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Abstract
The present paper studies fuzzy matroids in view of degree. First we generalize the notion of (L,M)-fuzzy independent
structure by introducing the degree of M -fuzzy family of independent L-fuzzy sets with respect to a mapping from LX

to M . Such kind of degrees is proved to satisfy some axioms similar to those satisfied by (L,M)-fuzzy independent
structure. Then we define and study some special degrees (e.g. quotient degrees and isomorphism degrees) with respect
to mappings between two (L,M)-fuzzy matroid-like spaces in details. Finally we give characterizations of these degrees
and investigate relationships between them.

Keywords: Degree of M -fuzzy family of independent L-fuzzy sets, M -fuzzy family of independent L-fuzzy sets, (L,M)-
fuzzy matroid.

1 Introduction
In 1935, Whitney introduced Matroid theory [42]. Since then, Birkhoff et al [4, 6, 27, 36] have made further development
of matroid theory. Nowadays matroid theory has quite rich contents [41, 28]. There exists a deep connection between
matroid theory and convexity theory. If we consider the close set of matroids as convex sets of a finite convex space,
then matroids are actually finite convex spaces.

In the middle of the 20th, it was found that many mathematical structures can naturally introduce convex sets
[2, 3, 37]. The emergence of axiomatic methods prompted mathematicians to abstractly summarize the properties of
convex sets. This leads to generation and development of abstract convex structures theory [3, 5, 37].

With the development of fuzzy mathematics, matroid and convexity have been endowed with fuzzy set theory firstly
introduced by Zadeh in 1965 [53].

In the fuzzy convexity of Rosa-Maruyama, the convex set is fuzzy, but the convexity is a crisp subset of IX or LX .
In 2014, Shi and Xiu [35] proposed the concept of M -fuzzifying convexity which is a new approach to the fuzzification
of convex structures. In addition, Shi and Xiu introduced the concept of (L,M)-fuzzy convexity in [50]. So far, there
are many other praising work on fuzzy convexity [33, 51, 43, 29].

Goetsche and Voxmar [9] introduced the fuzzy matroid (We call it GV matroid) for the first time in 1988. Their
processing method uses a distinct number to describe the potential of support set. In GV matroid theory, an independent
structure is a crisp family of fuzzy sets. Subsequently, many concept of GV matroids were proposed and studied
[10, 11, 12, 13, 14, 15]. In 2010, Li et al [19] defined refined GV matroids, established the transitivity theorem based on
fuzzy circuits and studied the connectedness of GV matroid and refined GV matroids. In 2017 Li and Yi [22] studied
some properties and relations of three different kinds of fuzzification for independent systems [9, 7, 17]. In the same
year, Li et al [21] introduced three-way decision matroids and a fuzzy independent set system is generated from this.

In 2009, Shi proposed a new fuzzification of matroid theory, namely, M -fuzzifying matroid [31], whose independent
structure is a fuzzy family of crisp sets. The study on this topic has achieved rich results. Many concepts in matroids
theory have been successfully extended to the M -fuzzifying matroids [20, 23, 34, 39, 40, 26, 44, 48, 49, 52]. A more
general fuzzy theory of matroids, (L,M)-fuzzy matroids, is given in 2009 by Shi [32]. Independent structures in this
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theory are fuzzy families of fuzzy sets. When M = {0, 1}, this kind of fuzzy matroids can be regarded as L-matroids.
We notice that there are many studies on L-matroids [18, 24, 45, 46, 47].

The view of degree is widely used in many fields, such as fuzzification of topology category which requires to
fuzzify objects and morphisms. Ghareeb and Al-omeri [8] discussed the notions of semi-openness, semi-continuity,
preopenness, precontinuity, irresolutness and preirresolutness degree of functions in (L,M)-fuzzy topological spaces
based on the implication operation. In 2018, Zhong and Shi [54] gave a definition of the degrees to which a mapping
is continuous, open, closed or a quotient mapping with respect to the (L,M)-fuzzy topology degrees. In 2014, Liang
and Shi [25] introduced the degree to which a mapping is continuous, open or closed in (L,M)-fuzzy topological spaces
by using implication operation. In 2018, Al-Omeri, Khalil and Ghareeb [1] discussed the degree of semi-preopenness,
semi-precontinuity, and semi-preirresoluteness for functions in (L,M)-fuzzy pretopology.

In this paper, we will define the degree of (L,M)-fuzzy independent structure to a mapping; this is a generalization
of (L,M)-fuzzy independent structures. Then we prove this concept still satisfies some axioms of (L,M)-fuzzy matroids.
Next, two kinds of special degrees to a mapping (i.e. the quotient degree to a surjective mapping and the isomorphism
degree to a bijective mapping) are defined. Moreover we discuss their characterizations and relationships.

