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SOME RESULTS ON INTUITIONISTIC FUZZY SPACES

S. B. HOSSEINI, D. O‘REGAN AND R. SAADATI

Abstract. In this paper we define intuitionistic fuzzy metric and normed
spaces. We first consider finite dimensional intuitionistic fuzzy normed spaces

and prove several theorems about completeness, compactness and weak con-

vergence in these spaces. In section 3 we define the intuitionistic fuzzy quotient
norm and study completeness and review some fundamental theorems. Finally,

we consider some properties of approximation theory in intuitionistic fuzzy

metric spaces.

1. Introduction and Preliminaries

The theory of fuzzy sets was introduced by L. Zadeh in 1965 [22]. After the
pioneering work of Zadeh, much interest has focused on obtaining fuzzy analogues
of classical theories. We mention in particular the field of fuzzy topology [1, 10, 11,
13, 16, 20]. The concept of fuzzy topology has important applications in quantum
particle physics, in particular in connection with both string and ε(∞) theory; see
El Naschie [7, 8, 9, 21]. One of the most important problems in fuzzy topology
is to obtain an appropriate concept of an intuitionistic fuzzy metric space and an
intuitionistic fuzzy normed space. These problems have been investigated by Park
[17] and Saadati and Park [19] respectively; they introduced and studied a notion
of an intuitionistic fuzzy metric (normed) space. In this section, using the idea
of fuzzy metric (normed) spaces introduced by George and Veeramani [10, 11] and
Amini and Saadati [1], we present the notion of intuitionistic fuzzy metric (normed)
spaces with the help of the notion of continuous t–representable norms.

Lemma 1.1. [6] Consider the set L∗ and operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},
(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≥ y2, for every (x1, x2), (y1, y2) ∈ L∗.
Then (L∗,≤L∗) is a complete lattice .

Definition 1.2. [2] An intuitionistic fuzzy set Aζ,η in a universe U is an ob-
ject Aζ,η = {(ζA(u), ηA(u))|u ∈ U}, where, for all u ∈ U , ζA(u) ∈ [0, 1] and
ηA(u) ∈ [0, 1] are called the membership degree and the non-membership degree,
respectively, of u in Aζ,η; we always have ζA(u) + ηA(u) ≤ 1.

Definition 1.3. For every zα = (xα, yα) ∈ L∗ we define∨
(zα) = (sup(xα), inf(yα)).
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Since zα ∈ L∗ hence xα + yα ≤ 1 so sup(xα) + inf(yα) ≤ sup(xα + yα) ≤ 1, i.e.∨
(zα) ∈ L∗. We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0).
Classically a triangular norm ∗ = T on [0, 1] is defined as an increasing, com-

mutative, associative mapping T : [0, 1]2 −→ [0, 1] satisfying T (1, x) = 1 ∗ x = x,
for all x ∈ [0, 1]. A triangular conorm S = � is defined as an increasing, commu-
tative, associative mapping S : [0, 1]2 −→ [0, 1] satisfying S(0, x) = 0 � x = x, for
all x ∈ [0, 1]. Using the lattice (L∗,≤L∗) these definitions can be straightforwardly
extended.

Definition 1.4. [4, 5] A triangular norm (t–norm) on L∗ is a mapping T :
(L∗)2 −→ L∗ satisfying the following conditions:

(∀x ∈ L∗)(T (x, 1L∗) = x), (boundary condition)
(∀(x, y) ∈ (L∗)2)(T (x, y) = T (y, x)), (commutativity)
(∀(x, y, z) ∈ (L∗)3)(T (x, T (y, z)) = T (T (x, y), z)), (associativity)
(∀(x, x′, y, y′) ∈ (L∗)4)(x ≤L∗ x′ and y ≤L∗ y′ =⇒ T (x, y) ≤L∗ T (x′, y′)).

