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SUPER- AND SUB-ADDITIVE ENVELOPES OF AGGREGATION

FUNCTIONS: INTERPLAY BETWEEN LOCAL AND GLOBAL

PROPERTIES, AND APPROXIMATION

J. ŠIRÁŇ

Abstract. Super- and sub-additive transformations of aggregation functions

have been recently introduced by Greco, Mesiar, Rindone and Šipeky [The

superadditive and the subadditive transformations of integrals and aggrega-
tion functions, Fuzzy Sets and Systems 291 (2016), 40–53]. In this article we

give a survey of the recent development regarding the existence of aggregation

functions with a preassigned super- and sub-additive transformation, and ad-
dress approximation of these transformations. The underpinning feature of the

presented results is dependence of global properties of super- and sub-additive

transformations on local properties of aggregation functions.

1. Introduction

Aggregation functions as means of producing a single value out of a multitude
of parameters in some controlled and consistent ways have been used for decades
in statistics, decision-making, data mining, artificial intelligence, economics, and in
numerous other disciplines and aspects of real life. Obviously, there are countless
ways of fusing (often inhomogeneous) input data into a single number, but only
relatively few of these have found fruitful applications and have been thoroughly
studied. We refer the reader for more details about the theory and applications
of aggregation functions primarily to the monographs [2] and [3] and references
therein, together with a recent collection [11] of retrospects and perspectives of
aggregation.

The aim of this short paper is to give a survey of very recent results and chal-
lenges in a rather narrow area that emerged only lately, namely, in the so-called
super- and sub-additive transformations of aggregation functions. These have been
introduced only lately by Greco, Mesiar, Rindone and Šipeky in [5], but appear to
be an important addition to the variety of directions in which aggregation functions
have been studied. Deferring definitions of all concepts to section 2, on an intuitive
level every aggregation function gives rise to a unique super- and sub-additive ‘en-
velope’ of the original function; the two ‘envelopes’ are the super- and sub-additive

Invited Paper: Accepted in March 2018

Key words and phrases: Aggregation function, Super- and sub-additive transformation, Ap-
proximation.

This paper is the extended version of presented paper in ”the 6th Iranian joint Congress on Fuzzy

and Intelligent Systems (CFIS2018)” which was held during 28 February-2 March 2018 at Shahid
Bahonar University of Kerman, Kerman, Iran.



14 J. Širáň

transformations in the terminology of [5]. Our particular interest will be in con-
ditions guaranteeing existence of an aggregation function with preassigned super-
and sub-additive ‘envelopes’. A closely related area to our focus is determination
of exact values of super- and sub-additive transformations of aggregation functions.
In both cases emphasis will be given to methods based on investigation of the effect
of local properties of aggregation functions near the origin on the global behaviour
of their super- and sub-additive transformations.

Despite a relatively short interval between the appearance of [5] and writing of
this paper, several contributions to the above topics have been made [6, 7, 8, 9, 13,
14, 15], both in terms of partial answers as well as opening up new and promising
directions of research. The reason of birth of this relatively early survey is thus
twofold: to sum up the available results (referring to original sources for proofs) in
one place and to state a selection of open questions, answers to which would give
further impetus to this area of research.

The paper is organized as follows. In section 2 we introduce the fundamental
concepts of an aggregation function and its super- and sub-additive transformation.
This section also contains a detailed explanation of application-driven motivation
for introducing the two transformations. The problem of existence of an aggregation
function with a super- and sub-additive transformation given in advance is discussed
in section 3. Questions about approximation of values of super- and sub-additive
transformations of a given aggregation functions are considered in section 4. Both
these sections end with statements of a few related challenge problems, with good
potential for further research. The final section 5 contains a handful of remarks
together with further challenges related to both the main topics considered in this
short survey (an extended abstract of which appeared in [16]).

2. Super- and Sub-additive Transformations

From a formal point of view the ‘aggregation functions community’ divides into
two camps: those considering such functions on a compact domain and those pre-
ferring non-compact ones. The most favourite domains of the two camps are [0, 1]n

and [0,∞[n, with variations in between the two extremes. In this paper we adhere
to the second camp and by an aggregation function we will understand an arbitrary
mapping A : [0,∞[n→ [0,∞[ that is increasing in every coordinate and satisfies
A(0) = A(0, . . . , 0) = 0. However, most of the properties and results presented here
are easily transferrable to compact domains.

