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Abstract

In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Op-
timization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the
local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesir-
able niching parameters without sacrificing performance. Hence, this paper has two main contributions. First, two novel
parameter-free neighborhood structures named Topological Nearest-Better (TNB) neighborhood and Distance-based
Nearest-Better (DNB) neighborhood are proposed in the topological space and decision space, respectively. Second,
two proposed neighborhoods are combined with Fuzzy PSO (FPSO) and two novel niching algorithms, called TNB-
FPSO and DNB-FPSO, are proposed for solving multimodal optimization problems. It should be noted that we use a
zero-order fuzzy system to balance between exploration and exploitation in the proposed algorithms. To evaluate the
performance of proposed algorithms, we performed a detailed empirical evaluation on the several standard multimodal
benchmark functions. Our results show that DNB-FPSO statistically outperforms the other compared multimodal
optimization algorithms.

Keywords: Particle swarm optimization, topological nearest-better neighborhood, distance-based nearest-better neigh-
borhood, multimodal optimization, fuzzy balancer.

1 Introduction

Particle Swarm Optimization (PSO) is one of the most widely used swarm intelligence algorithms for solving optimization
problems [30]. The original version of PSO is merely ideal for solving unimodal optimization problems, hence it is not
recommended to use the original PSO to solve a multimodal optimization problem because this algorithm tends to
converge to the best solution of the problem [37, 38]. The main reason is that the position of the best global particle is
used to update the velocity of all particles in each iteration. In this case, all particles are simultaneously absorbed into
the position of the global best particle, and therefore the swarm will gradually converges to the global best particle. In
the last decades, great efforts have been made to solve multimodal optimization problems using PSO [37]. To prevent
the convergence of the swarm to the best solution, all of these PSO algorithms are equipped with “niching” techniques
to preserve the swarm diversity. A common limitation has been added to all of these PSO niching algorithms by which
each particle connects only to several other particles in “its local neighborhood”and is attracted only by the particles
of this local neighborhood. It is worth mentioning that the neighborhood can be defined either in the topological space
or decision space.

To produce good results, most niching PSO algorithms need to specify some niching parameters to define the local
neighborhood. The most representative niching parameter is niche radius, which should be determined to demonstrate
how far apart the optima are from each other. Because the performance of these algorithms depends on determining
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the exact value of these niching parameters, they are not easily usable in practice. For example, using a small niche
radius causes a particle to move based on the position of its few neighbors, and consequently those particles which are
best in a local neighborhood eventually form many niches. It should be noted that some of these niches may not be
real niches. Instead, the use of a large niche radius allows a particle to move based on the position of more particles
and consequently there is a risk that we may lose some real niches [37]. Therefore, our motivation is to propose new
neighborhood structures for PSO that remove undesirable niching parameters without sacrificing performance.

The main contributions of this paper can be summarized as follows:

• Two novel local neighborhood named Topological Nearest-Better (TNB) neighborhood and Distance-based Nearest-
Better (DNB) neighborhood are proposed in the topological space and decision space, respectively. In both pro-
posed local neighborhoods, each particle i is connected to a particle j such that: 1) the objective function value
of j is better than that of i, and 2) the particle j is at least as close as to particle i than any other particle k that
its quality is better than particle i.

• Two proposed local neighborhoods are used in Fuzzy PSO (FPSO) and two effective parameter-less niching
algorithms, called TNB-FPSO and DNB-FPSO, are proposed for solving multimodal optimization problems. The
TNB-FPSO and DNB-FPSO do not require specification of any niching parameters such as how far apart between
two optima or the number of optima.

The structure of this paper is organized as follows. In Section 2, the original versions of PSO and the important
multimodal optimization algorithms that were previously introduced are reviewed. In Section 3, two proposed TNB-
FPSO and DNB-FPSO are introduced. Section 4 contains the experimental setups and experimental results of the
paper. Finally, conclusion and future works are given in Section 5.

2 Scientific background and related works

In this section, we first introduce the basic concepts of PSO. Next, we explain the different types of PSO to solve
multimodal optimization problems. Finally, we review the other well-known multimodal optimization algorithms.

2.1 Particle Swarm Optimization (PSO)

An optimization problem involves maximizing or minimizing an objective function by systematically selecting input
values from within an allowed set and calculating the value of the function [7, 28, 55]. The generalization of optimization
theory and techniques to other formulations constitutes a large area of applied mathematics [53, 54]. More generally,
optimization includes finding ”best available” values of some objective function given a defined domain (or input),
including a variety of different types of objective functions and different types of domains[56, 62]. Swarm intelligence
algorithms are stochastic optimization methods that mimic the natural biological evolution and/or the social behavior
of species [12, 15, 16]. The class of swarm intelligence algorithms includes, but is not restricted to, Particle Swarm
Optimization (PSO) [19, 17, 18, 21, 40], Competitive Swarm Optimization (CSO) [13], Gravitational Search Algorithm
(GSA) [14, 20, 49], and Ant Colony Optimization (ACO) [11].