(monotonicity)

Definition 1.5. [3] A continuous t–norm T on L∗ is called continuous t–representable
if and only if there exist a continuous t–norm ∗ and a continuous t–conorm � on
[0, 1] such that, for all x = (x1, x2), y = (y1, y2) ∈ L∗,

T (x, y) = (x1 ∗ y1, x2 � y2).

Now define a sequence T n recursively by T 1 = T and

T n(x(1), · · · , x(n+1)) = T (T n−1(x(1), · · · , x(n)), x(n+1))

for n ≥ 2 and x(i) ∈ L∗.
We say the continuous t–representable norm is natural and write Tn whenever

Tn(a, b) = Tn(c, d) and a ≤L∗ c implies b ≥L∗ d.

Definition 1.6. [4, 5] A negator on L∗ is any decreasing mapping N : L∗ −→ L∗

satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If N (N (x)) = x, for all x ∈ L∗,
then N is called an involutive negator. A negator on [0, 1] is a decreasing mapping
N : [0, 1] −→ [0, 1] satisfying N(0) = 1 and N(1) = 0. Ns denotes the standard
negator on [0, 1] defined as Ns(x) = 1− x for all x ∈ [0, 1] .

Definition 1.7. Let M,N be fuzzy sets from X2 × (0,+∞) to [0, 1] such that
M(x, y, t) + N(x, y, t) ≤ 1 for all x, y ∈ X and t > 0. The triple (X,MM,N , T ) is
said to be an intuitionistic fuzzy metric space if X is an arbitrary (non-empty) set, T
is a continuous t–representable norm and MM,N is a mapping X2× (0,+∞) → L∗

(an intuitionistic fuzzy set, see Definition 1.2) satisfying the following conditions
for every x, y ∈ X and t, s > 0:

(a) MM,N (x, y, t) >L∗ 0L∗ ;
(b) MM,N (x, y, t) = 1L∗ if and only if x = y;
(c) MM,N (x, y, t) = MM,N (y, x, t);
(d) MM,N (x, y, t + s) ≥L∗ T (MM,N (x, z, t),MM,N (z, y, s));
(e) MM,N (x, y, ·) : (0,∞) −→ L∗ is continuous.
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In this case MM,N is called an intuitionistic fuzzy metric. Here,

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)).

Example 1.8. Let (X, d) be a metric space. Define T (a, b) = (a1b1,min(a2+b2, 1))
for all a = (a1, a2) and b = (b1, b2) ∈ L∗ and let M and N be fuzzy sets on
X2 × (0,∞) defined as follows:

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)) = (
htn

htn + md(x, y)
,

md(x, y)
htn + md(x, y)

),

for all t, h,m, n ∈ R+. Then (X,MM,N , T ) is an intuitionistic fuzzy metric space.

Example 1.9. Let X = N. Define T (a, b) = (max(0, a1+b1−1), a2+b2−a2b2) for
all a = (a1, a2) and b = (b1, b2) ∈ L∗ and let M and N be fuzzy sets on X2× (0,∞)
defined as follows:

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)) =

{
(x

y , y−x
y ) if x ≤ y

( y
x , x−y

x ) if y ≤ x.

for all x, y ∈ X and t > 0. Then (X,MM,N , T ) is an intuitionistic fuzzy metric
space.

Definition 1.10. Let µ, ν be fuzzy sets from V × (0,+∞) to [0, 1] such that
µ(x, t) + ν(x, t) ≤ 1 for all x ∈ V and t > 0. The 3-tuple (V,Pµ,ν , T ) is said
to be an intuitionistic fuzzy normed space if V is a vector space, T is a continuous
t–representable norm and Pµ,ν is a mapping V × (0,+∞) → L∗ (an intuitionistic
fuzzy set, see Definition 1.2) satisfying the following conditions for every x, y ∈ V
and t, s > 0:

(a) Pµ,ν(x, t) >L∗ 0L∗ ;
(b) Pµ,ν(x, t) = 1L∗ if and only if x = 0;
(c) Pµ,ν(αx, t) = Pµ,ν(x, t

|α| ) for each α 6= 0;
(d) Pµ,ν(x + y, t + s) ≥L∗ T (Pµ,ν(x, t),Pµ,ν(y, s));
(e) Pµ,ν(x, ·) : (0,∞) −→ L∗ is continuous;
(f) limt−→∞ Pµ,ν(x, t) = 1L∗ and limt−→0 Pµ,ν(x, t) = 0L∗ .