2 Preliminaries
In this paper, unless otherwise stated, (L,∨,∧) and (M,∨,∧) are completely distributive lattices [38]. The smallest
element and the largest element in M are denoted by ⊤M and ⊥M , respectively. X is a non-empty set. We denote the
set of all subsets of X by 2X and denote the set of all L-subsets of X by LX . The largest element and the smallest
element in LX are denoted by ⊤LX and ⊥LX respectively.

An element a in L is called a prime element if a ≥ b∧ c implies a ≥ b or a ≥ c. a in L is called co-prime if a ≤ b∨ c
implies a ≤ b or a ≤ c. The set of non-unit prime elements in L is denoted by P (L). The set of non-zero co-prime
elements in L is denoted by Cop(L).

The binary relation ◁ in L is defined as follows: for a, b ∈ L, a ◁ b if and only if ∀D ⊆ L, the relation b ≤ supD
implies the ∃d ∈ D s.t. a ≤ d [38]. β(b) = {a ∈ L | a◁ b} is called the greatest minimal family of b in the sense of [38],
and β∗(b) = β(b)∩Cop(L). Moreover, the binary relation ◁op in L is defined as follows: for a, b ∈ L, a◁op b if and only
if ∀D ⊆ L, the relation b ≥ infD implies ∃d ∈ D s.t. a ≥ d. α(b) = {a ∈ L | a ◁op b}) is called the greatest maximal
family of b in the sense of [38]. In a completely distributive lattice L, α(b), β(b) are exists, and b =

∨
β(b) =

∧
α(b)

[38].

Lemma 2.1. [38] Let L be a completely distributive lattice and {ai | i ∈ I} ⊆ L. Then

(1) β

(∨
i∈I

ai

)
=
∪
i∈I

β(ai), i.e., β is an union-preserving mapping.

(2) α

(∧
i∈I

ai

)
=
∪
i∈ω

α(ai), i.e., α is an ∧ − ∪ mapping.

Definition 2.2. [30] Let A ∈ LX , a ∈ L. Define

A[a] = {x ∈ X | A(x) ≥ a}, A(a) = {x ∈ X | a ∈ β(A(x))},
A[a] = {x ∈ X | a /∈ α(A(x))}, A(a) = {x ∈ X | (A(x) ≰ a}.

Definition 2.3. [32] Let E be a finite set. A mapping I : LE → M is called an M -fuzzy family of independent L-fuzzy
sets on E if it satisfies the following three conditions:

(LMFI1) I(χ∅) = ⊤M .

(LMFI2) For any A,B ∈ LE, if A ⊆ B, then I(A) ≥ I(B).

(LMFI3) If b = |B|(n) ≰ |A|(n) for A,B ∈ LE and for some n ∈ N, then∨
e∈F (A,B)

I
(
(b ∧A[b]) ∪ eb

)
≥ I(A) ∧ I(B).

If I is an M -fuzzy family of independent L-fuzzy sets on E, then the pair (E, I) is called an (L,M)-fuzzy matroid.

Remark 2.4. For an (L,M)-fuzzy matroid, if L = {0, 1}, then it become an M -fuzzifying matroid [31]; if M = {0, 1},
then it become an L-matroid [32]; if L = M = {0, 1}, then it become a matroid [41].
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Theorem 2.5. [32] Let E be a finite set, and I : LE −→ M a mapping. Then the following conditions are equivalent:

(1) (E, I) is an (L,M)-fuzzy matroid.

(2) For each a ∈ Cop(M), (E, I[a]) is an L-matroid.

(3) For each a ∈ P (M), (E, I(a)) is an L-matroid.

We can define a residual implication by a → b =
∨
{c ∈ M | a ∧ c ≤ b} in M . Also, we denote a ↔ b = (b →

a) ∧ (a → b). Some properties of the implication operation are listed in the following lemma.

Lemma 2.6. [16] Let (M,∨,∧) be a completely distributive lattice, and → the implication operation corresponding to
∧. Then the following statements hold (a, b, c ∈ M , {ai}i∈I , {bi}i∈I ⊆ M):

(a) ⊤M → a = a.

(b) (a → b) ≥ c ⇐⇒ a ∧ c ≤ b.

(c) a → b = ⊤M ⇐⇒ a ≤ b.

(d) a →
(∧

i∈I bi
)
=
∧

i∈I(a → bi), hence a → b ≤ a → c whenever b ≤ c.

(e)
(∨

i∈I ai
)
→ b =

∧
i∈I(a → bi), hence a → c ≥ b → c whenever a ≤ b.

(f) (a → c) ∧ (c → b) ≤ a → b.

