Proposion 3.6, we have

< {𝑒∘̃}, ∘̃, ∙̃ >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ > and < ℋ, ⊕̃, ⊙̃ >

𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ >. This completes the
proof. □

4. Vague Ideals

In this section we will define the concept of vague ideal, which is one of the
basic concepts of this work, and we will obtain some fundamental properties of this
concept.

Definition 4.1. Let < ℋ, ∘̃, ∙̃ > be a vague ring and < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ >.

If for all 𝑎 ∈ 𝐴 and for all ℎ, 𝑡, 𝑠 ∈ ℋ
𝜇∙̃(𝑎, ℎ, 𝑡) = 1 =⇒ 𝑡 ∈ 𝐴 and 𝜇∙̃(ℎ, 𝑎, 𝑠) = 1 =⇒ 𝑠 ∈ 𝐴,

then < 𝐴, ⊕̃, ⊙̃ > is said to be a vague ideal of < ℋ, ∘̃, ∙̃ >, it is denoted by

< 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >.

It is clear from Definition 4.1 that if 𝐸ℋ = 𝐸𝑐
ℋ, 𝐸ℋ×ℋ = 𝐸𝑐

ℋ×ℋ, 𝜇∘̃(ℋ×ℋ×ℋ) ∈
{0, 1} and < 𝐴, ⊕̃, ⊙̃ >

𝑣.𝑖≤< ℋ, ∘̃, ∙̃ >, then < 𝐴,⊕,⊙ > is an ideal of < ℋ, ∘, ∙ >.
Therefore, in this case, a vague ideal < 𝐴, ⊕̃, ⊙̃ > of < ℋ, ∘̃, ∙̃ > is nothing but an
ideal of the classical ring < ℋ, ∘, ∙ > in the classical sense.

Proposition 4.2. Let < ℋ, ∘̃, ∙̃ > be a vague ring. If < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >,

then < 𝐴,⊕,⊙ > is an ideal of < ℋ, ∘, ∙ >.
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Proof. Assume that < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >. Then, due to Definition 4.1 and

Proposition 3.3, we get < 𝐴,⊕,⊙ > is a (classical) subring of < ℋ, ∘, ∙ >. On the
other hand, since

𝜇∘̃(ℎ, 𝑎, ℎ ∘ 𝑎) = 1 = 𝜇∘̃(𝑎, ℎ, 𝑎 ∘ ℎ), ∀𝑎 ∈ 𝐴 , ∀ℎ ∈ ℋ,
we can write 𝑎 ∘ ℎ, ℎ ∘ 𝑎 ∈ 𝐴 from Definition 4.1. Hence, we obtain < 𝐴,⊕,⊙ > is
an ideal of < ℋ, ∘, ∙ >. This completes the proof. □

Proposition 4.3. Let < ℋ, ∘̃, ∙̃ > be a vague ring. Then

< {𝑒∘̃}, ∘̃, ∙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ > and < ℋ, ⊕̃, ⊙̃ >

𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >,
where ⊕̃ and ⊙̃ are vague binary operations on ℋ such that 𝜇⊕̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∘̃(𝑎, 𝑏, 𝑐)
and 𝜇⊙̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∙̃(𝑎, 𝑏, 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ ℋ.

Proof. From Corollary 3.8, we can write < {𝑒∘̃}, ∘̃, ∙̃ >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ >. Addi-

tionally, for all ℎ, 𝑠, 𝑡 ∈ ℋ we get 𝜇∙̃(𝑒∘̃, ℎ, 𝑠) = 1 = 𝜇∙̃(ℎ, 𝑒∘̃, 𝑡) implies 𝑠 =
𝑒∘̃ ∙ ℎ = 𝑒∘̃ ∈ {𝑒∘̃} and 𝑡 = ℎ ∙ 𝑒∘̃ = 𝑒∘̃ ∈ {𝑒∘̃} from classical algebra, i.e.,

< {𝑒∘̃}, ∘̃, ∙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >.

