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Abstract

In this paper, we generalize all of the fuzzy structures which we have discussed in [I4] to L-fuzzy set theory, where
L =<L,<,\,V, > denotes a complete distributive lattice with at least two elements. We define the concept of an
LG-fuzzy topological space (X,¥) which X is itself an L-fuzzy subset of a crisp set M and ¥ is an L-gradation of
openness of L-fuzzy subsets of M which are less than or equal to X. Then we define C*° L-fuzzy manifolds with
L-gradation of openness and C'>° LG-fuzzy mappings of them such as LG-fuzzy immersions and LG-fuzzy imbeddings.
We fuzzify the concept of the product manifolds with L-gradation of openness and define LG-fuzzy quotient manifolds
when we have an equivalence relation on M and investigate the conditions of the existence of the quotient manifolds.
We also introduce LG-fuzzy immersed, imbedded and regular submanifolds.

Keywords:  C* LG-fuzzy n-manifolds, C*>° LG -fuzzy mappings, LG-fuzzy quotient manifolds, LG-fuzzy immersion,
regular LG-fuzzy submanifolds.

1 Introduction

The concept of fuzzy sets was introduced by Zadeh [2I]. Then Chang [I] confined his attention to the more basic
concepts of general topology and generalized them to fuzzy topological spaces. In his definition, fuzziness in the
concept of openness of a fuzzy subset, is absent. In consequence of the development of fuzzy topology, many authors
like Wong [19], Lowen [I0] introduced various concepts of fuzzy topology. R. Lowen [I1] suggested that the properties
should be considered fuzzy, that is, one should be able to measure a degree to which a property holds. E. Lowen and R.
Lowen [12] considered compactness degrees, and in [20], investigated measures of separation in [0,1]-topological spaces.
In 1985, Shostak [I5] gave a new definition of fuzzy topology by introducing a concept of gradation of openness of fuzzy
subsets of X. Later, Chattopadhyay [2] et al. attempted to introduce a concept of gradation of openness of a fuzzy
set of X by a map 7 : I’X — I satisfying three weaker conditions than [15] and later in [3] made a slight modification
in their definition and rediscovered the Shostak’s concept of fuzzy topology. Gregori [7] proved that each gradation of
openness ¢ is the supremum (infimum) of a strictly increasing (decreasing) sequence of gradations of openness which
are equivalent to 4. Stadler and Vicente [I3] have introduced a new concept of fuzzy topological subspace over each
fuzzy subset from the fuzzy topology &, which coincides with the usual definition in the case that © = XY, Y C X. In
[16], Shostak developed a theory of compactness degrees and connectedness degrees in [0,1]-fuzzy topological spaces,
and in [I7], brought up a theory of degrees of precompactness and completeness in the so-called Hutton fuzzy uniform
spaces. In 2016 Ibedou [9] discussed graded fuzzy topological spaces. While all of the researches about the C* or C°
fuzzy manifolds, focused on a crisp set, in [I4] and in this paper, we demonstrate the possibility of improving current
definitions using a new method. In [I4], we investigated some properties of a novel fuzzy topological space (X, 7), where
X is itself a fuzzy subset of a crisp set M. Perhaps the most important generalization of the aforementioned structures
in [14], is the consideration of lattice L beyond the unit interval I = [0,1]. Let L =< L, <, A\,V, > be a complete
distributive lattice set with at least 2 elements; 0 is the bottom element and 1 is the top element of L. An L-fuzzy
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subset D of the crisp set M, in Goguen’s sense [6], is a function D : M — L and is denoted by D € L™. In this
manuscript, we define the concept of L-fuzzy topological space (X, %) with the L-gradation of openness, where X is an
L-fuzzy subset of a crisp set M. We introduce C*° L-fuzzy manifolds (X, %) with L-gradation of openness, called C'*°
LG-fuzzy manifolds, with a different perception from [5] and [4] and obtain C*° n-premanifolds of them. We define
C*> LG-fuzzy mappings of C*° LG-fuzzy manifolds and prove the LG-fuzzy rank theorem. Then we define and discuss
LG-fuzzy immersions and LG P-fuzzy imbedding functions. We proceed to define the LG-fuzzy immersed, imbedded
submanifolds as well as LG-fuzzy regular submanifolds, and then some theorems about the relations between them are
deduced.

2 Preliminaries

Definition 2.1. Let X be an L-fuzzy subset of M. Then any L-fuzzy subset of M which is less than or equal to X is
called an L-fuzzy subset of X. We denote the set of all L-fuzzy subsets of X by L. If T as a collection of L-fuzzy
subsets of X, satisfies the following conditions, then (X, 1) is called an L-fuzzy topological space (L-fts):

1) X, e,

2) {Ai}ie]gT = UAiéT,
el

3) ABer = ANBeT.

Example 2.2. Let M = R"™ and X =1 be a constant L-fuzzy subset of M. Let B(a,r,b) be an L-fuzzy subset that is
equal to zero outside or on the sphere B(a,r) and equal to the function b with values in L, inside B(a,r). We call the
L-fuzzy topology induced by

Brn = {B(a,r,b), a € R", r ¢ RY, b: B(a,r) — L, is a function},

the L-fuzzy Euclidean topology of dimension n and denote it by 7, . Therefore we have the L-fuzzy Euclidean topological
space (1gn, 7., ).
Definition 2.3. Let T: LY — L, be a mapping satisfying:
i) T(X) =%(0) =1,
iit) T(ANB) > T(A) ANT(B),
iii) T(UjeJAj) 2 /\jeJ T(Aj)'

Then T is called an L-gradation of openness on X and (X, ) is called an LG-fuzzy topological space (L-gfts).
Let x € M and A € LY. When we write x € A, we mean = € suppA.

Example 2.4. Let M = R"™ and X =1 be a constant L-fuzzy subset of M. As three useful examples, we define

o 1 Ber,,
‘ILn : LX — L; TLR(B) - { 0 elsewhere. (1)
and 0
1 B =0,
TLsup : Lé\(/l — L7 ‘ILsup(B) = SUP{B(x) HEUNS M} 0 7& Be Ton> (2)
0 elsewhere,

If we set “inf” instead of “sup” in the above definition, then we have L-gradation of openness Triny.
Let T, be any L-gradation of openness on 1gn, such that supp® = 1, , then we call (1gn, Tr,) the LG-fuzzy FEuclidean
topological space.

Definition 2.5. Let (X, %) be an L-gfts. Set suppT = {A € LY : T(A) > 0}, then A is called an LG-open subset of
X if A € supp®. Furthermore

1) Suppose x € X and V € L. If there exists an LG-open subset U of X such that U(x) = V(x) and U <V, then
V' is called an LG-neighborhood of x in X. We denote the set of all LG-neighborhoods of x in X by LGN (x).
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2) If for all x, y € X, x # y, there exist two LG-neighborhoods U, € LGN (z), U, € LGN (y) such that U, NU, = 0.
Then (X, %) is called a Hausdorff L-gfts.

8) For each L-fuzzy subset A of X and any U C suppX, we define the L-fuzzy subset x,, , of X by:

Xu,4(2) = { 0 elsewhere.