In 1995, Kennedy and Eberhart [30] proposed the PSO algorithm to solve continuous optimization problems. Let

we show each particle as a triple Particlei = ( ~Xi(t), ~Vi(t),
−−−→
Pbesti(t)) in an n-dimensional search space where ~Xi(t) and

~Vi(t) are the position and velocity vectors of the ith particle, respectively, and
−−−→
Pbesti(t) is the vector of personal best

position found by the particle as follows [30]:

~Xi(t) = (x1i (t), x2i (t), . . . , xdi (t), . . . , xni (t)) for i = 1, 2, . . . , N. (1)

~Vi(t) = (v1i (t), v2i (t), . . . , vdi (t), . . . , vni (t)) for i = 1, 2, . . . , N. (2)
−−−→
Pbesti(t) = (pbest1i (t), pbest2i (t), . . . , pbestdi (t), . . . , pbestni (t)) for i = 1, 2, . . . , N. (3)

where N is the number of particles (i.e. swarm size). Also, suppose the best position of the swarm is shown by vector
−−−→
Gbest(t) as follows:

−−−→
Gbest(t) = (gbest1(t), gbest2(t), . . . , gbestd(t), . . . , gbestn(t)) (4)

The next velocity of the ith particle is calculated as follows [30]:

vdi (t+ 1) = w(t)× vdi (t) + c1 × r1 × (pbestdi (t)− xdi (t)) + c2 × r2 × (gbestd(t)− xdi (t)), (5)
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where w(t) is inertia weight, c1 > 0 and c2 > 0 are acceleration coefficients, r1 and r2 are random numbers in the
interval [0,1], and vdi (t + 1) and vdi (t) are the next and current velocity of the ith particle, respectively. It should be
noted that w(t) manage the balance between exploration and exploitation, so that a larger value of this parameter
encourages exploration, while a smaller value of it provides exploitation. To do a good balance between exploration
and exploitation, we propose a fuzzy inference system to adjust the value of w(t) in Section 3.3.

To update the next position of the ith particle, the current position of this particle, i.e. xdi (t), and its next velocity,
vdi (t+ 1), is used as follows [30]:

xdi (t+ 1) = xdi (t) + vdi (t+ 1). (6)

2.2 Related works for multimodal optimization

As its name implies, a multimodal optimization problem has several global optima, or just several global optima and
multiple local optima [37, 38]. It can be said that most of the optimization problems in the real world are multimodal,
such as metabolic network modelling [32], femtosecond laser pulse shaping problem [60], job shop scheduling problem
[42, 43], resource constrained multi-project scheduling problems [44], automatic point determination [10], seismological
inverse problem [31], Monte Carlo nonlinear filtering [1], image segmentation [6], clustering [9, 52], feature selection
[27], real-time tracking of body motion [69], competitive facilities location and design [50], solving systems of equations
[61], protein structure prediction [65], induction motor design for electric vehicle [8], learning multimodal parameters
of neural network ensembles [22], and so on. Recently, many efforts have been done to solve multimodal optimization
problems, which can be divided into two classes: depending on niching parameters and parameters independent. In
the former class, users must define the niching parameters to determine the size of each niche. The most important
weakness of these algorithms is their dependence on the niche parameters, because the definition of parameters depends
heavily on the multimodal optimization problem being solved.

2.2.1 Parameter-dependent niching PSO

Brits et al. [5] proposed NichePSO by using sub-swarm in which several sub-swarms are created from an initial swarm by
monitoring the particles’fitness. Next, the performance of NichePSO is increased by Ozcan et al. [39] using fanaticism
and climbing techniques. Li proposed a Species-based PSO (SPSO) [33] in which each species and its corresponding
dominant particles form a separate sub-swarm. SPSO requires to set a niching radius r to define the size of a niche. At
each generation, all particles are sorted in descending order by their fitness value. Then, by calculating the Euclidean
distance between the two arbitrary particles, the algorithm determines whether or not the two particles are within the
same niche. For example, two particles are in the same niche if the Euclidean distance between them is smaller than r.

After dividing the niches, the algorithm updates each particles gbest in each niche by the best particles pbest in
this niche. The swarm probably traps into local optima or the algorithm may miss some global optima if r is too
small. Iwamatsu and Masao [24] proposed a modified PSO called Multi-species PSO (MSPSO) which has the same
idea as SPSO expect that MSPSO sorts all the particles in descending order by their personal best fitness values at
each generation. Bird and Li proposed a version of SPSO called Enhanced SPSO (ESPSO) [3] which enhances SPSO
by increasing the robustness of the niching parameter to the point that the algorithm is still effective even if it is not
used at all.

Passaro and Starita [41] developed a novel niching PSO, called k-means-based PSO (kPSO), which identify niches by
clustering particles using the standard k-means clustering and Bayesian information criterion. Seo et al. [58] developed
a novel niching PSO to solve multimodal function optimization problems, called Multi-Grouped PSO (MGPSO), which
gives a territory to every group to avoid overlapping of discovered solutions. In MGPSO, if the radius became too
small before sufficient convergence level, some groups cannot find their own solutions and wandered around other
groups’solutions. To overcome this defect, they proposed another algorithm based on MGPSO called Auto-Tuning
MGPSO (AT-MGPSO) [59]. In AT-MGPSO, a competition mechanism is invited and all the groups have a different
radius.

Qu et al. [48] developed a distance-based locally informed PSO (LIPS) which uses several local best positions to
guide the search direction of each particle instead of the global best position. LIPS can operate as a stable niching
algorithm using the information provided by particles’neighborhoods assessed by Euclidean distance. Qu et al. [47]
compare LIPS with FER-PSO, RPSO, SPSO, and several state-of-the-art evolutionary multimodal optimizers on several
commonly used multimodal benchmark functions. The experimental results suggest that LIPS can provide statistically
superior and more consistent performance over the niching algorithms on the test functions, without incurring any
severe computational burdens.
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2.2.2 Parameter-less niching PSO

Li [34] proposed a multimodal PSO based on Fitness Euclidean-distance Ratio (FER-PSO). In this algorithm, particles
select the individual’s gbest whose fitness value has changed the most greatly in unit distance according to FER as
the attractor when particles update velocities. FER-PSO needs to compute O(N2) (N is the swarm size) FER in each
iteration. Although FER-PSO does not require the specification of niching parameters, it introduces a new parameter
α, which needs to be determined from the search range of each variable.