The same statement for < ℋ, ⊕̃, ⊙̃ > can be obtained in a similar way. □

Proposition 4.4. Let < ℋ, ∘̃, ∙̃ > be a vague ring, 𝐴 ⊆ ℋ, let ⊕̃ and ⊙̃ be two
vague binary operations on 𝐴. Thus, the following equivalence is satisfied:

< 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ > ⇔ (𝑖) < 𝐴, ⊕̃ >

v.s≤ < ℋ, ∘̃ >
(𝑖𝑖) 𝜇⊙̃(𝑎, 𝑏, 𝑐) ≤ 𝜇∙̃(𝑎, 𝑏, 𝑐), ∀𝑎, 𝑏, 𝑐 ∈ 𝐴
(𝑖𝑖𝑖) 𝜇∙̃(𝑎, ℎ, 𝑡) = 1⇒ 𝑡 ∈ 𝐴, ∀𝑎 ∈ 𝐴, ∀ℎ, 𝑡 ∈ ℋ
(𝑖𝑣) 𝜇∙̃(ℎ, 𝑎, 𝑠) = 1⇒ 𝑠 ∈ 𝐴, ∀𝑎 ∈ 𝐴, ∀ℎ, 𝑠 ∈ ℋ.

Proof. (⇒): Obvious from Definition 4.1.

(⇐): We have < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ > from Proposition 3.6 under the

assumptions (𝑖) and (𝑖𝑖). Then, using this fact, and utilizing the conditions (𝑖𝑖𝑖)-

(𝑖𝑣), we can easily observe that < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >. □

The following proposition explains that the intersection of vague ideals is also a
vague ideal.

Proposition 4.5. Let < ℋ, ∘̃, ∙̃ > be a vague ring and < 𝐴𝑗 , ⊕̃𝑗 , ⊙̃𝑗 >
𝑣.𝑖≤ <

ℋ, ∘̃, ∙̃ > for each 𝑗 ∈ 𝐽 = {1, 2, ..., 𝑛}. If ⊕̃ and ⊙̃ are vague binary operations on∩
𝑗∈𝐽 𝐴𝑗 such that 𝜇⊕̃(𝑎, 𝑏, 𝑐) ≤

⋀
𝑗∈𝐽 𝜇∘̃𝑗(𝑎, 𝑏, 𝑐) and 𝜇⊙̃(𝑎, 𝑏, 𝑐) ≤

⋀
𝑗∈𝐽 𝜇∙̃𝑗(𝑎, 𝑏, 𝑐),

then <
∩

𝑗∈𝐽 𝐴𝑗 , ⊕̃, ⊙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ > for all 𝑎, 𝑏, 𝑐 ∈ ∩

𝑗∈𝐽 𝐴𝑗.

Proof. From Corollary 3.7, we have <
∩
𝑗∈𝐽

𝐴𝑗 , ⊕̃, ⊙̃ >
𝑣.𝑟≤ < ℋ, ∘̃, ∙̃ >. For all

𝑎 ∈ ∩
𝑗∈𝐽

𝐴𝑗 and ℎ, 𝑠, 𝑡 ∈ ℋ, we may write
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𝜇∙̃(𝑎, ℎ, 𝑡) = 1 =⇒ 𝑡 ∈ 𝐴𝑗 , 𝑗 ∈ 𝐽 =⇒ 𝑡 ∈
∩
𝑗∈𝐽

𝐴𝑗 ,

and

𝜇∙̃(ℎ, 𝑎, 𝑠) = 1 =⇒ 𝑠 ∈ 𝐴𝑗 , 𝑗 ∈ 𝐽 =⇒ 𝑠 ∈
∩
𝑗∈𝐽

𝐴𝑗 .

Thus, it must be <
∩
𝑗∈𝐽

𝐴𝑗 , ⊕̃, ⊙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >. This completes the proof. □

Definition 4.6. Let < ℋ, ∘̃, ∙̃ > be a vague ring, 𝐴 ⫋ ℋ and < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑖≤ <

ℋ, ∘̃, ∙̃ >. If ∙̃ is a vague binary operation on ℋ∖𝐴, then < 𝐴, ⊕̃, ⊙̃ > is said to be
a vague prime ideal of < ℋ, ∘̃, ∙̃ >.
It is clear that, if < 𝐴, ⊕̃, ⊙̃ > is a vague prime ideal of < ℋ, ∘̃, ∙̃ >, then

< 𝐴,⊕,⊙ > is a prime ideal of < ℋ, ∘, ∙ >.

Proposition 4.7. Let < ℋ, ∘̃, ∙̃ > be a vague ring and < 𝐴, ⊕̃, ⊙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >.