From now on, we write x,, instead of X, x -
4) A is called an LG-closed subset of X if X — A € suppT.

5) Let Z be an LG-open subset of X. Define Tz : LY — L, by T7(A) = T(A). Then (Z,%Tz) is called an LG-fuzzy
topological subspace of X (L-gtfss).

Definition 2.6. If € : LY — L, satisfies the following conditions:

i) €(X)=¢(0)=1.
it) €(AU B) > ¢€(A) AN&(B).
iit) €(Njes Aj) = Njes €(4;).
Then € is called an L-gradation of closedness on X.
Proposition 2.7. Let € and T be L-gradations of closedness and openness respectively on X. Then

i) The mapping Te : LY — L, defined by T¢(A) = €(X — A), is an L-gradation of openness on X, where (X — A)
is an L-fuzzy subset of M defined by (X — A)(p) = X(p) — A(p).

i) The mapping €z : LY — L, defined by €z(A) = T(X — A), is an L-gradation of closedness on X.
i) We have €z, =€, Te, =T,
The proof is straightforward.

Proposition 2.8. Let Mz (X) be the set of all L-gradations of openness on X. We write Ty < To, if we have
T1(A) < T9(A), VA€ LY. Then (Mz(X), <) is a complete lattice.

Proof. Tt is clear that the relation < between the functions from LY to L, is an equivalence relation. Therefore
(M= (X), <) is a partially ordered set. Further we define two mappings To, T; : LY — L, by

T(0) =Tp(X) =1, Tp(A) =0, VAec LY —{0,X}, T,(A)=1, VAec LY.

Then ¥y, ¥; are two L-gradations of openness on X and we have:
To(4) < T(A) < Ty(A), YA€ LY.

Hence ¥y, ¥1 are minimal and maximal elements of M= (X)), respectively.

An arbitrary intersection of gradations of openness on X, is a gradation of openness. Thus any subset of Mz (X), has
a lower bound in it. To prove this, let {%, k € K}, be an arbitrary family of L-gradations of openness on X. We show
that T = A,cx Tk is an L-gradation of openness on X. Obviously, T(X) = T(0) = 1. Also,

T(J4) = AT(UJA4) = AN\ T(A)) = AN TR(4)) = \(E(4)),
J k J k 3 k

and
T(ANB) = AT(ANB) > \(Tk(A) ATh(B)) > N\ Tul(A) A )\ Te(B) > T(A) AI(B).
k k k k
This completes the proof. O
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Example 2.9. Consider (1gn,%1,) and 0 € R™. We show that the fuzzy point 01 is an IG-closed subset of 1gn:
The fuzzy point 01 = X, 1s an I-fuzzy subset of R"™. So,

(Irn — 01)(@) =1 =Xy (2) = { (1) xxi%’

Therefore,
(1er =0 (@) = |J B(k,1,1)(x).

0£kET

Hence, (1gn — 01) € 7,,. Thus Ty, (1gn — 01) > 0. So, 1gn — 01 is an IG-open set. Hence, 01 is an IG-closed subset.
Definition 2.10. Let (X, %) be a fuzzy topological space and A, B be any fuzzy subsets of X,

1) A fuzzy subset V of X is called an LG-neighborhood of A if there exists an LG-open subset U such that A < U < V.
We denote the set of all LG-neighborhoods of A by LGN (A).

2) Let B < A. Then B is called an LG-interior set of A if A€ LGN(B). The union of all LG-interior sets of A is
denoted by LGA®.

3) The intersection of all LG-closed subsets containing A is called an LG-closure of A and is denoted by LGA.

4) x is called an LG-boundary point of A if for every LG-neighborhood V' of x, we have V. £ A. The set of these
points is called an LG-boundary of A and is denoted by LGOA.

5) If x belongs to the LG-closure of A—X (5}, 4 , then x is called an LG-limited point of A and the set of these points
is denoted by LGA'.

6) A is said to be an LG-dense subset of X, if LGA = X.

From now on, we suppose that M;, Ms are two crisp sets, X € LMY € LMz and (X, %), (Y,R) are two LG-fuzzy
topological spaces.

Definition 2.11. Let f : My — My be a function and f[X] be an L-fuzzy subset of Ms, defined by

FX)(y) = V{X(@) |z f ()}

If we have f[X] <Y, then f is called an LG-related function from X to Y and the set of all such functions is
denoted by LGRf(X,Y). Furthermore, if we have R(H) < T(f~L[H]) for all LG-fuzzy subset H of Y, then f is an
L-gradation-preserving LG-related function so it is called an LG P-related function or LG P-fuzzy mapping from X to
Y, fe LGRf(X,Y).

i) f is called a one-to-one LG-related ( LG P-related) function if f|suppx : suppX — suppY is a one-to-one function.
it) f is called an onto LG-related ( LGP-related) function if f[X]| =Y.

Remark 2.12. Let A € supp¥ and B € suppR. Let f be an LGP-fuzzy mapping from X toY such that f[A] < B.
Then we have R(H) < T(f~1[H]) for each LG-fuzzy subset of Y and in paticular H < B. Thus Rp(H) < T4(f~'[H])
for each LG-fuzzy subset H of Y with H < B. Therefore f can be considered as an LG P-fuzzy mapping of two L-gfts’s,
(A,%4) and (B,Rp). So we can write f € LGPRf(A, B).

Definition 2.13. Let f € LGRf(X,Y), then
i) f is called LG-open if f[A] € supp® — {0,Y}, VA € suppT — {0, X} and f[X] € suppR.
ii) f is called LG-continuous if f~'[H] € suppT — {0, X}, VH € supp® — {0,Y} and f~'[Y] € suppT.
i) f is called an LG-homeomorphism if it is one -to -one, onto, LG-continuous, LG-open and f~* € LGRf(Y, X).
w) f is called an LG P-homeomorphism if it is bijective and f, f=1 are LGP-fuzzy mapping.

Proposition 2.14. Let A, B be LG-open subsets of X, Y respectively. Let ¢ : My — My be a function. Then i is an
LGP-homeomorphism from A to B if and only if 1 satisfies the two following conditions:
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i) A(p) = B(¢(p)) for allp € A or B(q) = A(Y~"(q)) for allq € B
i) R(H) = T(Y~1[H]) for all LG-fuzzy subset H of B.

Proof. Let 1) satisfies conditions (i) and (i), then by Definition and Remark we have ¢p € LGPRf(A, B) and
1 is an LG P-homeomorphism from A to B. Conversely suppose ¢ is an LG P-homeomorphism from A to B. We prove
that ¢ satisfies (i) and (it).

i) Since 1 is bijective, for any q € B, there is exactly one element p € A, such that ¢~1(q) = {p}. So we
have ¥[A] (¢) = sup{A(a)| a € ¥~ (q)} = A(p). On the other hand by Definition we have ¢[A] < B. Hence

A(p) < B(q). We see v»~'[B](p) = B(y(p)) = B(qg). Since by Definition [2.13] (iv), we have ¢~! € LGPRf(Y, X),
then ¢y~1[B] < A. Hence B(q) < A(p). Therefore A(p) = B(q). Therefore A(p) = B(x(p)), for all p € A and
B(q) = A(v%(q)), for all ¢ € B. Thus A = (¢»~![B]) and ¢[A] = B.

ii) Since ¢ € LGPRf(A, B), we have R(H) < T(¢![H]) for all LG-fuzzy subset H of Y, and since ¢~! €
LGPRf(B, A), we have T(D) < R([D]). Set ¥[D] = H. Then D = ¢~1[H] by injectivity of 1. So T(D) < R(H).
Hence we have T(¢~1[H]) = R(H). O

Proposition 2.15. Every LG P-fuzzy mapping from X to 'Y is an LG-continuous related function, but the converse is
not true.