Li [35] proposed a new niching PSO based on Ring topology (RPSO). The algorithm does not depend on any
niching parameter. He has demonstrated that the PSO algorithms with ring topology can induce more stable niching
behavior. The algorithm uses a PSO with ring topology to guide the particles in which each particle interacts only with
its immediate neighbors. Different niches are formed by using the ring topology and subsequently the optimization of
multiple peaks are realized. One major disadvantage of RPSO is that the ring topology links members from different
niches also. If the neighbors are not from the same niche targeting a single peak, it is difficult for the niching algorithm
to converge and locate the peaks effectively. In the other words, if two particles are from different niches, they
may oscillate between two peaks. Note that the oscillation between two niches is unfavorable for exploration and
exploitation. However, Li has demonstrated that RPSO can form stable niches across different local neighborhoods,
eventually locating multiple global/local optima on a set of selected problems.

2.2.3 Other recent parameter-less niching algorithms

Recently, to eliminate the dependence of the niching algorithms on niching parameters, some researchers have proposed
the idea of converting multimodal optimization problem into a multi-objective optimization problem and then solving the
obtained multi-objective optimization problem by a multi-objective evolutionary algorithm. Wang et al. [63] proposed
a method to convert a multimodal optimization problem into a bi-objective optimization problem with two conflicting
objectives. They showed that after the above conversion, all optimal solutions of the multimodal optimization problem
are placed on the Pareto front of the bi-objective optimization problem. Therefore, they have used the well-known
NSGA-II to solve the bi-objective optimization problem to find the optimal solutions of the multimodal optimization
problem.

Yu et al. [66] proposed a novel method to transform multimodal optimization problem into a tri-objective opti-
mization problem with three conflicting objectives as follows: 1) the objective function of multimodal optimization
problem, 2) the Euclidean distance between each solution and a set of reference points, and 3) the shared fitness of each
solution based on niche count. They mathematically proved that after the above conversion, all optimal solutions of the
multimodal optimization problem are placed on the Pareto front of the tri-objective optimization problem. Therefore,
they have proposed a tri-objective differential evolution algorithm to solve the bi-objective optimization problem to
find the optimal solutions of the multimodal optimization problem.

3 Proposed algorithms

In this section, two proposed PSO-based algorithms for solving multimodal optimization problems are proposed. First,
Topologically Nearest-Better Fuzzy PSO (TNB-FPSO) is described in subsection 3.1 Then, Distance-based Nearest-
Better Fuzzy PSO (DNB-FPSO) is described in subsection 3.2

3.1 TNB-FPSO: Topological Nearest-Better Fuzzy PSO

In PSO, velocity guides the search direction of the particles. In the original form of PSO, the velocity vector for a
particle i is updated according to four other vectors that are the current position of the particle, the personal best
position of the particle, the global best position found over the whole swarm, and the previous velocity of the particle.
In contrast to original PSO, a new form of the velocity updating rule is introduced in the proposed TNB-FPSO in
which “the topologically nearest-better position” rather than “the global best position” is used to guide the search
direction of the particles. In the other words, in TNB-FPSO, the velocity vector for particle i is updated according
to the current position of the particle, the personal best position of the particle, and the topologically nearest-better
position found over the neighborhood of the personal best position of the particle.

In proposed TNB neighborhood, each particle i is connected to a particle j so that: 1) the objective function value
of particle j is better than particle i, and 2) the particle j is topologically at least as close as to particle i as any other
particle k that its quality is better than particle i. An example of TNB neighborhood for a minimization problem is
illustrated in Fig. 1.
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Fig 1. An example of TNB neighborhood for a minimization problem. (a) Objective function value of each particle
is inside the cell corresponding to that particle. (b) Above and below the array of objective function values are arrows
showing TNB neighborhood. Each particle is connected to its TNB neighbor. (c) The number within each cell of the
array is TNB neighbor of this cell. For example, the number 2 within cell 1 means that particle 2 is the TNB neighbor
of particle 1.

The velocity update rule of TNB-FPSO uses the formula given below while the position update rule is the same as
the position update rule of original PSO (i.e. Eq. (6)):

vdi (t+ 1) = w(t)× vdi (t) + c1 × r1 × (pbestdi (t)− xdi (t)) + c2 × r2 × (TNBd
i (t)− xdi (t)), (7)

where
−−−→
TNBi(t) = (TNB1

i (t), . . . , TNBd
i (t), . . . , TNBn

i (t) is the TNB personal best position over the neighborhood of
the personal best of particle i. Algorithm (1) can find all TNB neighbors, i.e. for each particle i, find its TNB neighbor.
As can be seen, this algorithm consists of three main phases.

In phases 1 and 2, the Left TNB (LTNB) neighbors and the Right TNB (RTNB) neighbors are found by the stack
data structure, respectively. In phase 3, the TNB neighbors are found by scanning LTNB and RTNB.

To determine how efficiently Algorithm (1) find all TNB neighbors, we need to analyze the time complexity of the
algorithm. Since three main phases of the algorithm are independent, so the time complexity of each phase should be
analyzed separately, and ultimately, the complexity of the algorithm is equal to the sum of the complexity of all phases.
In the following, the complexity of the time of each phase is observed.

The basic operation of phase 1 of Algorithm (1) is “Pop(S)” instruction. Despite a nested loop in phase 1, its time
complexity is linear in term of swarm size, i.e. O(N), because every step of the inner loop pops an item that had been
added in some previous step of the outer loop. In the other words, in the worst case the maximum number of executing
the instruction “Pop(S)” is of order O(N), because in the worst case we push at most N item into the stack. This
analysis is true for phase 2 of the Algorithm (1).

The basic operation of phase 3 is “If-else” instruction which its time complexity is linear in term of swarm size, i.e.
O(N). Therefore, the growth order of Algorithm (1) is O(N).