3 Degree of M-fuzzy family of independent L-fuzzy sets

In this section, we will define the degree to which a mapping I : LE −→ M is an M -fuzzy family of independent L-fuzzy
sets, and discuss its characterizations.

Definition 3.1. Let E be a finite set, I : LE −→ M a mapping, and D(I) = D1(I) ∧ D2(I) ∧ D3(I), where
D1(I) = I(χ∅),

D2(I) =
∧

A,B∈LE

A⊆B

I(B) → I(A),

D3(I) =
∧

A,B∈LE

∨
n∈N

b=|B|(n)≰|A|(n)

∨
e∈F (A,B)

I(A) ∧ I(B) → I
(
(b ∧A[b]) ∪ eb

)
.

Then D(I) is called the degree to which I is an M -fuzzy family of independent L-fuzzy sets, or the degree of an M -fuzzy
family of independent L-fuzzy sets with respect to I.

It is not difficult to verify that D(I) = ⊤M if and only if I is an M -fuzzy family of independent L-fuzzy sets. Take
M = [0, 1] and I(A) = 0.5 (∀A ∈ LE), then we have D(I) ̸= ⊤M .

Theorem 3.2. Let E be a finite set, I : LE −→ M a mapping. Then

D(I) =
∨

{a ∈ M | ∀u ∈ β(a), I[u] is a family of independent L-fuzzy sets}.

Proof. Assume a ∈ M with a ≤ D(I). Then a ≤ Di(I) (i = 1, 2, 3). For each u ◁ a, as a ≤ D1(I) and u ◁ a (thus
u ≤ a), we have u ≤ D1(I), which means χ∅ ∈ I[u]. Since a ≤ D2(I), we have a ≤ I(B) → I(A) for any A,B ∈ LE

satisfying A ⊆ B. By Lemma 2.6, I(B) ∧ a ≤ I(A). If B ∈ I[u], then u ≤ I(B) ∧ a ≤ I(A), which means A ∈ I[u]. As
u◁ a ≤ D3(I), we have (∀A,B ∈ LE)

a ≤
∨
n∈N

b=|B|(n)≰|A|(n)

∨
e∈F (A,B)

I(A) ∧ I(B) → I
(
(b ∧A[b]) ∪ eb

)
.
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Analogously,
v ◁

∨
n∈N

b=|B|(n)≰|A|(n)

∨
e∈F (A,B)

I(A) ∧ I(B) → I
(
(b ∧A[b]) ∪ eb

)
(∀A,B ∈ LE).

As β is union-preserving (see Lemma 2.1), for any A,B ∈ LE , there exists an n ∈ N, a b = |B|(n) ≰ |A|(n), and
e ∈ F (A,B), such that u◁

(
I(A) ∧ I(B) → I

(
(b ∧A[b]) ∪ eb

))
, which implies u ≤

(
I(A) ∧ I(B) → I

(
(b ∧A[b]) ∪ eb

))
.

By Lemma 2.6, I(A) ∧ I(B) ∧ u ≤ I
(
(b ∧ A[b]) ∪ eb

)
. It follows that, for any A,B ∈ I[u] (i.e. u ≤ I(A) ∧ I(B)), there

exists an n ∈ N, a b = |B|(n) ≰ |A|(n), and an e ∈ F (A,B), such that u = u ∧ I(A) ∧ I(B) ≤ I
(
(b ∧ A[b]) ∪ eb

)
, i.e.,

(b ∧A[b]) ∪ eb ∈ I[u]. Since a is arbitrary, D(I) is not greater than right-hand side.
Conversely, suppose that, for each u ∈ β(a), I[u] is a family of independent L-fuzzy sets. As χ∅ ∈ I[u], u ≤ I(χ∅). If

A,B ∈ LE with A ⊆ B and B ∈ I[u], then A ∈ I[u]. We have u = I(B)∧u ≤ I(A). By Lemma 2.6, u ≤ I(B) → I(A),
i.e.,

u ≤
∧

A,B∈LE

A⊆B

I(B) → I(A).

If for any A,B ∈ I[u] and b = |B|(n) ≰ |A|(n) (for some n ∈ N), there exist an e ∈ F (A,B) such that (b∧A[b])∪eb ∈ I[u].
Then u = I(A) ∧ I(B) ∧ u ≤ I

(
(b ∧A[b]) ∪ eb

)
. By Lemma 2.6, u ≤ I(A) ∧ I(B) → I

(
(b ∧A[b]) ∪ eb

)
. So we have

u ≤
∧

A,B∈LE

∨
n∈N

b=|B|(n)≰|A|(n)

∨
e∈F (A,B)

I(A) ∧ I(B) → I
(
(b ∧A[b]) ∪ eb

)
.