Then Pµ,ν is called an intuitionistic fuzzy norm. Here,

Pµ,ν(x, t) = (µ(x, t), ν(x, t)).

Example 1.11. Let (V, ‖ · ‖) be a normed space and let T (a, b) = (a1b1,min(a2 +
b2, 1)) for all a = (a1, a2) and b = (b1, b2) ∈ L∗. Now let µ, ν be fuzzy sets in
V × (0,∞) and define

Pµ,ν(x, t) = (µ(x, t), ν(x, t)) = (
t

t + ‖x‖
,
‖x‖

t + ‖x‖
),

for all t ∈ R+. Then (V,Pµ,ν , T ) is an intuitionistic fuzzy normed space.

Definition 1.12. A sequence {xn} in an intuitionistic fuzzy normed space (V,Pµ,ν , T )
is called a Cauchy sequence if for each ε > 0 and t > 0, there exists n0 ∈ N such
that
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Pµ,ν(xn − xm, t) >L∗ (Ns(ε), ε),

for each n, m ≥ n0; here Ns is the standard negator. The sequence {xn} is said to

be convergent to x ∈ V . (xn
Pµ,ν−→ x) if Pµ,ν(xn − x, t) −→ 1L∗ whenever n −→ ∞

for every t > 0. An intuitionistic fuzzy normed space is said to be complete if and
only if every Cauchy sequence is convergent.

Lemma 1.13. [19] Let (V,Pµ,ν , T ) be an intuitionistic fuzzy normed space. We
define

MM,N (x, y, t) = Pµ,ν(x− y, t)

where. Then M(x, y, t) = µ(x− y, t) and N(x, y, t) = ν(x− y, t), then MM,N is an
intuitionistic fuzzy metric on V , which is induced by the intuitionistic fuzzy norm
Pµ,ν .

Lemma 1.14. [19] Let Pµ,ν be an intuitionistic fuzzy norm. Then, for any t > 0,
the following hold:

(1) Pµ,ν(x, t) is nondecreasing with respect to t, in (L∗,≤L∗).
(2) Pµ,ν(x− y, t) = Pµ,ν(y − x, t) .

Definition 1.15. Let (V,Pµ,ν , T ) be an intuitionistic fuzzy normed space. For
t > 0, define the open ball B(x, r, t) with center x ∈ V and radius 0 < r < 1, as

B(x, r, t) = {y ∈ V : Pµ,ν(x− y, t) >L∗ (Ns(r), r)}.

A subset A ⊆ V is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1
such that B(x, r, t) ⊆ A. Let τPµ,ν denote the family of all open subsets of V . τPµ,ν

is called the topology induced by the intuitionistic fuzzy norm.

Note that this topology is the same as the topology induced by the intuitionistic
fuzzy metric which is Hausdorff (see, Remark 3.3 and Theorem 3.5 of [17]).

Definition 1.16. Let (X,MM,N , T ) be an intuitionistic fuzzy metric space. A
subset A of X is said to be IF-bounded if there exist t > 0 and 0 < r < 1 such
that MM,N (x, y, t) >L∗ (Ns(r), r) for each x, y ∈ A. Also, let (V,Pµ,ν , T ) be an
intuitionistic fuzzy normed space. A subset A of V is said to be IF-bounded if there
exist t > 0 and 0 < r < 1 such that Pµ,ν(x, t) >L∗ (Ns(r), r) for each x ∈ A.