The pseudo-code of the TNB-FPSO is described in Algorithm (2).

3.2 DNB-FPSO: Distance-based Nearest-Better Fuzzy PSO

In contrast to TNB neighborhood, the DNB neighborhood is defined in the decision space. In proposed DNB neigh-
borhood, each particle i is connected to a particle j so that: 1) the objective function value of particle j is better than
particle i, and 2) in decision space, the particle j is at least as close as to particle i than any other particle k that its
quality is better than particle i. An example of DNB neighborhood is illustrated in Fig. 2. As can be seen, in contrast
to TNB neighborhood that some particles must have topological neighbors from different niches, in DNB neighborhood
the neighbor of a particle is likely to form from the similar area or the same niche. Note that moving towards the DNB
neighbor can satisfy two important criteria in multimodal optimization, i.e. convergence and diversity. We can gain
the convergence because the DNB neighbor encourages a particle to move toward a better solution; and we can gain
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Algorithm (1): Outline of finding all TNB neighbors for minimization problems.

Inputs: The position of all particles, i.e. Pos(t) =
−−−→
Pbest1(t),

−−−→
Pbest2(t), . . . ,

−−−→
PbestN (t).

//Phase 1: Finding the Left TNB (LTNB) neighbors.
S 6= ∅, //S is a stack
for i=1 to N do

while S 6= ∅ do
j = Top(S);

if f(
−−−→
Pbesti(t)) 6 f(

−−−→
Pbestj(t))

then
Pop(S)

else
Break the while loop;

end

end
if S = ∅ then

LTNBi = −∞
else

LTNBi = Top(S);
end

end
// Phase 2: Finding the Right TNB (RTNB) neighbors.
for i=N to 1 do

while S 6= ∅ do
j = Top(S);

if f(
−−−→
Pbesti(t)) 6 f(

−−−→
Pbestj(t))

then
Pop(S)

else
Break the while loop;

end

end
if S = ∅ then

RTNBi = +∞
else

RTNBi = Top(S);
end
Push i onto S;

end
// Phase 3: Finding the TNB neighbors by LTNB and RTNB.
for i=1 to N do

if LTBNi == −∞ AND RTBNi == +∞ then
TNBi = i;

else
if i− LTNBi < RTNBi − i then

TNBi = LTNBi;
else

if i− LTNBi > RTNBi − i then
TNBi = RTNBi

else

if i− LTNBi == RTNBi − i and f(
−−−→
PbestLTNBi

(t)) 6 f(
−−−→
PbestRTNBi

(t)) then
TNBi = LTNBi;

else
TNBI = RTNBi

end

end

end

end

end

Output:
−−−→
TNB(T ) = (TNB1, TNB2, . . . , TNBN ).
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Algorithm (2): Outline of TNB-FPSO for minimization problems.
Initialize w, N , and stopping criterion;
t = 0;
for i = 1 to N do

Randomly generate the initial solution ~Xi(t);−−−→
Pbesti(t) = ~Xi(t);

Randomly generate the initial velocity ~Vi(t);
end
while stopping criterion is not satisfied do

Calculate
−−−→
TNB(t) = (TNB1, TNB2, . . . , TNBN ) by Algorithm (1);

for i = 1 to N do
for d = 1 to N do

Calculate the next velocity vdi (t+ 1) by Eq. (7);
Update the next position xdi (t+ 1) by Eq. (6);

end

if f( ~Xi(t+ 1)) < f(
−−−→
Pbesti(t)) then

−−−→
Pbesti(t+ 1) = ~Xi(t+ 1);

else
−−−→
Pbesti(t+ 1) =

−−−→
Pbesti(t);

end

end
t = t+ 1;
Update w(t) by fuzzy balancer;

end

Output: ~Xi(t), i = 1, . . . , N .

the diversity because the DNB neighbor encourages a particle to move toward a near solution as possible. Note that
the probability for particle and its nearest-better neighbor to belong to different niches is low.

Fig 2. An example of DNB neighborhood for a minimization problem. (a) Objective function value of each particle
is inside the cell corresponding to that particle. (b) Arrows are showing the DNB neighborhood. Each particle is
connected to its DNB neighbor. (c) The number within each cell of the array is the DNB neighbor index of this cell.
For example, the number 2 within cell 1 means that particle 2 is the DNB neighbor of particle 1.

The velocity update rule of DNB-FPSO uses the formula given below while the position update rule is the same as
the position update rule of original PSO (i.e. Eq. (6)):

vdi (t+ 1) = w(t)× vdi (t) + c1 × r1 × (pbestdi (t)− xdi (t)) + c2 × r2 × (DNBd
i (t)− xdi (t)), (8)

where
−−−→
DNBi(t) = (DNB1

i (t), . . . , DNBd
i (t), . . . , DNBn

i (t)) is the DNB personal best position over the neighborhood
of the personal best of particle i is obtained by Algorithm (3). The time complexity of Algorithm (3) is O(n×N2). Note
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that the lower bound of the swarm and evolutionary algorithms that calculate the distance matrix between each pair of
the swarm in decision space is O(n×N2). Therefore, the DNB neighborhood is an efficient distance-based neighborhood
in decision space, because based on the theory of computational complexity it does not add any significant overhead
to the algorithm. For example, the swarm and evolutionary algorithms that try to find K-nearest neighbors of each
particle in decision space are not efficient, because their time complexity is O(K × n × N2). The pseudo-code of the

Algorithm (3): Outline of finding all DNB neighbors for minimization problems.
Inputs: Personal best position of all particles.
for i = 1 to N do

DNBi(t) = 0;
minDist =∞;
for j = 1 to N do

if f(
−−−→
Pbestj(t)) < f(

−−−→
Pbesti(t)) AND Distance (

−−−→
Pbesti(t),

−−−→
Pbestj(t)) < minDist then

DNBi(t) = j;

minDist=Distance (
−−−→
Pbesti(t),

−−−→
Pbestj(t));

end

end
if DNBi(t) == 0 then

DNBi(t) = i;
end

end

Output:
−−−→
DNB(t) = (DNB1, DNB2, . . . , DNBN ).