By arbitrariness of u and a =
∨
β(a), we know a ≤ Di(I) for i = 1, 2, 3. Thus, the right-hand side is not greater than

D(I).

In Definition 3.1 and Theorem 3.2, if let L = {0, 1}, then LMF3 is equal to MF3 [32]. So we can define the degree
of M -fuzzy family of independent sets and its characterization. The next concept is a kind of independent degree of an
L-fuzzy set.

Definition 3.3. Let I : LE −→ M . For each A ∈ LE, MI(A) = D(I)∧I(A) is called the degree of A is an independent
L-fuzzy set with respect to I or the independent L-fuzzy set degree of A with respect to I.

Remark 3.4. If D(I) = ⊤M (it means I is an M -fuzzy family of independent L-fuzzy sets), then MI(A) = I(A). So
we can regard it as a generalization of the degree of M -fuzzy family of independent L-fuzzy sets.

Theorem 3.5. Let I : LE −→ M be a mapping, MI(A) be defined as in Definition 3.3 (A ∈ LE). Then

(1) MI({χ∅}) = D(I).

(2) For any A,B ∈ LE, if A ⊆ B, then MI(B) ≤ MI(A).

(3) For any A,B ∈ LE, if b = |B|(n) ≰ |A|(n) for some n ∈ N, then∨
e∈F (A,B)

MI
(
(b ∧A[b]) ∪ eb

)
≥ MI(A) ∧MI(B).

Proof. (1) Obviously.
(2) For each A,B ∈ LE with A ⊆ B, since

MI(B) = D(I) ∧ I(B) ≤ D2(I) ∧ I(B) =

 ∧
H,K∈LE

H⊆K

I(K) → I(H)

 ∧ I(B) ≤
(
I(B) → I(A)

)
∧ I(B),

(
I(B) → I(A)

)
∧ I(B) ≤ I(A) by Lemma 2.6 (a ∧ (a → b) ≤ b). Thus, for each A,B ∈ LE with A ⊆ B, we have

MI(B) ≤ I(A). As MI(B) ≤ D(I), MI(B) ≤ MI(A).
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(3) For each A,B ∈ LE with |B|(n) ≰ |A|(n) for some n ∈ N, we have

MI(A) ∧MI(B) = D(I) ∧ I(A) ∧ I(B) ≤ D3(I) ∧ I(A) ∧ I(B)

= I(A) ∧ I(B) ∧∧
H,K∈LE

∨
n∈N

b=|K|(n)≰|H|(n)

∨
e∈F (H,K)

I(H) ∧ I(K) → I
(
(b ∧H[b]) ∪ eb

)
≤ I(A) ∧ I(B) ∧

∨
n∈N

b=|B|(n)≰|A|(n)

∨
e∈F (A,B)

I(A) ∧ I(B) → I
(
(b ∧A[b]) ∪ eb

)

=
∨
n∈N

b=|B|(n)≰|A|(n)

∨
e∈F (A,B)

I(A) ∧ I(B) ∧
(
I(A) ∧ I(B) → I

(
(b ∧A[b]) ∪ eb

))

≤
∨
n∈N

b=|B|(n)≰|A|(n)

∨
e∈F (A,B)

I
(
(b ∧A[b]) ∪ eb

)
(by Lemma 2.6).

For each a ≤
(
MI(A) ∧MI(B)

)
and each u◁ a, we have

a ≤
∨
n∈N

b=|B|(n)≰|A|(n)

∨
e∈F (A,B)

I
(
(b ∧A[b]) ∪ eb

)
.

Thus
u◁

∨
n∈N

b=|B|(n)≰|A|(n)

∨
e∈F (A,B)

I
(
(b ∧A[b]) ∪ eb

)
.

As β is union-preserving, there exists an n ∈ N and a b = |B|(n) ≰ |A|(n) such that

u◁
∨

e∈F (A,B)

I
(
(b ∧A[b]) ∪ eb

)
.

Thus
u ≤

∨
e∈F (A,B)

I
(
(b ∧A[b]) ∪ eb

)
.

As a =
∨

β(a) and arbitrariness of u and a, we know

MI(A) ∧MI(B) ≤
∨

e∈F (A,B)

I
(
(b ∧A[b]) ∪ eb

)
.

As MI(A) ∧MI(B) ≤ D(I), for some n ∈ N and b = |B|(n) ≰ |A|(n),

MI(A) ∧MI(B) ≤ D(I) ∧
∨

e∈F (A,B)

I
(
(b ∧A[b]) ∪ eb

)
=

∨
e∈F (A,B)

MI
(
(b ∧A[b]) ∪ eb

)
.