There have been a vast variety of properties of aggregation functions that have
been studied in the literature; we refer the interested reader to the monograph [3].
Here we will focus on two of these that also appear to be most recent [5], called
super- and sub-additivity. Formally, an aggregation function A : [0,∞[n→ [0,∞[
is super-additive if A(u + v) ≥ A(u) + A(v) for every u, v ∈ [0,∞[n. Similarly,
such an aggregation function A is sub-additive if A(u+v) ≤ A(u) +A(v) for every
u, v ∈ [0,∞[n. Besides resemblance of the two properties to issues in the theory
of measure and integration we give another type of motivation arising from ap-
plications in economics. At the same time we will explain how one arrives at the
two fundamental concept of super- and sub-additive transformations of aggregation
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functions, loosely following [5] in a somewhat adapted form.

Imagine a manufacturer producing a certain type of goods, and assume that the
production can be described in terms od a vector x ∈ [0,∞[n whose coordinates
x1, x2, . . . , xn represent ‘production factors’. The factors may include raw material,
costs of machine acquiring and repairs, transportation logistic, labour, and so on,
and are assumed to cumulatively represent the investment to produce a certain
amount of output associated with x. Now, suppose that the maximum revenue the
manufacturer obtains by selling the goods represented by x to one retailer from a
set of available dealers is given by A(x) for some aggregation function A. For the
sake of this model example, suppose also that the manufacturer knows the values
of A for a certain range of production factor vectors. Knowing A, the manufacturer
may consider splitting the production factor vector x in the form of a sum of, say,
k ‘smaller’ production vectors x(1), . . . ,x(k) ∈ [0,∞[n and sell the corresponding
smaller amounts to k retailers within the given set for revenues A(x(1)), . . . , A(x(k)).
If he finds out that the sum of these revenues exceeds the original expected revenue
A(x), then selling the k smaller amounts would obviously be the preferred option.
This leads to the advice for the manufacturer to try to maximize the values of the
sums A(x(1))+ . . .+A(x(k)) over the decompositions x = x(1) + . . .+x(k) described
above.

Let us now reverse the roles and consider a retailer who would like to buy a
portfolio of n products from a set of available manufacturers. A portfolio may be
represented by a vector x ∈ [0,∞[n whose i-th coordinate indicates the amount of
i-th product. Suppose that the minimum price at which this deal can be realised
within the given set of producers is given by the value A(x) of some aggregation
function A. Assuming that the retailer knows A for a range of inputs, she may look
at splitting the portfolio into, say, k ‘smaller’ parts x(1), . . . ,x(k) ∈ [0,∞[n summing
to x and buy these at prices A(x(1)), . . . , A(x(k)) from a subset of k manufacturers.
If the sum of these prices is smaller than the earlier expected price A(x), then one
would naturally go for this saving option. And, as above, this suggests that the
retailer should try to find the minimum of the sums A(x(1)) + . . . + A(x(k)) over
decompositions x = x(1) + . . . + x(k) into vectors from [0,∞[n to minimize her
expenses.

Abstracting from possible real-life limitations regarding the decompositions of
the above vectors x, the two situations lead naturally to the following definition. For
an aggregation function A : [0,∞[n→ [0,∞[, the super-additive and sub-additive
transformations, A∗ and A∗, of the function A, are functions [0,∞[n→ [0,∞] given
by

A∗(x) = sup {
k∑

j=1

A(x(j)) ;

k∑
j=1

x(j) ≤ x} , (1)

A∗(x) = inf {
k∑

j=1

A(x(j)) ;

k∑
j=1

x(j) ≥ x} . (2)

Thus, in the ideal world, the advice for the manufacturer in the first example
would be to follow the strategy given by values of A∗, while the advice for the
retailer in the second example would be to apply the strategy suggested by the
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values of A∗. We reiterate that in practice one would have to take into the account
restrictions on realistic decompositions of the vector x into summands (which may
assume values in certain ranges only, for example), but in what follows we will keep
to the ‘ideal model’ as given by (1) and (2).

For completeness we note that further bits of motivation for introducing the
above transformations is given in [4] by way of sub-decomposition and super-
decomposition integrals based on aggregation functions.

It is easy to show that the (aggregation) functions A∗ and A∗ are super-additive
and sub-additive, respectively, giving rise to the introduced terminology. One
clearly has A∗ = A if A is super-additive, and A∗ = A if A is sub-additive. The
two transformations A∗ and A∗ may equivalently be introduced as super- and sub-
additive envelopes of A and we will leave the details to the reader.