Theorem 1.17. In an intuitionistic fuzzy normed (metric) space every compact
set is closed and IF-bounded.

Proof. By Lemma 1.13, the proof is the same as in the intuitionistic fuzzy metric
space case (see, Remark 3.10 of [17]). �

Lemma 1.18. [19] A subset A of R is IF-bounded in (R,Pµ0,ν0 , T ) if and only if
it is bounded in R.
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Lemma 1.19. [19] A sequence {βn} is convergent in the intuitionistic fuzzy normed
space (R,Pµ0,ν0 , T ) if and only if it is convergent in (R, | · |).

Corollary 1.20. If the real sequence {βn} is IF-bounded, then it has at least one
limit point.

Definition 1.21. Let (V,Pµ,ν , T ) be an intuitionistic fuzzy normed space. Let
V be a vector space, f be a real functional on V and let (R,Pµ0,ν0 , T ) be an
intuitionistic fuzzy normed space. We define

Ṽ = {f : Pµ0,ν0(f(x), t) ≥L∗ (µ(cx, t), ν(dx, t)) , c, d 6= 0}

for every t > 0.

Lemma 1.22. [19] If (V,Pµ,ν , T ) is an intuitionistic fuzzy normed space, then

(a) The function (x, y) −→ x + y is continuous;
(b) The function (α, x) −→ αx is continuous.

By the above lemma an intuitionistic fuzzy normed space is a Hausdorff TVS.

2. Intuitionistic Fuzzy Finite Dimensional Normed Spaces

Theorem 2.1. [19] Let {x1, · · · , xn} be a linearly independent set of vectors in
vector space V and (V,Pµ,ν , T ) be an intuitionistic fuzzy normed space. Then there
are numbers c, d 6= 0 and an intuitionistic fuzzy norm space (R,Pµ0,ν0 , T ) such
that for every choice of real scalars α1, · · · , αn we have

(2.1) Pµ,ν(α1x1 + · · ·+ αnxn, t) ≤L∗ (µ0(c
n∑

j=1

|αj |, t), ν0(d
n∑

j=1

|αj |, t)).

Theorem 2.2. Every finite dimensional subspace W of an intuitionistic fuzzy
normed space (V,Pµ,ν , T ) is complete. In particular, every finite dimensional intu-
itionistic fuzzy normed space is complete.

Proof. Let {ym} be a Cauchy sequence in W such that y is its limit. We show that
y ∈ W . Suppose dim W = n and let {x1, ...xn} be any linearly independent subset
for Y . Then each ym has a unique representation of the form

ym = α
(m)
1 x1 + ... + α(m)

n xn.

Since {ym} is Cauchy sequence, for every ε > 0 there is a positive integer n0 such
that,

(Ns(ε), ε) <L∗ Pµ,ν(ym − yk, t),

whenever m, k > n0 and for every t > 0. From this and the last theorem we have,
for some c, d 6= 0 and Pµ0,ν0
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(Ns(ε), ε) <L∗ Pµ,ν(ym − yk, t) = Pµ,ν(

n∑
j=1

(α
(m)
j − α

(k)
j )xj , t)

≤L∗ (µ0(

n∑
j=1

|α(m)
j − α

(k)
j |c, t), ν0(

n∑
j=1

|α(m)
j − α

(k)
j |d, t))

≤L∗ (µ0(1,
t/|c|∑n

j=1 |α
(m)
j − α

(k)
j |

), ν0(1,
t/|d|∑n

j=1 |α
(m)
j − α

(k)
j |

))

≤L∗ (µ0(1,
t/|c|

|α(m)
j − α

(k)
j |

), ν0(1,
t/|d|

|α(m)
j − α

(k)
j |

))

= (µ0(α
(m)
j − α

(k)
j , t/|c|), ν0(α

(m)
j − α

(k)
j , t/|d|)).