It can be seen that a mapping MI : LE −→ M defined by Definition 3.3 satisfies (LMFI2) and (LMFI3).

Theorem 3.6. Let E be a finite set, I : LE −→ M a mapping, MI the independent L-fuzzy set degree of A with respect
to I. Then
MI(D) =

∨
{a ∈ M | ∀u ∈ β(a), I[u] is a family of independent L-fuzzy sets and A ∈ I[a]}.

Proof. It follows from Definition 3.3 and Theorem 3.2.
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4 Degree of two kinds of special mappings
Mappings from a matroid (X, IX) to another matroid (Y, IY ) are called weak mappings [41] provided that B ∈ IY
implies f←(B) ∈ IX . Some mappings map independent sets to independent sets, i.e. A ∈ IX implicates f(A) ∈ IY .
In this section, we define two kinds of degrees of these spacial properties. Unless otherwise stated, X,Y are finite sets.

Definition 4.1. Let IX : LX −→ M , IY : LY −→ M , and f : X −→ Y be mappings. Then

(1) The weak degree of f with respect to IX and IY is defined by

RI(f) =
∧

B∈LX

(
MIY (B) → MIX (f←(B))

)
.

(2) The independent-to-independent degree of f with respect to IX and IY is defined by

II(f) =
∧

A∈LX

(
MIX (A) → MIY (f

→(A))
)
.

Theorem 4.2. Given two mappings Ix : LX −→ M and IY : LY −→ M , Let D(IX) and D(IY ) denote the degree of
M -fuzzy family of independent L-fuzzy sets with respect to IX and IY . Then

(1) RI(f) =
∨{

a ∈ M | D(IY ) ∧ IY (B) ∧ a ≤ D(IX) ∧ IX(f←(B)),∀B ∈ LX
}

.

(2) RI(f) =
∨{

a ∈ M

∣∣∣∣ ∀b ≤ D(IY ) ∧ a,∀B ∈ (IY )[b],
b ≤ D(IX), f←(B) ∈ (IX)[b]

}
.

(3) RI(f) =
∨{

a ∈ M

∣∣∣∣ ∀b /∈ α(D(IY ) ∧ a),∀B ∈ (IY )[b],
b /∈ α(D(IX)), f←(B) ∈ (IX)[b]

}
.

Proof. (1) For each a ∈ M , a ≤ RI(f) if and only if for each B ∈ LY , a ≤ MIY (B) → MIX (f←(B)), which means
MIY (B) ∧ a ≤ MIX (f←(B)). Thus D(IY ) ∧ IY (B) ∧ a ≤ D(IX) ∧ IX(f←(B)).

(2) By (1), for each a satisfies D(IY ) ∧ IY (B) ∧ a ≤ D(IX) ∧ IX(f←(B)) (for any B ∈ LX), if b ≤ D(IY ) ∧ a and
B ∈ (IY )[b] (i.e., b ≤ IY (B)), then b ≤ D(IX) ∧ IX(f←(B)), which means b ≤ D(IX) and f←(B) ∈ (IX)[b]. Hence we
have RI(f) is not greater than the right-hand side.

Conversely, for each a ∈ M , if b ≤ D(IY ) ∧ IY (B) ∧ a, then b ≤ D(IY ) ∧ a and b ≤ IY (B), i.e., B ∈ (IY )[b]. Thus
b ≤ D(IX) and f←(B) ∈ (IX)[b], i.e., IX(f←(B)) ≥ b, which means D(IX) ∧ IX(f←(B)) ≥ b. For arbitrariness of
b ∈ M , we know D(IY )∧IY (B)∧ a ≤ D(IX)∧IX(f←(B)), and combining with (1), the right-hand side is not greater
than RI(f).

(3) Suppose a ∈ M satisfying D(IY )∧IY (B)∧a ≤ D(IX)∧IX(f←(B)) (for any B ∈ LX), for each B ∈ (IY )[b], if b /∈
α(D(IY )∧a), then b /∈ α(D(IY ))∪α(a) (by Lemma 2.1), and for b /∈ α(IY (B)), by Lemma 2.1, b /∈ α

(
D(IY )∧IY (B)∧a

)
.

Since (1) and α is order-reserving, b /∈ α(D(IX) ∧ IX(f←(B))), we can know b /∈ α(D(IX)) ∪ α(IX(f←(B))), which
means RI(f) is not greater than the right-hand side.