Proof. Let f be an LG P-fuzzy mapping from X to Y, then VH € suppR — {0,Y}, we have 0 < R(H) < T(f~'[H]).
Hence f~[H] € suppT — {0, X }. Therefore f is LG-continuous.

Conversely, we define an LG-continuous function which is not an LG P-fuzzy mapping:

Following Example consider f =id: (Ign,Trn) = (Irn, Treup). Since f[lgn] = lgn and we have

fUH]) = H € suppTr, — {0, X} =7, —{0,1gn}, VH € suppTreup — {0, Y} =7, — {0, 1gn},

x2 x € (O,%),

0 elsewhere. Then A € 7,,, and

and f~'[1gn] € suppTr,. Therefore f is LG-continuous. Now Let A = {

Trsup(flA]) = % But T1,(A) = 1. Hence the condition T, (A) < Trsup(f[A]) dose not hold. Hence f is not an
LG P-fuzzy mapping. O

3 L-fuzzy topological manifolds with L-gradation of openness

Definition 3.1. Let ¥ be an L-gradation of openness on X. Then (X, %) is an LG-fuzzy topological space of dimension
n, if for any x € X, there exists an LG-open subset A of X containing x and an LG-open subset B of (1gn, % 1), together
with an LGP-homeomorphism ¥ € LGPRf(A, B). The pair (A,v) is called an LG-local coordinate neighborhood of
each q € A and we assign to q the n LG-local coordinates x1(q), x2(q), ..., xn(q) of its image ¥(q) in R™.

Definition 3.2. Let A = {(A;, ) ¢ € J} be a collection of LG-local coordinate neighborhoods. Since ; is an
LG P-homeomorphism for all ¢ € J, then for all i,j € J whenever A; N A; # ¢,

bjo 7t i(supp(As N Ay)) — ¥ (supp(Ai N Ay)),
is an LG P-homeomorphism, that is called an LG-transition function. -
V; o Nat, xh, ., 2l = (;vjl, x%, oy 2d).

If woqu—l and oq/zi_l changing the LG-local coordinates are infinitely differentiable or C*°, we shall say that (A;, ;)
is C° compatible with (Aj, ;) whenever A; N A; # ¢.

Definition 3.3. An LG-fuzzy topological space (X, %) is called an LG-fuzzy topological manifold of dimension n, if it
satisfies the two following conditions:

i) X is an LG-fuzzy topological space of dimension n,
it) X is a Hausdorff L-gfts.

Definition 3.4. A differentiable or C*° LG-fuzzy structure on an LG-fuzzy topological manifold (X,T), is a family
A ={(Aa, V), a€ J} of LG-local coordinate neighborhoods such that
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1) X = U Aas;

acJ
2) Each pair (A, va) and (Ag, ¥g) are compatible for all o, 5 € J.
3) Any LG-local coordinate neighborhood (V, ) that is compatible with every (Aa, Vo), € J is in A itself.

A C*™ LG-fuzzy manifold (X, %) is an LG-fuzzy topological manifold with a C*° LG-fuzzy structure on it. In what
follows, for convenience, “LG-fuzzy manifold with LG-fuzzy structure” will mean C*° LG-fuzzy manifold with C'*°
LG-fuzzy structure,

Example 3.5. Let M =R3, X :R3 = I, X(z) = { (1) Hi” ; 1’ Then suppX = S?, the unit sphere. Set
sup{A(z) |z € X Aer,, A<X,
T Ié\{/l -1 34 :{ 0 e } elsewijlere.

Then (X, %) is an IG-fuzzy manifold of dimension 2.
Proof. Let J ={1,2,3}. We define six IG-open subsets covering X by:

+ax; +x;, >0, ||z|]|=1
:l: ) b
Yo = (21, T2, 73), Aj () = { 0 ’ othejrwise. Il

Then we show that all AJi are diffeomorphic to IG-open subset B : R? — I, defined by:

L—yf —y3 <1,
Yy = (y1,92), B(y):{ Vi-vi—153 |l

0 otherwise.

Since suppB = B(0,1), so B € 7,,. We define six bijections wj-t from supiji = {(z1, z2, x3) | £ x; >0, |z|| =1} to
suppB = {(y1, y2)| lyll <1}, for all j € J by:

Vi (21, w0, 3) = (za, 23),  (F) (1, v2) = (E\/1 =9 =3, v, ¥2)-

Vi (21, w9, 3) = (x1, 23) ,  (F) H(y1, v2) = (yi, £/1 =y -3, v2)
1/)3i($1,$27963) = (9617 552) s W’si)_l(yh yz) = (3/1» Y2, Il:\/ 1- y% - y% )

Also, it is seen that w;t o (wii)_1 is infinitely differentiable for all 4, j € J. For example:

by o () My, y2) = vy (1 —yE — 3, wr, y2) = (£y/1 —4F — 43, 1)

Therefore, each pair (Aii, wzi) and (Aj[, %i) are compatible, for all 7, j € J. We see
Vi€, AF(z)=+x; = B[ (x)), Vre Al

Let H be an IG-fuzzy subset of 1lg: with H < B .We show that ‘I((wji)_l[H]) = Troup(H). Using ([2), we have
Trsup(H) = sup{H(a)| a € R?*}. Since ’(/J;t is bijective, for each a € R?, there exists one and only one element

+ + _ +y-1 _
p € suppAj such that ¢;"(p) = a or(4;7) " (a) = p. Hence

Troup(H) = sup{H (5 (p))| p € suppA5} = sup{(() "' [H])(p)| p € suppA5} = T((¢7) ' [H]).
Hence 1/1].i € IGPRf (Aji, B) is an IG P-homeomorphism for all j € J and this completes the proof. O

Example 3.6. The set of natural numbers, N, partially ordered by divisibility, is a distributive lattice set, for which the
unique supremum is the least common multiple and the unique infimum is the greatest common divisor. Let L = NU{oo}.
Then L is a complete lattice. Notice that we denote the top element of any lattice by 1, but in this example, oo is the
top element of NU {co}. We define the LG-fuzzy Euclidean topological space (1gmn, Trsup) by

1R7nn :R™" — L, I]R'm.n ((al, ag, ..., amn)) = 00,
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. R™" _ o0 ‘D G TLmn’
T mn L1Rmn — L, IL"W(D) - { 0 elsewhere.