3. Aggregation Functions with Given Super- and Sub-additive
Transformations

Following the scenario outlined in the Introduction, we will focus on relations of
an aggregation function to its super- and sub-additive transformations. In partic-
ular, we will address the following fundamental question from the point of view of
theory:

Given a super-additive function f and a sub-additive function g, both from
[0,∞[n into [0,∞[, with f(0) = g(0) = 0, and such that f(x) ≥ g(x) for every
x ∈ [0,∞[n, does there exist an aggregation function A : [0,∞[n→ [0,∞[ such that
A∗ = f and A∗ = g?

In order to formulate strongest available results to date in this direction we need
to introduce stronger versions of super- and sub-additivity. In the terminology of
e.g. [12], a function h : [0,∞[n→ [0,∞[ is strictly super-additive and strictly
sub-additive, respectively, if h(y) + h(z) < h(y + z) for every pair of points y, z ∈
[0,∞[n\0, and, analogously, h(y) + h(z) > h(y + z) with the same quantifiers.
(It appears that such functions have not been studied in detail per se.) Also,
let ei be the i-th unit vector in [0,∞[n, where i ∈ {1, 2, . . . , n}. Finally, for an
aggregation function A : [0,∞[n→ [0,∞[ let ∇A and ∇A denote the n-dimensional
vector whose i-th component (∇A)i and (∇A)i is equal to lim inft→0+ A(tei)/t and
lim supt→0+ A(tei)/t, respectively.

Equipped with this notation and terms we offer the following (and in our view
somewhat surprising) result, proved in [9]; dots in the statement represent the
standard dot product in [0,∞[n.

Theorem 3.1. Let A : [0,∞[n→ [0,∞[ be an aggregation function. If A∗ is
continuous and strictly super-additive, then A∗(x) = A(x) and A∗(x) = ∇A·x
for every x ∈ [0,∞[n. Dually, if A∗ is continuous and strictly sub-additive, then
A∗(x) = A(x) and A∗(x) = ∇A·x for every x ∈ [0,∞[n.

The contrapositive form of Theorem 3.1 may be used to provide a negative partial
answer to our fundamental question about the existence of aggregation functions
with given sub- and super-additive transformations.
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Corollary 3.2. Let f, g : [0,∞[n→ [0,∞[ be continuous functions such that f(0) =
g(0) = 0 and f(x) ≥ g(x) for every x ∈ [0,∞[n. If

(a) f is strictly super-additive and g is sub-additive but not linear, or

(b) g is strictly sub-additive and f is super-additive but not linear,

then there is no aggregation function A : [0,∞[n→ [0,∞[ with A∗ = f and A∗ = g.

Proofs of Theorem 3.1 and Corollary 3.2 given in [9] evolved from a number of
findings established in five earlier papers [13, 14, 15, 6, 7] devoted to the study of
global behaviour of transformations of an aggregation function A depending on its
local behaviour near zero, as captured by the vectors ∇A and ∇A. We will sum up
the two most important steps in this development, as they lead to interesting open
questions. To explain the situation we need to introduce a few more concepts.

A function h : [0,∞[n→ [0,∞[ will be said to be strictly directionally convex
if h(x) + h(y) < h(u) + h(v) for every 4 points u,v,x,y ∈ [0,∞[n such that
u < x,y < v and u+v = x+y. The analogous notion of strict directional concavity
is obtained by reversing the very first equation. Directional convexity (in its non-
strict version, that is, with the ‘≤’ sign in the first inequality) is also known as ultra-
modularity [10]. This concept can be defined by non-decreasing increments; it is
known to imply continuity and to be equivalent to super-modularity in conjunction
with coordinate-wise convexity [1]. It is easy to see [15] that (strict) directional
convexity implies (strict) super-additivity; the modification for concavity and sub-
additivity is obvious.

Let us continue with another concept, introduced in [6, 7]. We way that a
function f : [0,∞[n→ [0,∞[ has the overrunning property if there exists a super-
additive function h on [0,∞[n such that the ratio f/h is strictly increasing in
every coordinate on ]0,∞[n. The underrunning property is defined analogously by
replacing super-additivity with sub-additivity and the property of being strictly
increasing by being strictly decreasing. The overrunning (underrunning) property
easily implies strict super-additivity (strict sub-additivity), cf. [6, 7].