Conversely, for each a ∈ M , if b /∈ α(D(IY ) ∧ a) and b /∈ α(IY (B)), then b /∈ α(D(IY ) ∧ IY (B) ∧ a), which implies
b /∈ α(D(IX)) and f←(B) ∈ (IX)[b]. Thus b /∈ α(D(IX) ∧ IX(f←(B))). As x /∈ α(S) implies x /∈ α(T ) (i.e. x ∈ α(T )
implies x ∈ α(S)), S ≤ T . It follows D(IY ) ∧ IY (B) ∧ a ≤ D(IX) ∧ IX(f←(B)), which means the right-hand side is
not greater than RI(f).

Theorem 4.3. Given two mappings Ix : LX −→ M and IY : LY −→ M , Let D(IX) and D(IY ) denote the degree of
M -fuzzy family of independent L-fuzzy sets with respect to IX and IY . Then

(1) II(f) =
∨{

a ∈ M | D(IX) ∧ IX(A) ∧ a ≤ D(IY ) ∧ IY (f→(A)),∀A ∈ LX
}

.

(2) II(f) =
∨{

a ∈ M

∣∣∣∣ ∀b ≤ D(IX) ∧ a,∀A ∈ (IX)[b]

b ≤ D(IY ), f→(A) ∈ (IY )[b]

}
.

(3) II(f) =
∨{

a ∈ M

∣∣∣∣ ∀b /∈ α(D(IX) ∧ a),∀A ∈ (IX)[b]

b /∈ α(D(IY )), f→(A) ∈ (IY )[b]

}
.

The proof is similar to Theorem 4.2.
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Definition 4.4. Given two mappings IX : LX −→ M , IY : LY −→ M . Let f : X −→ Y be a bijective mapping. Then
the isomorphism degree of f with respect to IX and IY defined by ISO(f) = RI(f)∧RI(f−1), where f−1 is the inverse
mapping of f .

Theorem 4.5. Given two mappings IX : LX −→ M , IY : LY −→ M . Let f : X −→ Y be a bijective mapping. Then
RI(f−1) = II(f) and ISO(f) = RI(f) ∧RI(f−1) = RI(f) ∧ II(f).

Proof. As f is bijective, (f−1)←L (A) = f→L (A) (for each A ∈ LX), then

RI(f−1) =
∧

A∈LX

(
MIX (A) → MIY ((f

−1)←(A))
)
=

∧
A∈LX

(
MIX (A) → MIY (f

→(A))
)
= II(f).

Hence ISO(f) = RI(f) ∧RI(f−1) = RI(f) ∧ II(f).

Theorem 4.6. Given three mappings IX : LX −→ M , IY : LY −→ M , IZ : LZ −→ M . Let f : X −→ Y and
g : Y −→ Z be mappings. Then

(1) II(f) ∧RI(g) ≤ RI(g ◦ f).

(2) II(f) ∧ II(g) ≤ II(g ◦ f).

(3) if f, g are bijective, then ISO(f) ∧ ISO(g) ≤ ISO(g ◦ f).

Proof. (1) (g ◦ f)←L (D) = f←L (g←L (D)) for any D ∈ LZ By Lemma 2.6, we know

RI(f) ∧RI(g) =

( ∧
B∈2Y

(
MIY (B) → MIX (f←L (B))

))
∧

( ∧
C∈LZ

(
MIZ (C) → MIY (g

←
L (C))

))

≤

( ∧
D∈LZ

(
MIY (g

←
L (D)) → MIX (f←L (g←L (D)))

))
∧

( ∧
C∈LZ

(
MIZ (C) → MIY (g

←
L (C))

))

=

( ∧
D∈LZ

(
MIY (g

←
L (D)) → MIX (g ◦ f)←L (D)

))
∧

( ∧
C∈LZ

(
MIZ (C) → MIY (g

←
L (C))

))
=

∧
C∈LZ

((
MIY (g

←
L (C)) → MIX ((g ◦ f)←L (C))

)
∧
(
MIZ (C) → MIY (g

←
L (C))

))
≤

∧
C∈LX

(
MIZ (C) → MIX (g ◦ f)←L (C)

)
= RI(g ◦ f).

The proof to (2) and (3) is similar.

Theorem 4.7. Given three mappings IX : LX −→ M , IY : LY −→ M , IZ : LZ −→ M . Let f : X −→ Y and
g : Y −→ Z be mappings. Then

(1) If f is surjective,then RI(f) ∧ II(g ◦ f) ≤ II(g).

(2) If g is injective, then RI(g) ∧ II(g ◦ f) ≤ II(f).