This shows that each of the n sequences {α(m)
j } where j = 1, 2, 3, ..., n is Cauchy in

R. Hence it converges and let αj denote the limit. Using these n limits α1, ..., αn,
we define,

y = α1x1 + ... + αnxn.

Clearly, y ∈ W . Furthermore

Pµ,ν(ym − y, t) = Pµ,ν(
n∑

j=1

(α
(m)
j − αj)xj , t)

≥L∗ T n−1[Pµ,ν(α
(m)
1 − α1)x1, t/n), · · · ,Pµ,ν(α

(m)
n − αn)xn, t/n)]

−→ 1L∗

whenever m −→∞ and every t > 0. This shows that an arbitrary sequence {ym}
is convergent in W . Hence W is complete. �

Corollary 2.3. Every finite dimensional subspace W of an intuitionistic fuzzy
normed space (V,Pµ,ν , T ) is closed in V .

Theorem 2.4. In a finite dimensional intuitionistic fuzzy normed space (V,Pµ,ν , T ),
any subset K ⊂ V is compact if and only if K is closed and IF-bounded.

Proof. By Theorem 1.17, compactness implies closedness and IF-boundedness. We
must prove the converse. Let K be closed and IF-bounded. Let dim V = n and
{x1, ..., xn} be a linearly independent set of V . We consider any sequence {xm} in
K. Each xm has a representation,

xm = α
(m)
1 x1 + ... + α(m)

n xn.

Since K is IF-bounded, so is {xm}, and therefore there are t > 0 and 0 < r < 1
such that Pµ,ν(xm, t) >L∗ (Ns(r), r) for all m ∈ N. On the other hand by Theorem
2.1 there are c, d 6= 0 and an intuitionistic fuzzy norm Pµ0,ν0 such that
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(Ns(r), r) <L∗ Pµ,ν(xm, t)

= Pµ,ν(

n∑
j=1

α
(m)
j xj , t)

≤L∗ (µ0(c

n∑
j=1

|α(m)
j |, t), ν0(d

n∑
j=1

|α(m)
j |, t))

≤L∗ (µ0(1,
t

|c|
∑n

j=1 |α
(m)
j |

), ν0(1,
t

|d|
∑n

j=1 |α
(m)
j |

))

≤L∗ (µ0(1,
t

|c||α(m)
j |

), ν0(1,
t

|d||α(m)
j |

))

= (µ0(α
(m)
j , t/|c|), ν0(α

(m)
j , t/|d|)).

Hence the sequence of {α(m)
j }, (j fixed), is IF-bounded and by Theorem 1.20 it has a

limit point αj , (1 ≤ j ≤ n). Let {zm} be the subsequence of {xm} which converges
to z =

∑n
j=1 αjxj . Since K is closed, z ∈ K. This shows that an arbitrary sequence

{xm} in K has a subsequence which converges in K. Hence K is compact. �

Definition 2.5. A sequence {xm} in an intuitionistic fuzzy normed space (V,Pµ,ν , T )
is said to be weakly convergent if there is an x ∈ V such that for every Ṽ and every
f ∈ Ṽ and t > 0,

Pµ0,ν0(f(xm)− f(x), t) −→ 1L∗ .

We write:
xm

W−→ x.

Theorem 2.6. Let (V,Pµ,ν , T ) be an intuitionistic fuzzy normed space and {xm}
be a sequence in V . Then:

(i) Convergence implies weak convergence with the same limit.
(ii) If dim V < ∞, then weak convergence implies convergence.

Proof. (i) Let xm −→ x then for every t > 0 we have

Pµ,ν(xm − x, t) −→ 1L∗ .

By Definition 1.21 for every f ∈ Ṽ we have,

Pµ0,ν0(f(xm)− f(x), t) = Pµ0,ν0(f(xm − x), t)
≥L∗ (µ(xm − x, t/c), ν(xm − x, t/d))

for c, d 6= 0. Then xm
W−→ x.