We now pass onto the announced explanation. In the paper [15], preceded by
[13, 14], the conclusion of Corollary 3.2 was proved by assuming strict directional
convexity of f in part (a) and strict directional concavity of g in part (b), with
all other items unchanged. On the other hand, in [6, 7] the conclusion of Corol-
lary 3.2 was established by assuming the overrunning property of f in part (a)
and the underrunning of g in part (b), again with all the remaining items unal-
tered. As already stated, strict directional convexity implies continuity and strict
super-additivity, and the overrunning property implies super-additivity; we omit
the straightforward ‘dual’ versions of these statements.

The results presented above generate obvious challenges as well, and we explicitly
state a few which, in our opinion, may lead to a fruitful research and interesting
results.

In this connection it would be interesting to completely clarify the relationship
between strict directional convexity, the overrunning property, and strict super-
additivity (and their dual versions), with continuity involved as well.
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Challenge 1. Establish non-trivial sufficient conditions for pairs of super- and
sub-additive functions f, g on [0,∞[n with f ≥ g and zero value at the origin, for
which there is an aggregation function A on [0,∞[n such that A∗ = f and A∗ = g.

We emphasise non-triviality here to avoid observations of the type ‘if f is super-
additive and g(x) = ∇f ·x, then one can take A = f , or ‘if g is sub-additive and
f(x) = ∇g·x, then one can take A = g, as such statements are just obvious twists
of Theorem 3.1.

Challenge 2. Prove further sufficient conditions for pairs of super- and sub-
additive f, g on [0,∞[n with f ≥ g and zero value at the origin in order not to
admit an aggregation function A on [0,∞[n such that A∗ = f and A∗ = g.

We saw examples of such conditions above – strict directional convexity, over-
running, and strict super-additivity, but it would be interesting to have more, as a
necessary and sufficient contition appears to be out of sight. We also discussed a
few relations among the properties just listed, which call for:

Challenge 3. Clarify completely the relationship between strict directional convexity,
the overrunning property, and strict super-additivity (and their dual versions), with
continuity involved as well.

4. Approximation of Super- and Sub-additive Transformations of
Aggregation Functions

The other interesting question brought up in the Introduction is that of de-
termining values of super-and sub-additive transformations of a given aggregation
function. As the definitions (1) and (2) of the transformations involve calculation of
limits, there is no hope for a way to compute their exact values in general. A more
realistic approach is to try to apply procedures that would lead to approximate
values of the two transformation, that is, their determination up to a preassigned
precision.

To stick to the theme of this article, which is the interplay between local and
global properties of transformations of aggregation functions, we present two ap-
proximation results for their values. The first will be base on the behaviour of
a given aggregation function near the origin, while the second will reflect what
happens if similar considerations are applied arbitrarily far from the origin.

Let us begin with the first approach, which is based on the study of the behaviour
of an aggregation function A : [0,∞[n→ [0,∞[ near the origin and in specified
directions. The choice of directions is motivated primarily by the fact that A may
grow much faster along certain vectors than in the directions given by coordinate
axes.

To develop this, we let L be a non-empty set of linearly independent unit vectors
from [0,∞[n; clearly 1 ≤ |L| ≤ n. In analogy with the definitions of ∇A and ∇A

before the statement of Theorem 3.1, for each unit vector u ∈ L we define

su = lim sup
t→0+

A(tu)

t
and iu = lim inf

t→0+

A(tu)

t
. (3)
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Observe that in general one may have su ∈ [0,+∞]. Obviously, (3) is a general-
ization of the definition of a directional derivative in multivariate calculus; hence
the use of unit vectors u ∈ L. Further, we let s and i be, respectively, the vector
(su)u∈L and (iu)u∈L.

We are now ready to present estimates onA∗ andA∗ with the help of (3) that gen-
eralize the findings of [13]. By Span+(L) we denote the set of all linear combinations
of vectors from L with non-negative real coefficients. If x =

∑
u∈L cuu ∈ Span+(L)

we let [x]L denote the coordinate vector (cu)u∈L. The standard dot product of two
vectors v and w is simply denoted v ·w. In this notation, the following estimates
are proved in [8].

Proposition 4.1. If x ∈ Span+(L), then A∗(x) ≥ s·[x]L and A∗(x) ≤ i·[x]L.