Proof. (1) f is surjective, so f→L (f←L )(D) = D ∀D ∈ LY . Then(g ◦ f)→L (f←L (D)) = g→L (f→L (f←L (D))) = g→L (D). By
Lemma 2.6, we know

RI(f) ∧ II(g ◦ f) =

( ∧
B∈LY

(
MIY (B) → MIX (f←L (B))

))
∧
( ∧

A∈Lx

(
MIX (A) → MIZ ((g ◦ f)→L (A))

))
≤

( ∧
B∈LY

(
MIY (B) → MIX (f←L (B))

))
∧

( ∧
D∈LY

(
MIX (f←L (D)) → MIZ

(
(g ◦ f)→L (f←L (D))

)))

=

( ∧
B∈LY

(
MIY (B) → MIX (f←L (B))

))
∧

( ∧
D∈LY

(
MIX (f←L (D)) → MIZ (g

→
L (D))

))

=
∧

B∈LY

((
MIY (B) → MIX (f←L (B))

)
∧
(
MIX (f←L (B)) → MIZ (g

→
L (B))

))
≤

∧
B∈LY

(
MIY (B) → MIZ (g

→
L (B))

)
= II(g).

(2) g is injective, so g←L (g→L (B)) = B (∀B ∈ LY ), then g←L ((g ◦ f)→L (D)) = f→L (D) (∀D ∈ LX). By Lemma 2.6, we
know
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RI(g) ∧ II(g ◦ f) =

( ∧
C∈LZ

(
MIZ (C) → MIY (g

←
L (C))

))
∧

( ∧
A∈LX

(
MIX (A) → MIZ ((g ◦ f)→L (A))

))

≤

( ∧
D∈LX

(
MIZ ((g ◦ f)→L (D)) → MIY (g

←
L ((g ◦ f)→L (D)))

))
∧

( ∧
A∈LX

(
MIX (A) → MIZ ((g ◦ f)→L (A))

))

=

( ∧
D∈LX

(
MIZ (g

→
L (f→L (D))) → MIY (f

→
L (D))

))
∧

( ∧
A∈LX

(
MIX (A) → MIZ (g

→
L (f→L (A)))

))

=
∧

A∈LX

((
MIZ (g

→
L (f→L (A))) → MIY (f

→
L (A))

)
∧
(
MIX (A) → MIZ (g

→
L (f→L (A)))

))
≤

∧
A∈LX

(
MIX (A) → MIY (f

→
L (A))

)
= II(f).

Lemma 4.8. Given two mappings IX : LX −→ M and IY : LY −→ M . Let f : X −→ Y be a bijective mapping. Then

(1) RI(f) =
∧

A∈LX

(
MIY (f

→
L (A)) → MIX (A)

)
.

(2) II(f) =
∧

D∈LY

(
MIX (f←L (B)) → MIY (B)

)
.

Proof. (1) On one hand,∧
A∈LX

(
MIY (f→L (A)) → MIX (A)

)
=

∧
A∈LX

(
MIY (f→L (A)) → MIX (f←L (f→L (A)))

)
≤

∧
B∈LY

(
MIY (B) → MIX (f←L (B))

)
= RI(f).

On the other hand,

RI(f) =
∧

B∈LY

(
MIY (f→L (f←L (B))) → MIX (f←L (B))

)
≥

∧
A∈LX

(
MIY (f→L (A)) → MIX (A)

)
.

Then we know RI(f) =
∧

A∈LX

(
MIY (f→L (A)) → MIX (A)

)
.

(2) The proof is similar to (1).

Theorem 4.9. Given two mappings IX : LX −→ M and IY : LY −→ M . Let f : X −→ Y be a bijective mapping.
Then

ISO(f) =
∧

A∈LX

(
MIX (A) ↔ MIY (f

→
L (A))

)
=

∧
B∈LY

(
MIY (B) ↔ MIX (f←L (B))

)
.

5 Degree of quotient mappings
A surjection can be regarded as a quotient, for a surjection between (X, IX) and (Y, IY ) which are two (L,M)-fuzzy
matroid-like spaces , we could consider the quotient degree with respect to f : X −→ Y . And in this section supposing
X and Y are finite sets.

Definition 5.1. Given two mappings IX : LX −→ M and IY : LY −→ M . Let f : X −→ Y be a surjective mapping,
Then

QU(f) =
∧

B∈LY

(
MIY (B) ↔ MIX (f←L (B))

)
is called quotient degree of f with respect to IX and IY . It is easy to know QU(f) ≤ RI(f).

Theorem 5.2. Given two mappings IX : LX −→ M and IY : LY −→ M , Let D(IX) and D(IY ) be the degrees of
M -fuzzy family of independent L-fuzzy sets IX and IY , Let f : X −→ Y ba a surjective mapping. Then

QU(f) =
∨{

a ∈ M | D(IY ) ∧ IY (B) ∧ a ≤ D(IX) ∧ IX(f←L (B))), D(IX) ∧ IX(f←L B) ∧ a ≤ D(IY ) ∧ IY (B)), ∀B ∈ LX
}
.