DNB-FPSO is described in Algorithm (4).

Algorithm (4): Outline of DNB-FPSO for minimization problems.
Initialize w, N , and stopping criterion;
t = 0;
for i = 1 to N do

Randomly generate the initial solution ~Xi(t);−−−→
Pbesti(t) = ~Xi(t);

Randomly generate the initial velocity ~Vi(t);
end
while stopping criterion is not satisfied do

Calculate
−−−→
DNB(t) = {DNB1, DNB2, . . . , DNBN} by Algorithm (3);

for i = 1 to N do
for d = 1 to N do

Calculate the next velocity vdi (t+ 1) by Eq. (8);
Update the next position xdi (t+ 1);

end

if f(~xi(t+ 1)) < f(
−−−→
Pbesti(t)) then

−−−→
Pbesti(t+ 1) = ~xi(t+ 1);

else
−−−→
Pbesti(t+ 1) =

−−−→
Pbest(t);

end

end
t = t+ 1;
Update w(t) by fuzzy balancer;

end
Output: ~xi(t), i = 1, . . . , N.
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3.3 Fuzzy balancer

In this section, a fuzzy inference system is proposed to intelligently manage the balance between exploration and
exploitation by adjusting the value of w(t). For this purpose, a zero-order Sugeno fuzzy inference system with two
inputs and one output is used [64]. Two inputs for the proposed fuzzy inference system are the normalized current
iteration of the algorithm and the normalized diversity of swarm in decision space. The reason for selecting the current
iteration as the first input is clear: each algorithm must explore the search space with a diverse swarm at the beginning
and change into convergence by lapse of iterations. In this paper, the normalized current iteration is calculated for
fuzzy balancer as follows:

iter =
t

T
, (9)

where t is the number of iterations elapsed and T is the maximal number of iterations. It is necessary to mention
that iter is equal to “0” if the algorithm is in the first iteration, is equal to “1” if the algorithm is in the last iteration,
and in general we have 0 6 iter 6 1. The main reason for selecting the diversity of swarm as a second input of fuzzy
balancer is that whatever the swarm diversity is, we have good exploration and it does not require more exploration.
In this paper, we propose a new equation to calculate diversity as follows:

diversity =
4

n× (b− a)2

n∑
d=1

variance(xd
1, x

d
2, . . . , x

d
N ), (10)

where N is the number of particles, n is the number of dimensions, b and a are upper and lower bounds of variables,
and variance(xd1, x

d
2, . . . , x

d
N ) is the variance between all particles in the dimension d. It is noteworthy that diversity is

equal to “0” if all particles converge to a similar solution, is equal to “1” if for each dimension of all particles we have

variance(xd1, x
d
2, . . . , x

d
N ) =

(b− a)2

4
in which

(b− a)2

4
is the upper bound on the variance of each variable that takes

on values in range [a, b]. Therefore, in general we have 0 6 diversity 6 1. The output of the proposed fuzzy inference
system is the value of w(t), because the exploration ability of the proposed algorithm depends on its value. As we
know, a larger value of this parameter encourages exploration, while a smaller value of it provides exploitation. Using
these facts, the following rule-base is proposed to calculate the value of w(t) by the fuzzy inference system:

1. If iter is Low and diversity is Low, then w(t) = V High.

2. If iter is Low and diversity is Med, then w(t) = High.

3. If iter is Low and diversity is High, then w(t) = Med.

4. If iter is Med and diversity is Low, then w(t) = High.

5. If iter is Med and diversity is Med, then w(t) = Med.

6. If iter is Med and diversity is High, then w(t) = Low.

7. If iter is High and diversity is Low, then w(t) = Med.

8. If iter is High and diversity is Med, then w(t) = Low.

9. If iter is High and diversity is High, then w(t) = V Low.

For partitioning the input spaces of iter and diversity variables, we use a general rule where the resulting fuzzy term
sets for both variables are orthogonal with ε-completeness equal to 0.5. Fig. 3 shows the input membership functions
of the proposed fuzzy inference system. The rules consequences are set as: V High = 1, High = 0.5,Med = 0.2, Low =
0.1, andV Low = 0.01.

Fig 3. Input membership functions of the proposed fuzzy inference system. Two inputs for the proposed fuzzy
inference system are iter (the normalized current iteration of the algorithm) and diversity (the normalized diversity of
swarm in decision space).
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4 Numerical experiments

4.1 Experimental setup

In the following, we first describe the characteristics of the selected benchmarks. Then, the two performance indicators
used in this paper are presented. Finally, the experimental setting of TNB-FPSO and DNB-FPSO are described.

4.1.1 Benchmarks description

In this paper, eight novel standard benchmark multimodal test functions [47] are used to evaluate the performance of
the proposed algorithms. Table 1 lists the basic information of these test functions which coordinate rotation and shift
operations to create linkage among different dimensions and to place the optima at a different location, respectively
[47]. Note that all these benchmarks are minimization functions.

Table 1
Main characteristics of the eight expanded and composition minimization multimodal functions [47].