(ii) Let xm
W−→ x and dim V = n. Let {x1, ..., xn} be a linearly independent set

of V . Then
xm = α

(m)
1 x1 + ... + α(m)

n xn.

and,
x = α1x1 + ... + αnxn.
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By assumption, for every f ∈ Ṽ and t > 0 we have

Pµ0,ν0(f(xm)− f(x), t) −→ 1L∗ .

We take in particular f1, ..., fn, defined by fjxj = 1 and fjxi = 0, (i 6= j). Therefore
fj(xm) = α

(m)
j and fj(x) = αj . Hence, fj(xm) −→ fj(x) implies α

(m)
j −→ αj .

From this we obtain, for each t > 0

Pµ,ν(xm − x, t) = Pµ,ν(

n∑
j=1

(α
(m)
j − αj)xj , t)

≥L∗ T n−1[Pµ,ν((α
(m)
1 − α1)x1, t/n), ...,Pµ,ν((α(m)

n − αn)xn, t/n)]

= T n−1[Pµ,ν(x1,
t

n|α(m)
1 − α1|

), ...,Pµ,ν(xn,
t

n|α(m)
n − αn|

)]

−→ 1L∗

as m −→∞. This shows that {xm} converges to x. �

3. Some Fundamental Theorems in Intuitionistic Fuzzy Functional
Analysis

Definition 3.1. Let (V,Pµ,ν , T ) be an intuitionistic fuzzy normed space and W
be a linear manifold in V . Let Q : V −→ V/W be the natural map, Qx = x + W .
We define:

Pµ̄,ν̄(x + W, t) =
∨
{Pµ,ν(x + y, t) : y ∈ W}, t > 0.

Theorem 3.2. If W is a closed subspace of the intuitionistic fuzzy normed space
(V,Pµ,ν , T ) and the intuitionistic fuzzy norm Pµ̄,ν̄ is defined as above, then:

(a) Pµ̄,ν̄ is a fuzzy norm on V/W ;
(b) Pµ̄,ν̄(Qx, t) ≥L∗ Pµ,ν(x, t) ;
(c) If (V,Pµ,ν , T ) is a complete intuitionistic fuzzy normed space (intuitionistic

fuzzy Banach space) and for every a, b in [0, 1], a ∗ b ≥ a · b and a � b ≤ max(a, b),
then so is (V/W,Pµ̄,ν̄ , T ).

Proof. By Definition 1.3, Pµ̄,ν̄ ∈ L∗ and the proof follows as in [12, 18]. �

Theorem 3.3. [12, 18] Let W be a closed subspace of an intuitionistic fuzzy normed
space (V,Pµ,ν , T ). If two of the spaces V , W , V/W are complete so is the third
one.

Theorem 3.4. (Open mapping theorem) [12, 18] If T is a continuous linear oper-
ator from the intuitionistic fuzzy Banach space (V,Pµ,ν , T ) onto the intuitionistic
fuzzy Banach space (V ′,P ′µ′,ν′ , T ) and for every a, b in [0, 1], a ∗ b ≥ a · b and
a � b ≤ max(a, b), then T is an open mapping.

Theorem 3.5. (Closed graph theorem) [12, 18] Let T be a linear operator from the
intuitionistic fuzzy Banach space (V,Pµ,ν , T ) into the intuitionistic fuzzy Banach
space (V ′,P ′µ′,ν′ , T ). Suppose for every sequence {xn} in V such that xn −→ x
and Txn −→ y for some elements x ∈ V and y ∈ V ′ it follows Tx = y. Then T is
continuous.
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Theorem 3.6. An intuitionistic fuzzy normed space (V,Pµ,ν , T ) where T (a, b) =
(min(a1, b1),max(a2, b2)), is locally convex; here a = (a1, a2) and b = (b1, b2).