As already pointed out, the bounds of Proposition 4.1 were derived in [8] by
looking at the growth of an aggregation function A near the origin in directions
specified by the unit vectors u ∈ L. But if t will not be allowed to assume (positive)
values that are arbitrarily close to zero, values of A(tu)/t appearing in (3) may be
quite different from su and iu. In the paper [8] the authors deal with this situation
as well and present another type of estimates for A∗ and A∗ in terms of the ratio
A(tu)/t but taken at preassigned non-zero values of t. Assuming L to be as before,
choose a collection tu (u ∈ L) of positive real numbers and define

αu =
A(tuu)

tu
. (4)

We also define α = (αu)u∈L to be the vector with coordinates αu for u ∈ L, and
we let 1 be the |L|-dimensional vector with all coordinates equal to 1. With this in
hand we are ready to present another result of [8].

Theorem 4.2. Let A : [0,∞[n→ [0,∞[ be a continuous aggregation function and
let the quantities tu for u ∈ L be as defined in (4). Then, for every ε > 0 there
exist positive real numbers γu for u ∈ L such that for every x =

∑
u∈L cuu with

cu ≥ γu one has

A∗(x) ≥ (α− ε1)·[x]L and A∗(x) ≤ (α + ε1)·[x]L . (5)

The form of the bounds of Theorem 4.2 is suitable for comparing them with
those of Proposition 4.1. Both are bounding the values of A∗(x) and A∗(x) in
terms of a function that is linear in x, except that the estimates from Theorem
4.2 are applicable only for arguments that are sufficiently away from the origin.
The error term built into the statement of Theorem 4.2 appears unavoidable when
restricting to linearity of bounds. In practice, however, the bounds of Theorem 4.2
may be much better than those of Proposition 4.1 for the simple reason that away
from zero one may well have α − ε1 > s and α + ε1 < i for suitable ε, L and a
choice of tu for u ∈ L.

in principle, one could take advantage of a plethora of available approximation
methods (just consider, say, those for evaluation of integrals) and try to adapt
these to furnish approximations of super- and sub-additive transformations of ag-
gregation functions. Another way could consist of taking an ε-approximation of an
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aggregation function to start with, say, by a piecewise linear function with a finite
number of linear pieces on every bounded subset of [0,∞[n, and then proceed by
calculating exact values of such an approximation by converting the task to a linear
programming problem (alas, of a potentially huge dimension).

As in section 3, in this place we also formally state a few challenges the current
state-of-the-art in this area presents.

Challenge 4. Develop a theory of approximation of the super- and sub-additive
transformations of aggregation functions.

Specifically, in the context of the indicated piecewise linear approximations, it
would be interesting to answer the following question.

Challenge 5. What is the complexity of determining A∗(x) and A∗(x) for a piece-
wise linear aggregation function A : [0,∞[n→ [0,∞[ with a finite number of linear
pieces on every bounded subset of its domain?

5. Conclusion

In this short survey we presented the most recent results regarding the questions
of existence of aggregation functions with given super- and sub-additive transfor-
mations, and the question of numerical approximation of these transformations.
Our methodological focus was on the study of dependence of global behaviour of
the two transformations on the local behaviour of an aggregation function near the
origin. We emphasise that the concepts of super- and sub-additive transformations
of an aggregation function are very recent. This implies that, on the one hand, it
would not be realistic to expect a huge number of results at this point; on the other
hand, however, this area f research appears to be fruitful and calling for further
study. We have emphasized this by including several challenge problems in sections
3 and 4 that may serve as directions of future research connected with the study of
interplay between local and global properties of aggregation functions.

To conclude with we present another two research problems related to the ma-
terial presented. The first combines the ideas brought up in sections 3 and 4:

Challenge 6. Investigate necessary and sufficient condition for a given pair of
super- and sub-additive functions f, g : [0,∞[n→ [0,∞[ with f ≥ g and zero value
at the origin, and for a given ε > 0, to admit an aggregation function A : [0,∞[n→
[0,∞[ such that |f −A∗| < ε and |g −A∗| < ε ?

Our last challenge addresses possible transfer and further development of the
ideas and results presented to the case of a compact domain of aggregation func-
tions. More concretely, in the light of defining aggregation functions as in the survey
[11], we state:

Challenge 7. Develop and strengthen the ideas of sections 3 and 4 to aggregation
functions [0, 1]n → [0, 1].
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