Test Function Name Dimensions No. of Global/Local Peaks Optimum
Peaks Value

F1: Shifted and rotated expanded two-peak trap 5 1/15 100
10 1/55 100
20 1/210 100

F2: Shifted and rotated expanded Five-Uneven-Peak Trap 2 4/21 200
5 32/0 200
8 256/0 200

F3: Shifted and rotated Expanded Equal Minima 2 25 300
3 125/0 300
4 625/0 300

F4: Shifted and rotated Expanded Decreasing Minima 5 1/15 400
10 1/55 400
20 1/210 400

F5: Shifted and rotated expanded uneven minima 2 25/0 500
3 125/0 500
4 625/0 500

F6: Shifted and rotated expanded Himmelblaus function 4 16/0 600
6 64/0 600
8 256/0 600

F7: Shifted and rotated expanded six-hump camel back 6 8/0 700
10 32/0 700
16 256/0 700

F8: Shifted and rotated modified Vincent function 2 36/0 800
3 216/0 800
4 1296/0 800

4.1.2 Performance measure

In this paper, Average Number of Optima Found (ANOF) as performance indicator are used which use the locations of
the optima. ANOF use the given level of accuracy, which a level of accuracy, typically 0 < ε < 1, is a value indicating
how close the computed solutions to the known global peaks are. If the difference from a computed solution to a
known global optimum is below ε, then the peak is considered to have been found. Moreover, to ensure different peaks
are located by different solutions, a distance restriction is also imposed. That is only when the distance between one
solution and its respective optimum is less than disthreshold and the difference is below ε, the true solution is considered
to have been found. In this way, it avoids one solution being counted more than once when there is no solution near
an optimum.
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4.1.3 Experimental setting

In total, seven multimodal optimization algorithms are examined in our experiments:

• TNB-FPSO: the proposed Topologically Nearest-Better Fuzzy PSO,

• DNB-FPSO: the proposed Distance-based Nearest-Better Fuzzy PSO,

• LIPS [48]: Locally Informed PSO,

• R2PSO [35]: a PSO with a ring topology; each particle of swarm interacts only with its immediate particle to its
right.

• FER-PSO [34]: PSO based on Fitness Euclidean-distance Ratio.

• MOMMOP [63]: Multi-objective Optimization for locating multiple optimal solutions of Multimodal Optimization
Problems.

• TriDEMO [66]: Tri-objective Differential Evolution for multimodal optimization.

In this experiment, the level of accuracy (ε), niching radius (disthreshold, population size, and maximal number of
function evaluations allowed are as follows (these settings are applied to all compared algorithms):

• the level of accuracy (ε) is set by 0.001,

• the niching radius is set by 0.1*n where n is the dimension of the problem,

• the population size is set by 500 * Round(
√
n), and

• the maximal number of function evaluations is set by 2000 * n *
√
q where q is the number of optima.

Generally, population size and maximal number of function evaluations are related to the number of optima to
be located. Large number of optima requires a larger population size and more function evaluations. Note that the
performance measure of each algorithm depends on the specified level of accuracy.

To proposed TNB-FPSO and DNB-FPSO, we set c1 = 1 and c2 = 2. The values of these parameters are obtained
experimentally. It is noteworthy that the experimental settings of LIPS, R2PSO, FER-PSO, MOMMOP, and TriDEMO
are adopted exactly as in their original works. All algorithms were implemented in MATLAB 2015a environment and
run on a PC with an Intel 2.2 GHz CPU. Each algorithm is run for 50 independent replications.

4.2 Experimental results

In this section, we evaluate the effectiveness of the TNB-FPSO and DNB-FPSO on the several complex multimodal opti-
mization functions. Table 3 illustrates the results of TNB-FPSO, DNB-FPSO, and four recent multimodal optimization
algorithms LIPS, R2PSO, FER-PSO, MOMMOP, and TriDEMO in case of ANOF for F1-F8.

In Table 3 the best algorithm is highlighted in boldface for each test function. As can be seen, DNB-FPSO performs
the best on the most test functions. It can be seen that DNB-PSO performs the best on most of the test functions (13
out of 24 test functions). DNB-PSO also shows clear superiority compared with each of the six multimodal optimization
algorithms. In order to determine the statistical significance of the advantage of TNB-FPSO and DNB-FPSO, t-test
(all compared with TNB-FPSO and all compared with DNB-FPSO) is applied and shown in two last rows of each test
function. The symbols +, ≈, and − represent that other methods are statistically inferior to, equal to, or superior to
the proposed algorithm, respectively. The last six rows of this table summarize how many cases that TNB-FPSO and
DNB-FPSO perform better, similar, or worse than other algorithms. From the results, we can observe that DNB-FPSO
always perform better or equal when compared with LIPS, R2PSO, FER-PSO, and MOMMOP methods on the test
functions F1F8.

Figs. 4 and 5 plot the convergence behavior and quality attained by TNB-FPSO, DNB-FPSO, LIPS, R2PSO, FER-
PSO, and MOMMOP over function evaluation for functions F3 and F8 of Table 1, respectively. As can be seen, the
proposed algorithms have better convergence performance and obtain better results than that of the other multimodal
optimization algorithms. The above statistical comparisons confirm the effectiveness of Topological Nearest-Better
(TNB) neighborhood and Distance-based Nearest-Better (DNB) neighborhood when used together with the swarm
intelligence algorithms.
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Table 2

Comparison of TNB-FPSO, DNB-FPSO, LIPS, R2PSO, FER-PSO, MOMMOP, and TriDEMO in case of ANOF for
expanded minimization multimodal functions F1-F8.