Then the following two statements are equivalent.
(i) < 𝐴, ⊕̃, ⊙̃ > is a vague prime ideal of < ℋ, ∘̃, ∙̃ >.
(ii) 𝜇∙̃(𝑥, 𝑦, 𝑧) < 1 for each 𝑧 ∈ 𝐴 and for each 𝑥, 𝑦 ∈ ℋ ∖𝐴.

Proof. (𝑖) ⇒ (𝑖𝑖) : We assume that there exists 𝑧 ∈ 𝐴 and 𝑥, 𝑦 ∈ ℋ ∖ 𝐴 such that
𝜇∙̃(𝑥, 𝑦, 𝑧) = 1. In this case, from Definition 4.6, there exists 𝑡 ∈ ℋ ∖ 𝐴 such that
𝜇∙̃(𝑥, 𝑦, 𝑡) = 1. Utilizing the condition (𝐹.2), we get 𝑧 = 𝑡 ∈ ℋ ∖𝐴, this contradicts
with 𝑧 ∈ 𝐴. Therefore 𝜇∙̃(𝑥, 𝑦, 𝑧) < 1 for each 𝑧 ∈ 𝐴 and for each 𝑥, 𝑦 ∈ ℋ ∖𝐴.
(𝑖𝑖)⇒ (𝑖) : Since ∙̃ is a vague binary operation on ℋ, for each 𝑎, 𝑏 ∈ ℋ ∖𝐴 there

exists 𝑐 ∈ ℋ such that 𝜇∙̃(𝑎, 𝑏, 𝑐) = 1. In this case, it must be 𝑐 ∈ ℋ ∖ 𝐴 from the
statement (𝑖𝑖). This completes the proof. □

Definition 4.8. Let < ℋ, ∘̃, ∙̃ > be a vague ring, ∅ ∕= 𝑀 ⫋ ℋ and < 𝑀, ⊕̃, ⊙̃ >
𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >. If there is no < 𝑁, ⊖̃, ★̃ > vague ideal of < ℋ, ∘̃, ∙̃ > such that

< 𝑀, ⊕̃, ⊙̃ > ⊂ < 𝑁, ⊖̃, ★̃ > 𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >,
then < 𝑀, ⊕̃, ⊙̃ > is said to be a maximal vague ideal of < ℋ, ∘̃, ∙̃ > (< 𝑀, ⊕̃, ⊙̃ >
⊂ < 𝑁, ⊖̃, ★̃ > shows that at least one of the following statements is satisfied:
𝑀 ⫋ 𝑁 ⫋ ℋ, 𝜇⊕̃(𝑎, 𝑏, 𝑐) < 𝜇⊖(𝑎, 𝑏, 𝑐), 𝜇⊙̃(𝑎, 𝑏, 𝑐) < 𝜇★̃(𝑎, 𝑏, 𝑐) for some 𝑎, 𝑏, 𝑐 ∈𝑀).

Proposition 4.9. Let < ℋ, ∘̃, ∙̃ > be a vague ring. If < 𝑀, ⊕̃, ⊙̃ > is a maximal
vague ideal of < ℋ, ∘̃, ∙̃ >, then < 𝑀,⊕,⊙ > is a maximal ideal of < ℋ, ∘, ∙ >.
Proof. Utilizing Proposition 4.2, we get < 𝑀,⊕,⊙ > is an ideal of < ℋ, ∘, ∙ >. We
assume that < 𝑀,⊕,⊙ > is not a maximal ideal of < ℋ, ∘, ∙ >. In this case, there
exists a maximal ideal 𝑁 of < ℋ, ∘, ∙ > such that 𝑀 ⊂ 𝑁 ⊂ ℋ. This implies

< 𝑀, ⊕̃, ⊙̃ >⊂< 𝑁, ∘̃, ∙̃ > 𝑣.𝑖≤ < ℋ, ∘̃, ∙̃ >,
but this fact contradicts < 𝑀, ⊕̃, ⊙̃ > is a maximal vague ideal of < ℋ, ∘̃, ∙̃ >.
Therefore < 𝑀,⊕,⊙ > must be a maximal ideal of < ℋ, ∘, ∙ >. □
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Proposition 4.10. Let < ℋ, ∘̃, ∙̃ > be a vague ring. Then, maximal vague ideals
of < ℋ, ∘̃, ∙̃ > are < 𝑀, ∘̃, ∙̃ > where 𝑀 is one of the maximal ideals of < ℋ, ∘, ∙ >.
Proof. It is easily seen that, if𝑀 is a maximal ideal of < ℋ, ∘, ∙ >, then < 𝑀, ∘̃, ∙̃ >
is a maximal vague ideal of < ℋ, ∘̃, ∙̃ > from Definition 4.8. On the other hand,
we know that if < 𝑁, ⊖̃, ★̃ > is a maximal vague ideal of < ℋ, ∘̃, ∙̃ >, then 𝑁 is a
maximal ideal of < ℋ, ∘, ∙ > from Proposition 4.9. This completes the proof. □