Let M = Myxn(R) and X € LM be defined by
X ((ai;)) =2+ maz{| laj| | |1 <i<m, 1 <5 <n},
where ||x|] is equal to the greatest integer less than or equal to |x|. There is a bijection v from M to R™":

¢(aij) = (alla ceey Qlpy ovvy Gmly -ney amn)-
Hence using ¥ and , we define

. M _ o) QZJ[A] € )
1o lx =L T(4) _{ 0 elsewhere.

We show that (X, %) is an C° LG-fuzzy mn-manifold. Let B is an L-fuzzy subset of 1gmn defined by
B((a1,az, ... amn)) =2+ maz{| |ax| ] | 1 <k < mn}.

We see B = [ X]. Since suppB = R™" = J;—, B(0,k), Hence B € 7, ... Therefore using (1)), for each LG-open subset

H of 1gmn, with H < B, we have Tpmn(H) = 0o = T(p~'[H]). So by Proposition v € LGPRf(X,B) is an

LGP-homeomorphism. We can cover (X,T) by the single LG-coordinate neighborhood (X,v). Hence (X, %) is an C°

LG-fuzzy mn-manifold.

Definition 3.7. (LG-open submanifolds) Let Z be an LG-open subset of the LG-fuzzy manifold (X,%). If A =
{(Aa,¥a), a € J} is an LG-fuzzy structure on X, then (Z, %,) is an LG-fuzzy topology with LG-fuzzy structure
consisting of the LG-coordinate neighborhoods (Ag N Z, Yala,nz)-

X(A) detA#0,

0 detA = 0.

We have Z < X and U = suppZ = Gl(n,R) is an open subset of My, xn. Hence we can prove that Z is an LG-open
subset of X. Therefore (Z, Tz) is an LG-fuzzy submanifold of (X, %) with the single LG-local coordinate neighborhood
(Z, 1|z) where 1 is a bijection defined in Example 3.6.

Example 3.8. Let (X,%) be as Example . We define Z : My xn(R) — L, Z(A) = {

Example 3.9. Let L = NU{cc} and M = R"*!. Define an L-fuzzy subset

n+ 2 lz]| =1
X:M=L X(z) = { ’
=1y lall # 1,
T M . o0 AGTL(71+1)’ ASX,
TIx oL %(4)= { 0  elsewhere.
Then suppX = S™. Then (X, %) is an LG-fuzzy manifold of dimension n:
Proof. Let J={1, ..., n+ 1}. We define 2(n 4+ 1) LG-open subsets covering X, A?E M — L, j€Jby:

t2; >0, [lzf =1,

J
Vo= (21, .o Tng), Aj[(x) - { 0 otherwise.

Then we show that each Aji is LG P-homeomorphic to the LG-open subset B; : R™ — L defined by:

' <1,
Y= )y Bily) = { é o‘lLt?lJeHrwise.

with 2(n + 1) LG-maps 7" : AJi — B, defined by:
¢;|:(x17 ey xn+1):(x17 R @a R xn+1)~

W) e e ) = oo BT G o F93) e wa),
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where ; means omit z;. Also it is seen that wji ) (zﬁf)_l is infinitely differentiable for all ¢, j € J and we have

AZ(x) = j = B;(¢] (v)), Vo € AT and Vj € J.

Also using , for each LG-open subset H; of 1g», with H; < B;, we have
T (Hj) = 0o = T(yF) "1 (H;)) Vje
Therefore by Proposition 7,/12»i € LGPRf (Aji, By), is an LG P-homeomorphism for all j € J. O

Theorem 3.10. Let (M, 7) be a C* ordinary n-manifold with the C* structure W = {(U, vx), k € K}. Consider
X =1, the constant L-fuzzy subset of M. Let & be the L-fuzzy topology on X generated by {xuk, k € K}. Define
T LM S ST(A)_{ 1 Aes,

0 elsewhere.
Then (X, %) is an LG-fuzzy manifold of dimension n.
Proof. First we show that T, is an L-gradation of openness on X:

1) Since 0, X € 4, therefore T, (0) = T,(X) = 1.

2) For each family of fuzzy subsets {A4;} C LY, we have two cases:
) {Aj}jes €6 = UAj€dand T(4;)=1VjeJ = 1=T,(Ujcs4j) = N\jes T (4;) =1
jeJ
i) A; C (L)I‘g[ —90), forsome jeJ = % (A4;)=0, forsomejecJ = QT(UJ.EJ Aj) > /\jeJ‘ZT(Aj) =0
3) For every two fuzzy subsets A, B € L% , we have three cases:
i)A, BeEd = ANBed = 1=%,(ANB)>%T (A A% (B)=1,
ii) A€ (LY —6), Bed = T,(4)=0,%.(B)=1 = T, (ANB)>
iii) A, Be (LY -¢§) = T,(4)=%,(B)=0 = %, (ANB)>0=%.(4) AT, (B).

Next we prove that (X,%T;) is an LG-fuzzy manifold:

Let p € M. Then there exists an open subset Uy, kK € K s.t. p € U, and an open set Vi of R”™ along with a
homeomorphism 9y, : Uy — Vj. Let 7> be the L-fuzzy topology on 1z~ generated by {Xvk, k € K}. Then 7% C 7p,,.
Hence we can consider the restriction of ¥, on 7%. We see

{ZT(XUk) = Tnlre (Xvk ).

Define LG P-homeomorphisms

n if p € Ug,
Ui M =R gip) = drp)xe, = { %k(p) b
Therefore 1y € LGPRf(Xy, s Xy, ). Thus W, = {(x,, , ¥}), k€ K} is an LG-fuzzy structure on X. O

Theorem 3.11. Let (X, %) be an LG-fuzzy n-manifold with LG-fuzzy structure A = {(A;, ¥;),j € J}.
If T9 = {suppA | T(A) > 0}, then (suppX,T7) is a topological manifold of dimension n called a premanifold with the
structure A° = {(suppAj, Vj|suppa,), j € J} called a prestructure.

Proof. Since DomT = L4, then for all A € suppT, we have A is less than X. Hence suppA C suppX.
i) TO0)=FT(X)=1 = ¢ =supp0 € suppT and suppX € suppT°.
ii) Let {4;, j € J} C 4, Then T(4;) >0, Vj € J. Hence T(U,c; 4j) > N\jcs T(A;) > 0. Thus jg]Aj € suppT<.
iii) Since T(ANB) > T(A) AE(B). So A, B € T¢ implies that T(AN B) > 0. Thus AN B € suppT“.
Therefore T is a topology on suppX. Let p € X. Then there exists an LG-open subset Ay, k € K such that p € Ay
and there exists an LG-open subset By, k € K with an LGP-homeomorphism ¢, € LGPRf(Ay, Br). Hence p €

suppX, Ak(p) = Br(¢¥r(p)) and Yr|suppa, : SuppAr — suppBy, is one-to-one and onto. Therefore (suppAk, Vk|suppAa,)
is a coordinate neighborhood of p. Also %; o ¢! is infinitely differentiable for all 4, € K, thus

3

(V5] supp(Asna,)) © (1/)i_1|supp(BmBj)) is C* for all 4,5 € K. Hence (suppX, <) is a premanifold. O
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Theorem 3.12. Let (M,T) be an n-manifold with structure 20 = {(U;, ¢;), j € J}. Let X =1. Then
(suppX, (77)7) = (M, 7).