Function No. Dimension Measure TNB-FPSO DNB-FPSO LIPS R2PSO FER-PSO MOMMOP TriDEMO
F1 5 Mean 0 1.74 0 0 0 0 1.00

Std 0 0.80 0 0 0 0 0.60
t-test (TNB-FPSO) NA - ≈ ≈ ≈ ≈ -
t-test (DNB-FPSO) + NA + + + + ≈

10 Mean 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0
t-test (TNB-FPSO) NA ≈ ≈ ≈ ≈ ≈ ≈
t-test (DNB-FPSO) ≈ NA ≈ ≈ ≈ ≈ ≈

20 Mean 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0
t-test (TNB-FPSO) NA ≈ ≈ ≈ ≈ ≈ ≈
t-test (DNB-FPSO) ≈ NA ≈ ≈ ≈ ≈ ≈

F2 2 Mean 3.65 4.56 3.12 3.57 1.85 0.42 3.69
Std 0.47 0.65 0.49 0.62 0.97 0.73 0.59
t-test (TNB-FPSO) NA ≈ ≈ ≈ + + ≈
t-test (DNB-FPSO) ≈ NA ≈ ≈ + + ≈

5 Mean 0 1.14 0 0 0 0 9.04
Std 0 0.68 0 0 0 0 2.59
t-test (TNB-FPSO) NA - ≈ ≈ ≈ ≈ -
t-test (DNB-FPSO) + NA + + + + -

8 Mean 0 10.50 0 0 0 0 18.75
Std 0 2.63 0 0 0 0 3.73
t-test (TNB-FPSO) NA - ≈ ≈ ≈ ≈ -
t-test (DNB-FPSO) + NA + + + + -

F3 2 Mean 22.83 23.70 19.64 19.03 22.12 20.27 19.63
Std 1.05 0.97 1.49 1.28 1.37 2.15 1.84
t-test (TNB-FPSO) NA ≈ + + ≈ + +
t-test (DNB-FPSO) ≈ NA + + ≈ + +

3 Mean 64.23 54.06 20.84 7.39 14.46 16.71 49.36
Std 3.04 3.27 4.21 2.37 2.75 4.26 4.02
t-test (TNB-FPSO) NA + + + + + +
t-test (DNB-FPSO) - NA + + + + +

4 Mean 69.37 60.26 25.17 2.73 17.27 7.47 80.71
Std 4.42 5.28 2.84 0.84 4.05 1.37 7.42
t-test (TNB-FPSO) NA + + + + + -
t-test (DNB-FPSO) - NA + + + + -

F4 5 Mean 0.65 1.06 0 0 0 0 0.95
Std 0.27 0.32 0 0 0 0 0.60
t-test (TNB-FPSO) NA - + + + + ≈
t-test (DNB-FPSO) + NA + + + + ≈

10 Mean 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0
t-test (TNB-FPSO) NA ≈ ≈ ≈ ≈ ≈ ≈
t-test (DNB-FPSO) ≈ NA ≈ ≈ ≈ ≈ ≈

20 Mean 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0
t-test (TNB-FPSO) NA ≈ ≈ ≈ ≈ ≈ ≈
t-test (DNB-FPSO) ≈ NA ≈ ≈ ≈ ≈ ≈

F5 2 Mean 22.21 24.42 17.02 15.85 20.06 22.05 21.74
Std 1.70 2.82 1.06 2.18 1.46 1.47 1.87
t-test (TNB-FPSO) NA ≈ + + + ≈ ≈
t-test (DNB-FPSO) ≈ NA + + + + +

3 Mean 62.25 55.38 27.35 0 15.06 10.82 42.24
Std 5.31 6.08 3.72 0 3.42 1.95 3.90
t-test (TNB-FPSO) NA + + + + + +
t-test (DNB-FPSO) - NA + + + + +

4 Mean 73.20 62.64 23.80 0 17.54 0 53.47
Std 5.22 5.39 5.49 0 2.80 0 4.52
t-test (TNB-FPSO) NA + + + + + +
t-test (DNB-FPSO) - NA + + + + +
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Function No. Dimension Measure TNB-FPSO DNB-FPSO LIPS R2PSO FER-PSO MOMMOP TriDEMO
F6 4 Mean 7.30 11.76 0.50 0.04 0 0 11.23

Std 0.94 1.26 0.71 0.2 0 0 1.85
t-test (TNB-FPSO) NA - + + + + -
t-test (DNB-FPSO) + NA + + + + ≈

6 Mean 4.50 44.88 40.10 0 0 0 10.97
Std 1.90 1.66 1.97 0 0 0 1.64
t-test (TNB-FPSO) NA - - + + + -
t-test (DNB-FPSO) + NA ≈ + + + +

8 Mean 0.80 81.20 65.70 0 0 0 7.32
Std 0.78 5.18 2.91 0 0 0 1.05
t-test (TNB-FPSO) NA - - + + + -
t-test (DNB-FPSO) + NA + + + + +

F7 6 Mean 2.90 1.8 0 0 0 0 1.48
Std 1.52 0.80 0 0 0 0 0.73
t-test (TNB-FPSO) NA + + + + + +
t-test (DNB-FPSO) - NA + + + + ≈

10 Mean 3.10 6.32 0 0 0 0 2.95
Std 1.66 2.01 0 0 0 0 1.57
t-test (TNB-FPSO) NA - + + + + ≈
t-test (DNB-FPSO) + NA + + + + +

16 Mean 1.60 25.52 0.10 0 0 0 2.63
t-test (TNB-FPSO) NA - + + + + ≈
t-test (DNB-FPSO) + NA + + + + +

F8 2 Mean 17.40 32.12 29.72 17.52 27.92 10.30 18.16
Std 2.54 1.50 1.91 2.84 1.84 2.05 2.94
t-test (TNB-FPSO) NA - - ≈ - + ≈
t-test (DNB-FPSO) + NA ≈ + ≈ + +

3 Mean 34.90 88.60 75.04 35.76 59.80 2.30 55.71
Std 3.60 4.70 4.48 5.92 3.97 1.70 3.82
t-test (TNB-FPSO) NA - - ≈ - + -
t-test (DNB-FPSO) + NA + + + + +