Proof. It suffices to consider the family of neighborhoods of the origin, B(0, r, t),
with t > 0 and 0 < r < 1. Let t > 0, 0 < r < 1, x, y ∈ B(0, r, t) and α ∈ [0, 1].
Then

Pµ,ν(αx + (1− α)y, t) ≥L∗ T (Pµ,ν(αx, αt),Pµ,ν((1− α)y, (1− α)t))
= T (Pµ,ν(x, t),Pµ,ν(y, t))
= (min(µ(x, t), µ(y, t)),max(ν(x, t), ν(y, t)))

>L∗ (Ns(r), r).

Thus αx + (1− α)y belongs to B(0, r, t) for every α ∈ [0, 1]. �

4. Approximation Theory in Intuitionistic Fuzzy Metric Spaces

Definition 4.1. Let (X,MM,N , T ) be an intuitionistic fuzzy metric space and
A,B ⊂ X. We define

MM,N (A,B, t) =
∨
{MM,N (a, b, t) : a ∈ A and b ∈ B}.

For a ∈ X, we write MM,N (a,B, t) instead of MM,N ({a}, B, t).

Definition 4.2. A sequence converges sub-sequentially if it has a convergent sub-
sequence. In the above notation xn � xn′ → x0 identifies the subsequence and the
point to which it converges. Recall that a subset C of an intuitionistic fuzzy metric
space is compact if every sequence in C converges sub-sequentially to an element
of C. Also, given two sequences xn and yn, and a subsequence xn′ of the first se-
quence, the corresponding subsequence of the second is denoted yn′ . A subset of
an intuitionistic fuzzy metric space is IF-boundedly compact if every IF-bounded
sequence in the subset is sub-sequentially convergent. In the above notation, Y is
IF-boundedly compact if for any IF-bounded sequence yn in Y , there is a point x0

(not necessarily in Y ) for which yn � yn′ → x0.

Definition 4.3. For an intuitionistic fuzzy metric space X and nonempty subsets
B and C, a sequence bn ∈ B is said to converge in distance to C if

lim
n→∞

MM,N (bn, C, t) = MM,N (B,C, t).

The subset B is approximately compact relative to C if every sequence bn ∈ B which
converges in distance to C is sub-sequentially convergent to an element of B. We
call B (a subset of X) approximately compact provided that B is approximately
compact relative to each of the singletons of X; B is proximinal if for every x ∈ X
some element b in B satisfies the equation MM,N (x, b, t) = MM,N (x, B, t).

The following theorem says that points can be replaced by compact subsets in
the definition of approximate compactness.

Theorem 4.4. Let B and C be nonempty subsets of an intuitionistic fuzzy metric
space (X,MM,N , T ). If B is approximately compact and C is compact, then B is
approximately compact relative to C.
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Proof. Let bn ∈ B be any sequence converging in distance to C and let the sequence
cn ∈ C satisfy

lim
n→∞

MM,N (bn, cn, t) = MM,N (B,C, t).(4.1)

Since C is compact, cn � cn′ → c0 ∈ C. Hence, for every ε > 0 there exists n0

such that for n′ > n0

MM,N (B,C, t) ≥L∗ MM,N (bn′ , c0, t)
≥L∗ T (MM,N (bn′ , cn′ , t− ε),MM,N (cn′ , c0, ε))
≥L∗ T (MM,N (B,C, t− ε), (Ns(ε), ε)).

Since ε > 0 was arbitrary, then limn→∞MM,N (bn′ , c0, t) = MM,N (B,C, t). There-
fore, bn′ converges in distance to c0 so, since B is approximately compact, bn �
bn′ → b0 ∈ B, that is, bn converges sub-sequentially to an element of B. �

Theorem 4.5. Let B and C be nonempty subsets of an intuitionistic fuzzy metric
space (X,MM,N , T ). If B is approximately compact and IF-bounded, and C is
IF-boundedly compact, then B is approximately compact relative to C.