Proof. Tt is clear that suppX = M and for every U € 7 we have suppyx, = U. Hence (7%)? = 7. Since we have
W = {(xy,, ¥}), j€J}, then
(W) = {(supps, #leunm,, )+ G €T = {Ussilu,)s G € TH= Uy ) G €T} =0
O

Remark 3.13. Let (X, %) be an L-fuzzy topological space with L-gradation of openness, then Tz« does not necessarily
equal . We show it by the following example.

Example 3.14. Let M = R. We define

1
X:M 1, X(x)z{ ] *€&to)

elsewhere.

1 Aer,, ALX

and T :I¥ — I, by T(A) = { 0 elsewhere.

Then clearly (X,%) is an IG-fuzzy manifold of dimension 1. Then by Theorem (suppX, T9) is a manifold,
where T = {suppA| A € suppT}. Hence by Theorem [3.10] we have Tz< = {Xsuppa | A € suppT}. We have

1
Alz) < X(x) < 3 Ve € M and YA € 7,,. Hence 1= Xsuppa # A . Therefore Tza # T

4  LG-fuzzy quotient manifolds

Definition 4.1. Let M be a crisp set and ~ be an equivalence relation on it. If A is an L-fuzzy subset of M such that
A(y) = A(x) whenever y ~ x, then we define the L-fuzzy subset:

4 : M — L, é([Jc]) = A(z), Vz e M,

M
where [z] = {y |  ~ y}. Since A< X, thus 2 < X and hence 2 € Ly

X

A

Theorem 4.2. Let (X, %) be an LG-fuzzy topological space, such that X (y) = X () whenever y ~ x, then (
an LG-fuzzy topological space, called the LG-fuzzy quotient space, where

T A
) 7(7

~ o~

) is

)

M
4_”:

E:L

~

) = T(A).

M
Proof. We show that all elements of L7 are in the form A for some A € LY. Let B be an L-fuzzy subset of
M Jess than £. We define L-fuzzy subset A of M by A(z) = B([z]), Vo € M. Let z ~ y so [z] = [y], then
A(x) = B([z]) = B([y]) = A(y) and thus 4 = B. Also,

) EQ)=30)=1, 2(&)=3(x)=1.

~\~ ~

T A A T ANA T A T A
2) S (An ) S0 g0 > S0 AT = S (2 A S(2),
3) Let {A,},es be a sequence of L-fuzzy subsets of X, such that Vj € J, A;(y) = A;(z), whenever y ~ z, then
A, A , . , Aj
U = Wl = sup{ Z2[yl, j € I} = sup{ A;(y), j € I} = sup{ Aj(x), je T}y =) = [a],
jed jeJ

) A )
SUL =S EE qays AT = A S

jeJ jeJ jeJ jeJ
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Hence % is a gradation of openness on % O

This LG-fuzzy topology is nontrivial when L = I, because for each a € I, aX(z) = aX(y) whenever z ~ y. Hence
aX € supp— .

2|
LA

Definition 4.3. Consider an LG-fuzzy quotient space ( ). The equivalence relation ~ is called an LG-open

)

¢ 1A

A
relation if for each fuzzy subset A € supp® we have — € supp

X
Theorem 4.4. Let (X,%) be an LG-fuzzy manifold and ~ be an LG-open relation. Then (— ,E) is an LG-fuzzy
topological space of dimension n called LG-fuzzy quotient topological space of dimension n. If supp® has a countable

basis, then — has a countable basis.

~

Proof. Let (A, ¢) be an LG-locally coordinate neighborhood of p € X and ¢ € LGPRf(A, B). Since ~ is an LG-open

relation, then we have —(—) > 0. We define a corresponding relation ~* on suppB as follows:

a~*b = Y la)~p (b)) forall a,bec suppB.

Clearly ~* is a reflexive and symmetric relation. Let a ~* b and b ~* ¢. Then we have ¢~1(a) ~ 1 ~1(b), and
Y=1(b) ~ 1~ (c). Since ~ is transitive, so 1, *(a) ~ 9] *(c). Hence a ~* ¢. Therefore ~* is transitive and so it is an
equivalence relation. Since we have

a~'b = P Ha) 7)) = AWTH(a) = A7) = Bla) = B(b).
Therefore, é is well-defined. Now we define

A B
% s supp(—) — supp(—),

~*

We see

Pl=ld < pr~a = v)~ ) = BOI=Ba@] = 20 =L
Therefore, — is a well-defined and one to one function. Since v is onto, we see
Va & suppB, 3p € suppd st a=vlp) = () = )] =[d

Hence, — is onto. We have

B A A

Z ) = B@) = AW~ (@) = 2@ @) = 2 (D) @a)
On the other hand for each LG-open subset H of 1g» which H < B, we have

Tn H _ T Y H
i Dy g =1 =3 an) = S ()

A B A
- :). Therefore, if A = {(Aj7 V;), j € J} be a C®° LG-structure of X. Then — =

~

Hence, ¥ € LGPRf(

A X
{(—2, w—), j € J} is a O LG-fuzzy structure of (—, E) Now, suppose that supp¥ has a countable basis 3

J
{A;, i € N}. Let — € supp— and A = J;cx Aj. Since K C N. Hence for all y € X we have:

A = 4w = U 4 = su{ A3(9), € K} = sup{ 22(1y)), j € K} = | 2 (o).

~Y
JjeJ jEK

A; <
Therefore, 8 = {~", i € K} is a countable basis for supp—. O
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Example 4.5. Consider the IG-fuzzy Fuclidean topological space (1g, Tr1). We define a relation on R as follows:
1
Ve,y € Iz, © ~y if x —y € Z. Since 1g(y) = 1g(x) = 1 whenever y ~ x. Hence E s well-defined and hence by

Ip T -
Theorem we have the IG-fuzzy quotient topological space (B, l) We show that it is an IG-fuzzy topological

manifold:
Let A:R— I, A(z) =z — |x]. Since

1 1
suppA=R—-Z = U(k, k+1)= UB(k+§’ 5)
keZ keZ

Then we see:

A= B+

kez
Therefore by E:mmple A €1, and hence by Ea:ample T11(A) = 1. Since for all z,y € R we have

1 1
, by), where by : B(k+ 2 5)—)[, bi(z) =z — |x].

l\J\»—A
DN |

x~y = y=zxz+k k€eZ = |yl=k+ |z

y—lyl=ktao—(k+[z])=2—|z] = Ay =A). 3)
A A
Hence — is well-defined. So &(—) =T1(A) = 1. Define
B:R—1T B(y):{y € (0,1),
' ’ 0 otherwise.
1 1 Tn A
We can write B = B(2 3 ,b), where b : B(2 5) — I, b(y) =y. So B €r1,,. Hence Tn(B) =1= —(—).