Example 4.11. Let 𝐺 = ℤ, 𝐴 = 2ℤ , 𝛼, 𝛽, 𝛾 ∈ ℝ such that 0 ≤ 𝛾 ≤ 𝛽 ≤ 𝛼 < 1.
We define

𝐸ℤ : ℤ× ℤ → [0, 1] , 𝐸ℤ(𝑢, 𝑣) =

{
1 , 𝑖𝑓 𝑢 = 𝑣
𝛼 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐸2ℤ : 2ℤ× 2ℤ → [0, 1] , 𝐸2ℤ(𝑚,𝑛) = 𝐸ℤ(𝑚,𝑛), 𝐸ℤ×ℤ = 𝐸𝑐
ℤ×ℤ, 𝐸2ℤ×2ℤ = 𝐸𝑐

2ℤ×2ℤ ,

∘̃ : ℤ× ℤ ↝ ℤ , 𝜇∘̃(𝑥, 𝑦, 𝑧) =
{
1 , 𝑖𝑓 𝑥+ 𝑦 = 𝑧
𝛽 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and

⊕̃ : 2ℤ× 2ℤ ↝ 2ℤ , 𝜇⊕̃(𝑎, 𝑏, 𝑐) =
{
1 , 𝑖𝑓 𝑎+ 𝑏 = 𝑐
𝛾 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

We get < 2ℤ, ⊕̃ >
v.s≤ < ℤ, ∘̃ > from [13]. Let 𝜈, 𝜂 ∈ ℝ such that 0 ≤ 𝜈 ≤ 𝜂 < 1,

and we define

∙̃ : ℤ× ℤ ↝ ℤ , 𝜇∙̃(𝑥, 𝑦, 𝑧) =
{
1 , 𝑖𝑓 𝑥.𝑦 = 𝑧
𝜂 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and

⊙̃ : 2ℤ× 2ℤ ↝ 2ℤ , 𝜇⊙̃(𝑎, 𝑏, 𝑐) =
{
1 , 𝑖𝑓 𝑎.𝑏 = 𝑐
𝜈 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

In this case, it is clearly seen that < ℤ, ∘̃, ∙̃ > is a vague ring and ⊙̃ is a vague
binary operation on 2ℤ. Therefore, by using Proposition 4.4, we get < 2ℤ, ⊕̃, ⊙̃ >
𝑣.𝑖≤ < ℤ, ∘̃, ∙̃ >. On the other hand, since 𝜇⊙̃(𝑎, 𝑏, 𝑐) = 𝜈 < 1 for each 𝑎, 𝑏 ∈ ℤ ∖ 2ℤ
and for each 𝑐 ∈ 2ℤ, < 2ℤ, ⊕̃, ⊙̃ > is a vague prime ideal of < ℤ, ∘̃, ∙̃ > from
Proposition 4.7. For 𝜈 < 𝜂, we get < 2ℤ, ⊕̃, ⊙̃ > is not a vague maximal ideal of
< ℤ, ∘̃, ∙̃ > since

< 2ℤ, ⊕̃, ⊙̃ >⊂< 2ℤ, ∘̃, ∙̃ > 𝑣.𝑖≤ < ℤ, ∘̃, ∙̃ > .

For 𝜈 = 𝜂, we obtain < 2ℤ, ⊕̃, ⊙̃ > is a vague maximal ideal of < ℤ, ∘̃, ∙̃ > from
Proposition 4.10.

5. Conclusion

In the present paper, the concepts of vague ring, vague ideal, vague prime ideal
and vague maximal ideal are introduced, and various elementary properties of these
concepts are investigated. Furthermore, these concepts and their properties are
explained with some examples.
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Although the results in this paper are formulated on ([0, 1],≤,∧), it seems that
most of them can be restated for any t-norm instead of the minimum t-norm. This
topic is left to the readers for future investigations.
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