Proof. Let bn ∈ B be any sequence converges in distance to C and let cn ∈ C
satisfy (2.1). As bn is IF-bounded, so is cn. Since C is IF-boundedly compact,
cn � cn′ → c0 ∈ X. Proceed as in the proof of last theorem. �

Theorem 4.6. Let B and C be nonempty subsets of an intuitionistic fuzzy metric
space (X,MM,N , T ). If B is closed and IF-boundedly compact and C is IF-bounded,
then B is approximately compact relative to C.

The proof is the same as the classically case (see [14]).

Lemma 4.7. [19] Let (X,MM,N , T ) and (Y,MM,N , T ) be intuitionistic fuzzy met-
ric spaces. If we define

M((x, y), (x′, y′), t) = T (MM,N (x, x′, t),MM,N (y, y′, t)).

then (X × Y,M, T ) is an intuitionistic fuzzy metric space and the topology induced
on X × Y is the product topology.

Theorem 4.8. Let S and P be nonempty subsets of intuitionistic fuzzy metric
spaces (X,MM,N , Tn) and (Y,MM,N , Tn), respectively. Suppose that P is compact.
If S is IF-boundedly compact or approximately compact, then so is S × P .

Proof. If S is IF-boundedly compact, we show that any sequence (sn, pn) in S ×P
which is IF-bounded has a convergent subsequence. Indeed, by definition of the
product intuitionistic fuzzy metric, sn is IF-bounded and since S is IF-boundedly
compact, sn � sn′ → s0 ∈ X. By compactness of P , pn � pn′ → p0 ∈ P . Hence,
(sn, pn) � (sn′′ , pn′′) → (s0, p0) ∈ X × Y .
If S is approximately compact, let (x, y) be any element in X×Y and suppose that
(sn, pn) is a sequence in S × P which converges in distance to (x, y), that is,

lim
n→∞

M((sn, pn), (x, y), t) = M(S × P, (x, y), t).
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By compactness of P , pn � pn′ → p0 ∈ P . Hence, limn→∞M((sn′ , p0), (x, y), t) =
M(S × P, (x, y), t) so

lim
n′→∞

Tn(MM,N (sn′ , x, t),MM,N (p0, y, t)) = Tn(MM,N (S, x, t),MM,N (P, y, t)).

SinceMM,N (p0, y, t) ≤L∗ MM,N (P, y, t) then limn′→∞MM,N (sn′ , x, t) ≥L∗ MM,N (S, x, t)

which implies limn′→∞MM,N (sn′ , x, t) = MM,N (S, x, t). Hence, sn′ converges in
distance to x and since S is approximately compact, sn′ � sn′′ → s0 ∈ S. There-
fore, (sn, pn) � (sn′′ , pn′′) → (s0, p0) ∈ S × P , i.e., S × P is approximately com-
pact. �

Theorem 4.9. Let B and C be nonempty subsets of an intuitionistic fuzzy metric
space (X,MM,N , T ). If B is approximately compact and C is compact, then K =
{b ∈ B : ∃ c ∈ C, MM,N (b, c, t) = MM,N (B, c, t)} is compact.

Proof. Let yn be a sequence in K and for every n ∈ N choose cn in C so that yn min-
imizes the distance from B to cn. Since C is compact, cn � cn′ → c0 ∈ C. Hence,
for every ε > 0, there exists n0 such that for all n′ > n0, MM,N (cn′ , c0, t) ≥L∗

(Ns(ε), ε), and therefore, for all n′ > n0,

MM,N (B, c0, t) ≥L∗ MM,N (yn′ , c0, t)

≥L∗ T 2(MM,N (B, c0, t− 2ε),MM,N (cn′ , c0, ε),MM,N (cn′ , c0, ε))

≥L∗ T 2(MM,N (B, c0, t− 2ε), (Ns(ε), ε), (Ns(ε), ε)).

Since ε > 0 was arbitrary, then MM,N (B, c0, t) = limn′→∞MM,N (yn′ , c0, t).
Therefore, yn′ converges in distance to c0, so it converges sub-sequentially. �
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