The proof is similar to that of Theorem 4.2.

Theorem 5.3. Given two mappings IX : LX −→ M and IY : LY −→ M . Let f : X −→ Y ba a surjective mapping.
Then RI(f) ∧ II(f) ≤ QU(f).
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Proof. f is surjective, so we have f→L (f←L (D)) = D, ∀D ∈ LY . Then

RI(f) ∧ II(f) =

( ∧
B∈LY

(
MIY (B) → MIX (f←L (B))

))
∧

( ∧
A∈LX

(
MIX (A) → MIY (f

→
L (A))

))

≤

( ∧
B∈LY

(
MIY (B) → MIX (f←L (B))

))
∧

( ∧
D∈LY

(
MIX (f←L (D)) → MIY (f

→
L (f←L (D)))

))

=

( ∧
B∈LY

(
MIY (B) → MIX (f←L (B))

))
∧

( ∧
D∈LY

(
MIX (f←L (D)) → MIY (D)

))
=

∧
A∈LX

((
MIY (B) → MIX (f←L (B))

)
∧
(
MIX (f←L (B)) → MIY (B)

))
≤

∧
B∈LY

(
MIY (B) ↔ MIX (f←L (B))

)
= QU(f).

Theorem 5.4. Given three mappings IX : LX −→ M , IY : LY −→ M and IZ : LZ −→ M . Let f : X −→ Y and
g : Y −→ Z be surjective mappings. Then

(1) QU(f) ∧QU(g) ≤ QU(g ◦ f).

(2) QU(g ◦ f) ∧RI(f) ∧RI(g) ≤ QU(g).

Proof. (1)

QU(f) ∧QU(g) =

( ∧
B∈LY

(
MIY (B) ↔ MIX (f←L (B))

))
∧

( ∧
C∈LZ

(
MIZ (C) ↔ MIY (g

←
L (C))

))

≤

( ∧
D∈LZ

(
MIY (g

←
L (D)) ↔ MIX (f←L (g←L (D)))

))
∧

( ∧
C∈LZ

(
MIZ (C) ↔ MIY (g

←
L (C))

))

=

( ∧
D∈LZ

(
MIY (g

←
L (D)) ↔ MIX ((g ◦ f)←L (D))

))
∧

( ∧
C∈LZ

(
MIZ (C) ↔ MIY (g

←
L (C))

))
=

∧
C∈LZ

((
MIY (g

←
L (C)) ↔ MIX ((g ◦ f)−1(C))

)
∧
(
MIZ (C) ↔ MIY (g

←
L (C))

))
≤

∧
C∈LZ

(
MIZ (C) ↔ MIX ((g ◦ f)←L (C))

)
= QU(g ◦ f).

(2) Consider QU(g ◦ f),

QU(g ◦ f) =
∧

C∈LZ

(
MIZ (C) ↔ MIX (g ◦ f)←L (C)

)
≤

∧
C∈LZ

(
MIX ((g ◦ f)←L C) → MIZ (C)

)
and

RI(f) =
∧

B∈LY

(
MIY (B) → MIX (f←L (B))

)
≤

∧
D∈LZ

(
MIY (g

←
L (D)) → MIX ((g ◦ f)←L (D))

)
.

Then, we have QU(g ◦ f) ∧RI(f) ≤
∧

D∈LZ

(
MIY (g

←
L (D)) → MIZ (D)

)
.

Hence

QU(g ◦ f) ∧RI(f) ∧RI(g) ≤

( ∧
D∈LX

(
MIX (g←L (D)) → MIZ (D)

))
∧

( ∧
C∈LZ

(
MIZ (C) → MIY (g

←
L (C))

))
=

∧
C∈LZ

((
MIY (g

←
L (C)) → MIZ (C)

)
∧
(
MIZ (C) → MIY (g

←
L (C))

))
=

∧
C∈LZ

(
MIZ (C) ↔ MIY (g

←
L (C))

)
= QU(g).
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6 Conclusions
In this paper, the degree of M -fuzzy family of independent L-fuzzy sets with respect to a mapping from LX to M is
introduced to generalize the notion of (L,M)-fuzzy independent structure. Besides, weak degree and independent-to-
independent degree of a function between two matroids are defined. Based on these, some special degrees (e.g. quotient
degrees and isomorphism degrees) with respect to mappings between two (L,M)-fuzzy matroid-like spaces are defined
and studied in details. Also, we give characterizations of these degrees and investigate relationships among them. In the
view of degree, many notions of matroids (such as circuit, base, and so on) can be generalized. It would be agreeable
that those degrees with respect to the same (L,M)-fuzzy matroid become equal. And we can generalise LX to a lattice
or consider greedoids which is closer connected with convex structures.
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