We define 1) : suppé — suppB by [z] = x — |z|. If [z] = [y], then it means that x ~ y, so by (3), we have
x—|z| =y—|y|. Hence Y([z]) = ([y]). Therefore i) is well-defined. We show that i is injective:

Ple) =v() = z-lzl=y-ly) = y-z=lyl-lz]eZ = 2~y = []=[]
Since Vt € (0,1), |t] =0, so¢([t]) =t — [t| =t. Therefore v is surjective. So by Definition [2.11) we have
%([ 1) = B(¥([z])). On the other hand for each LG-open subset H of 1gn with H < B, we have
) = 2 gy -

A A 1
Hence ¢ € IGPRf(—, B). Thus we have a single IG-local coordinate neighborhood (—, ) for all points of =,
‘s . X T
Proposition 4.6. Consider all of the hopotheses of Theorem . Let R = {(z,y) | © ~ y}. Then (— ,—) is a
Hausdorff L-gfts if and only if Xy, . x s an LG-closed subset of X x X.

T X u Vv T

(—, —) be a Hausdorff L-gfts, then for each [z], [y] € — where [z] # [y], there exist —, — € supp— such
U |4 u Vv

that [z] € —, [y] € — and — N — = ¢. So for each (z,y) € (X x X) where (z,y) ¢ R there exist U, V € supp¥T, such

that UNV = ¢ and (z,y) € (U x V). we show that supp(U x V)N R = ¢.

Proof. Let

(a,b) € supp(U x V)AR = acl,beV.a~b= [dc Y=l Znle

that is a contradition. It means that for each (z,y) € supp(X x X — XR,XXX) there exists U x V € supp(T X T) such
that (z,y) € U x V < (X x X — X, v nx )- Therefore, (T x T) (X x X = Xpxxx) > T(U)AZ(V) > 0. Hence x,, ., is
an LG-closed subset of X x X.
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Conversely, suppose that X, ., is an LG-closed subset of X x X. Then (X x X — X, ., ) is an LG-open subset.
By Theorem [3:11]
supp(X X X — Xp xex) € (T xT)%

Hence supp(X x X) — R is an ordinary open subset. So for each (z,y) € (supp(X x X) — R), there exists an open
subsets U x V € (T x T)? such that (z,y) € U x V C (supp(X x X) — R). We show that UNV = ¢

acUNV = a~aand (a,a) €U XV = (a,a) € (UxV)NR,

that is a contradition. It means that for each (x,y) € supp(X x X) where (z,y) ¢ R, there exist U, V € suppT, such

U V
that UNV = ¢ and (z,y) € U x V. Since ~ is an LG-open relation, then we have T(—) > 0 and T(—) > 0. Therefore
X
for each [z], [y] € — where [x] # [y], there exist g, v € suppE such that [z] € —, [y] € v and v N v_ ¢. So
X <
(—, =) is a Hausdorfl L-gfts. O

~ o~

-

5 LG-fuzzy product manifolds

The concept of the product of fuzzy topological spaces was introduced by C. K. Wong [19] and later by Hutton [8]. We
define and investigate LG-fuzzy product manifolds by the following theorem:

Theorem 5.1. Let X € LM X, € LM2 and (X1,%1), (X2,%T2) be two LG-fuzzy manifolds of dimensions m, n and
with the LG-fuzzy structures A; = {(Aa,, Vo, )| @i € K;}, @ = 1,2 respectively. Then (X1 x Xa, 1 X Ta) is an LG-fuzzy
manifold of dimension m +n.

Proof. We define for all A1 € LY, Ay € LY

Al X A2 € L%f::)l\(d;v (Al X AQ)(xvy) = Al(x) A AZ(y)a

and
({3:1 X 52)(141 X Ag) = gl(Al) A {ZQ(AQ)

It can be verified that T; x T5 is an L-gradation of openness on X; X Xs. Now let p; € X3, po € X5. Then there
exist two LG-open subsets A; of X; containing p;, for ¢ = 1,2 and two LG-open subsets B; of LG-fuzzy Euclidean
spaces of dimension m,n, respectively together with two LG P-homeomorphisms v; € (A4;, B;). Therefore for any
(p1,p2) € X1 xXo, there exists an LG-open subset A; x Ay of X7 X X5 containing (p1, p2) and an LG-open subset By X By
of LG-fuzzy Euclidean space of dimension m + n, together with an LG P-homeomorphism 11 X 95 € (A1 X As, By X Bs)
such that for each LG-open subsets Hy < By, Hs < By we have

Ti(man) (H1 X Hy) = (%1 x Ta) (¢1 ' (Hy) x by ' (Ha)),
where (11 X 19) (1, 22) = (Y1(21), ¥2(z2)) € R™T". One can prove easily that
Ay x Ao = {((Aay X Aay), (Yay X Yay)) | 1 € K1, ag € Ko},
is an LG-fuzzy structure on X; x Xo. O

Example 5.2. Let M = R?, X = Xg1- One can easily prove that (X,%r3) is an LG-fuzzy manifold of dimension 1,
similarly to E:mmple. Then (X x X, Tr3xT13) is an LG-fuzzy manifold of dimensions 2 and supp(X x X) = S1x S*.

6 (% LG-fuzzy mappings of LG-fuzzy manifolds

The concept of the fuzzy vector space (V, n) over a field F was defined in [I8]. We extend this definition by L-fuzzificaion:

Definition 6.1. An L-fuzzy vector space (V,n) or nV over a field F is an ordinary vector space V' over the field F,
with a map n : V — L satisfying the following conditions for all a,b €V andr € F.

1) n(a +b) > min{n(a), n(b)},
2) n(—a) =n(a),
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3) n(0) =1,
4) n(ra) = n(a),
Definition 6.2. Let (X, %) be an LG-fuzzy manifold of dimension n, U € suppT and V € suppZr1. The LG-related
function f from U to V, is called a C*° LG-fuzzy mapping, if for every p € U,
f="rFoy™ i y(supp(ANU)) — suppV,
is C° where (A1) is an LG-local coordinate neighborhood of p.

We denote the set of all C*° LG-fuzzy mappings from an LG-open subset U of X, containing p to 1g, by C?°(p).
If we define n: C3°(p) — L, n(f) = A(p) , where (A,v) is an LG-coordinate neighborhood of p, then C$°(p)
may be considered as an L-fuzzy vector space (Cf°(p),n). Let ¥(q) = (21, ..., @), Yq € supp(ANU). Then

flxy, ..., z,) = y(q) , and since f is C*, there exist all partial derivatives of any order of .

Example 6.3. In Ezample (3.8, if we define f : Mpxn = R, f((aij)) = det((aij)), then using the single IG-local
coordinate neighborhood (Z,1|z), we have f = fo is C™. Hence f € C$(p) forallp e Z.

From now on, we suppose that M;, M, are two crisp sets, X € L™ Y € LM2 such that (X,%), (Y,R) are two
LG-fuzzy manifolds of dimension n,m and LG-fuzzy structures A = {(A;,¢s), ¢ € K} and © = {(D;,¢;), j € J}
respectively and U € supp¥, V € supp®.

Definition 6.4. An LG-fuzzy function F € LGRf(U,V) is a C*° LG-fuzzy mapping if for every p € U,
F=poF oy~ :¢(supp(ANU)) — @(supp(BNV)),

is C* where (A,v), (B,¢) are LG-local coordinate neighborhoods of p and F(p) respectively. F € LGRf(U,V) is
called a LG-diffeomorphism if it is an LG-homeomorphism and F, F~! are C*.