4 Mean 34.40 121.92 90.20 1.24 72.96 0.8 63.47
Std 3.56 5.04 6.05 1.12 5.64 0.94 5.16
t-test (TNB-FPSO) NA - - + - + -
t-test (DNB-FPSO) + NA + + + + +

t-test summary for TNB- Better NA 5 11 14 13 16 5
FPSO against others Similar NA 7 8 10 8 8 10

Worse NA 12 5 0 3 0 9
t-test summary for DNB- Better 12 NA 17 19 18 20 13
FPSO against others Similar 7 NA 7 5 6 4 8

Worse 5 NA 0 0 0 0 3

Fig 4. Convergence behavior and quality attained by TNB-FPSO, DNB-FPSO, LIPS, R2PSO, FER-PSO, and
MOMMOP over function evaluation for function F3 with: (a) 2 dimensions, (b) 3 dimensions, and (c) 4 dimensions.
These results indicate that the proposed methods generates better solution set than the other multimodal algorithms
for function F3.

Fig 5. Convergence behavior and quality attained by TNB-FPSO, DNB-FPSO, LIPS, R2PSO, FER-PSO, and
MOMMOP over function evaluation for function F8 with: (a) 2 dimensions, (b) 3 dimensions, and (c) 4 dimensions.
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These results indicate that the proposed methods generates better solution set than the other multimodal algorithms
for function F3.

4.3 Discussion

In this section the features of TNB-FPSO and DNB-FPSO are compared with each other and other multimodal
optimization algorithms, respectively.

4.3.1 TNB-FPSO vs. DNB-FPSO

DNB-FPSO is more effective than TNB-FPSO. In the TNB-FPSO, it cannot be avoided that some particles must have
topological neighbors from different niches. If two particles are from different niches, they may oscillate between two
peaks that waste the function evaluations. During the exploration stage (early search stage), particles are confined to
locate additional niches that are positioned between two previously identified niches due to the oscillation. However,
if there is no niche between two previously identified niches, oscillation wastes function evaluations. In contrast to
TNB-FPSO, DNB-FPSO significantly reduces the oscillation between particles, because in most cases a particle and
its nearest-better neighbor are within the same niche.

TNB-FPSO is more efficient than DNB-FPSO. The time complexity of TNB-FPSO is O(N), whereas the time
complexity of DNB-FPSO is O(n×N2). The lower efficiency of DNB-FPSO is due to the computation of the distance
matrix of particles in decision space. The distance calculation can be expensive since every particle has to be compared
with all others in decision space.

4.3.2 Nearest-better neighborhood vs. other popular neighborhoods

Nearest-Better neighborhood is a parameter-less technique. In contrast to the most neighborhood, nearest-better
neighborhood does not require specification of any explicitly niching parameters such as how far apart between two
optima or the number of optima. For example, there exist a niching parameter in LIPS, i.e. the neighborhood size
parameter, which must be set by a user. In FER-PSO, the FER value is calculated based on the ratio of the fitness
difference and the Euclidean distance between a solutions personal best and other personal best of the solutions in the
population, scaled by a factor so that neither the fitness nor the Euclidean distance becomes too dominating. The
calculation of FER would require some knowledge about the search range of each variable. It is obvious that this
knowledge may not be available in many real-world optimization problems.

Nearest-Better neighborhood is an efficient technique. In the best of our knowledge, the time complexity of existing
best topological and distance-based PSO algorithms are O(N) and O(n × N2), respectively. Hence, we can say that
nearest-better neighborhood is an efficient niching technique. For a better comparison, Table 4 shows the growth order
of the time complexity for the proposed algorithms and other PSO algorithms.

Table 4
The growth order of the time complexity for the proposed algorithms and other PSO algorithms.

Topological PSO algorithms Distance-based PSO algorithms

Algorithm Complexity Algorithm Complexity

RPSO O(N) FER-PSO O(n×N2)

TNB-FPSO O(N) LIPS O(nsize× n×N2)

DNB-FPSO O(n×N2)
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5 Conclusions and future works

Most existing Particle Swarm Optimization (PSO) require specification of some niching parameters to solve multimodal
optimization problems. In this paper, we proposed two novel parameter-less niching versions of PSO, called Topologically
Nearest-Better Fuzzy PSO (TNB-FPSO) and Distance-based Nearest-Better Fuzzy PSO (DNB-FPSO), for solving
multimodal optimization problems. It should be noted that we proposed a zero-order fuzzy system to balance between
exploration and exploitation in the proposed algorithms. The proposed algorithms do not require specification of any
niching parameters such as how far apart between two optima, or the number of optima. Empirical evaluation of
the TNB-FPSO and DNB-FPSO on the several complex multimodal benchmark functions demonstrate that proposed
algorithms can obtain better results than the other compared multimodal optimization algorithms in the terms of final
solution set quality. Therefore, this paper presents two versions of the FPSO that remove undesirable parameters
of niching without sacrificing performance. Comparison between the TNB-FPSO and DNB-FPSO shows that the
TNB-FPSO has a better efficiency, but Algorithm 2 has a better effectiveness.

Although TNB-FPSO is more efficient than DNB-FPSO, it has one major problem: If two particles are from
different niches, they may oscillate between two peaks that waste the function evaluations. In contrast to TNB-FPSO,
DNB-FPSO significantly reduces the oscillation between particles, because in most cases a particle and its nearest-
better neighbor are within the same niche. Therefore, a first step toward extending this paper would be to fix the
problem of particle oscillations in TNB-FPSO. Secondly, the nearest-better neighborhood can be used in other swarm
intelligence algorithms such as Competitive Swarm Optimization (CSO), Gravitational Search Algorithm (GSA), and
Ant Colony Optimization (ACO). Finally, the nearest-better neighborhood can be adapted for solving multi-objective
and many-objective optimization problems.
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