More precisely, if ¥(q) = (21, ..., &n), Vg € supp(ANU) and p(w) = (y1, -.-, Ym), Yw € B, then
F(y, ..oy @n) = (fl@r, ooy Tn)s ey falz, ooy 20)),

and each y; = fi(x1, ..., x,) is C* on ¥(A).

Definition 6.5. The rank of F € LGRf(X,Y) at p is equal to the rank at x = (q) of the Jacobian matriz:
Ofr of1
Oxq T Ox .,
Oy e Oy, z

Example 6.6. Let M1 =My =R?, L=1 and X : My = I, Y : My — I be defined by:

1 el =1 1 =1,
Xeve)={ o olz1 @ Yoo ={, 20

If we deﬁnef:]ﬁf1 — 1, andﬁi:ly2 — 1, by

! A € suppTre, A< X, _J1 D € suppZo, D LY,
T(4) = { 0 elsewhere. and R(D) = 0 elsewhere.

In a similar manner to the E':mmple we can prove that (X, %), (Y,R) are IG-fuzzy manifolds. Let
F: M —)]\427 F(!,Cl, 1‘2):(1'1—1'27 \/2{1,‘1$2).

We prove that F € IGRf(X,Y) is a C™ IG-fuzzy mapping. First we show F|suppX : suppX — suppY is well-defined
and F[X]=Y:

(1’1, 1’2) S Sl = (E% +(Eg =1= (1’1 — ZL'Q)Q + (\/2381%2)2 =1= F(xl, $2) € Sl,
FIX|(y1, v2) = \/{X (21, 22) : (21,22) € F' (31, 92)} =1 =Y (11, 2).
Let (AT, (DS, ¢3) be IG-local coordinate neighborhoods on X, Y respectively, then we see:
p3 o F o)) =wi o F(V1-y2, y) =05 (VI—9? —y, \2yV1—92), = V1-42 —y,

is O, Similarly, one can show that ¢ o F o (1/1?)*1 is C* for alli,j =1,2.
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Example 6.7. Let F: R — R? F(t) = (cos(t — g), sin(t — g)) Then F € IGPRf(1gr, 1g2) and rank F =1 at every
point of X.

Theorem 6.8. ( LG-fuzzy rank theorem) Let F € LGRf(U,Y) be a C* fuzzy mapping and rank F' = k at every point
of X. If p € X, then there exist LG-local coordinate neighborhoods (A, ), (B, ) such that

P(p) =(0,...,0) e R", o(F(p)) =(0,...,0) € R™,

and F' = po F oy~ is given by:

F(xy, -, zp) = (21, ..., 2,0,...,0). (4)

Proof. Using Theorem we see that (suppX,T9) and (suppY,R) are two topological manifolds of dimension n, m
with the structures A% = {(suppAi, Vilsuppa,), i € K} and D9 = {(suppDj, ©jlsuppp;); j € J} respectively. Also
Flouppx : suppX — suppY is a C° mapping and rankF = k at every point of X. Fix p € suppX, then by the rank
theorem, there exist coordinate neighborhoods (suppA, ¥|suppa), (suppD, ¢|suppp) of p and F(p) respectively such
that

¢|sum7A(p) = (07 e 70) € R", ‘P‘suppD(F|supr(p)) = (0, s 70) e R™,

and F'd)(suppA) = SolsuppD o F|suppA o w_1|w(suppA) is given by

Flysuppay (@1, oy m) = (21, ..\\ 25,0,...,0).
Therefore the LG-fuzzy rank theorem holds for LG-fuzzy manifolds. O

Remark 6.9. We can cover X and X = F[X] by these LG-local coordinate neighborhoods A = {(As,vs)| s € S},
and D = {(Ds,ps)| s € S} respectively where S C K. Since A is an LG-structure of X, one can show that © is an
LG-structure of F|X|. If F is an LG-diffeomorphism, then we have rank F = dim X = dimY-

Definition 6.10. The C*° L-related function FF € LGRf(X,Y) is an LG-fuzzy immersion (submersion) if rank F' =
dim X (= dimY'). at every point of X.

Theorem 6.11. Let F' € LGRf(X,Y) be a C* LG-fuzzy mapping. If F is an injective LG-fuzzy immersion, then
(X,%) is an LG-fuzzy submanifold of dimension n, called an LG-fuzzy immersed submanifold and F € LGRf(X, X)
is an LG-diffeomorphism.

Proof. F establishes a one-to-one correspondence between suppX and F(suppX). Thus, F € LGRf (X, X ) is one-to-one
and onto. Since for each ¢ € F(suppX), there exists only one p € suppX such that F~!(g) = {p}, hence

X(q) = FIX](q) = sup{X(a)| F(a) = ¢} = X(p).
Since F' € LGRf(X,Y), we have F[X] < Y therefore X < Y. Hence X is an LG-fuzzy subset of Y. We use F' to
endow X with an LG-structure

D ={(Dslg, mopslz) | (Ds, p5) €D, Vs €S},
where 7(y1, .-, Ym) = (Y1, --.,Yn) is the projection and an LG-fuzzy topology

T L - L, T(H)=%(F'[H).

Then (X, ‘:'C) is an LG-fuzzy manifold of dimension 7, called an LG-fuzzy immersed submanifold and F € LGRf(X, X)
is an L-gradation-preserving. Therefore F' is an LG P-diffeomorphism. O

In general, gradation of openness T and the LG-fuzzy structure on X depend on F as well as X, i.c. (X, ) is not
a submanifold of (Y,R). So we add the condition of LG-continuity of ', F~1 in the following definition:

Definition 6.12. An LG-fuzzy imbedding is a one-to-one LG-fuzzy immersion F' € LGRf(X,Y) with F € LGRf(X, )N()
is an LG-homeomorphism from X to X = F[X] as an LG-fuzzy subspace of Y. The image of an LG-fuzzy imbedding is
called an LG-fuzzy imbedded submanifold.

Theorem 6.13. Let F € LGRf(X,Y) be an LG-fuzzy immersion. Then for each p € X, exists an LG-neighborhood
A of p such that F|suppa is an LG-fuzzy imbedding.
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Proof. According to Theorem [6.8] we may choose (A, ) and (D, ¢), the LG-local coordinate neighborhoods of p and
F(p), respectively, such that lds. Since F[A] = D and D is an LG-open subset of Y, hence L-gradation of openness
T of F[A], is the same as its L-gradation of openness D|p as an L-gftss of Y, i.e. T(H) = T(F~[H]) = D(H), for all
LG-open subset H of D. On the other hand, ¢ and ¢ are LG P-homeomorphisms, hence Fisan LG P-homeomorphism
of ¥[A] and ¢[D]. Therefore F|suppa is a homeomorphism, and thus the theorem holds. O

Example 6.14. Let Z = X(1,400). Then Z is an LG-open subset of 1r. If Tz = Tn1l., then (Z, Tz) is an LG-fuzzy
submanifold of (1g, Tr1). Let W = B((0,0),1,1), then W is an LG-open subset of 1gz. Consider F: R — R?  F(t) =

1 1 1
— cos2nt, — sin2nt). Then F € IGRf(Z, W) and rank F =1 at int of Z. W F1 =
(t cos2mt, — sin2m ) en F € f(Z, W) and ran at every point of e see (z,v) \/W, s0

F is a one-to-one LG-fuzzy immersion. Since F € IGRf(Z, Z) is an LG-homeomorphism, F is an LG-fuzzy imbedding.

7  LG-fuzzy submanifolds of LG-fuzzy manifolds

Definition 7.1. An LG-fuzzy subset N of an LG-fuzzy manifold (X,%), is said to have the LG-fuzzy k-submanifold
property if each p € N has an LG-local coordinate neighborhood (A, ) on X with LG-local coordinates x1,%2,...,%Tn
such that ¥ (p) = (0,...,0) € R, and

Y(suppA N suppN) = {(xl,xg,...,xn) eY(A) | g1 = ... =y = 0}.
If N has this property, LG-coordinate neighborhoods of this type are called preferred LG-local coordinates.

Denote by 7 : R® — RF, k < n, the projection to the first k coordinates. Using the notation above, we may state
the following proposition:

Theorem 7.2. Let N < X have the LG-fuzzy k-submanifold property. Then each preferred LG-local coordinate system
(A, ) of X defines an LG-local coordinate neighborhood (A’,¢') on N where A’ = ANN, ¢ = wop|a. Therefore the
inclusion i € LGRf(N, X) is an LG-fuzzy imbedding.

Proof. Since N is an LG-open subset of X, thus (N, Ty) is an LG-fuzzy topological subspace of X. Then (A’ 1))
are LG-coordinate neighborhoods covering N, where A = AN N is an LG-open subset of N and ¢/ = 7 o ¢4/ is an
LGP-homeomorphism. Suppose that for two preferred neighborhoods (A],%]) and (A4%,v4), A}, A, have a nonempty

intersection. We know that the change of LG-local coordinates is given by LG P-homeomorphisms ] o ¢;_1 and
b 0 4p, " which we must show to be C°. Let

v(z1, ..oy 2) = (21, ..., 2,0,...,0) € R",

so that 7 o is the identity on R¥.This map v is C°°. Hence its restriction to ¢’(A’), an LG-open subset of R¥, is C*°;
thus /=1 = 1 oy is C°, since it is a composition of C>° maps. On the other hand, ¢/ = 1o so ¢’ is a C*™ map
on A’. Hence 1} o 1/1/271 is C™°. If y; = fi(x1, ..., xx),i = 1,..., k, are the functions giving ] o wl{l, which we know
to be C°°, then it can easily be checked that ¥, o z/gl is given by y; = fi(z1, ..., 2%,0,...,0),4 = 1,...,k. Therefore
P o 1/1;71 is C*° by Definition Thus the totality of these LG-neighborhoods define a unique differentiable structure
on N. In preferred LG-local coordinates (A’,4’), € LGRf(N, X) is given on V by

woio¢/_1(x1, RN l'k):(l‘h ceey xk,O,...,O).

So the map ¢ is clearly an LG-fuzzy immersion. Because we have taken the relative LG-fuzzy topology on N, the fuzzy
map i is by Definition m (#i1) an LG-homeomorphism to its image i(N), with the LG-fuzzy subspace topology, that
is, 7 is an LG-fuzzy imbedding. O

Definition 7.3. A regular LG-fuzzy submanifold of an LG-fuzzy manifold (X,T) is any LG-fuzzy topological subspace
N with the LG-fuzzy submanifold property and with the structure that the corresponding preferred LG-local coordinate
neighborhoods determine on it.

1 Hl‘” =1,
0 Jall £ 1.

. We shall see that X is an LG-fuzzy submanifold of (1gs, Tr3). If

Example 7.4. Let M = R3, X :R® = I, X(z) = { . Then suppX = S?, the unit sphere. Let
Aer

s A< X

1
. TM _
TIY = 1 5(4) = { 0 elsewhere.
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q = (x1,x2,x3) is an arbitrary point in suppX, it cannot lie on more than one coordinate axis. For convenience, we
assume that it does not lie on the xz-axis. We introduce the spherical LG-local coordinates (p,0,p); they are defined
on 1gs_{z,—awisy and if (1,00,00) are the LG-coordinates of q, we may change them a little so that it is replaced
by p = p— 1, 0=0-00 and @ =@ —pg. Then it defines an LG-coordinate neighborhood of q, with q having
LG-coordinates (0,0,0) and with the LG-open subset V of X.

Remark 7.5. So far, we have defined three classes of LG-fuzzy submanifolds of an LG-fuzzy n-manifold (X,%). The
first of these, which we usually simply call an LG-fuzzy submanifold, was defined (in 6.11) as the image N = F[N']
of an LG-fuzzy immersion F of N’ into X. Since F : N' — N < X s one-to-one and onto, we coduct (as part of
the definition) carry over to N the LG-fuzzy topology and LG-fuzzy structure of N'; LG-open subsets of N are the
images of LG-open sets of N' and LG-coordinate neighborhoods (A,) of N are of the form A = F[A'], & =)' o F~1,
where (A’,¢") is an LG-local coordinate neighborhood of N'. The fact that F is LG-continuous shows that the LG-fuzzy
topology of N gained in this way is in general finer than its relative LG-fuzzy topology as an LG-fuzzy subspace of X
, that is, if D is LG-open subset of X, then D N N is LG-open subset of N, but there may be LG-open subsets of N
which are not of this form.

An LG-fuzzy imbedding is a particular type of LG-fuzzy immersion, one in which A is LG-open subset of N if and only
if A= F[U'l| = DN N for some LG-open subset D of X so that the LG-fuzzy topology of the submanifold N = F[N']
is exactly its relative LG-fuzzy topology as an LG-fuzzy topological subspace of X. An LG-fuzzy imbedded submanifold
is so a special type of (tmmersed) LG-fuzzy submanifold.

Ultimately, if N < X 4s an LG-fuzzy regular submanifold, then it is also an LG-fuzzy imbedded submanifold since the
inclusion © : N — M is an LG-fuzzy imbedding as we proved in 7.2.

Theorem 7.6. Let F' € LGRf(N', X) be an LG-fuzzy imbedding of an LG-fuzzy manifold N’ of dimension k in an LG-
fuzzy manifold of dimension n. Then N = F[N'] has the LG-fuzzy k-submanifold property and thus N is an LG-fuzzy
reqular submanifold. As such, it is LG-diffeomorphic to N’ with respect to the LG-fuzzy mapping F € LGRf(N',N).

Proof. Let ¢ = F(p) be any point of N. According to Theorem|[7.2|(and its proof), there are (A4, ) and (B, ), LG-local
coordinate neighborhoods of p and F(p), respectively, such that (4)) holds. If F[A] =V < N, then the LG-neighborhood
V would be a preferred LG-local coordinate neighborhood relative to IN. To deduce this result, we should use the fact
that F' is an LG-imbedding. This denotes at least that F'[A] is a relatively LG-open subset of N, that is, F[A] = WNN,
where W is LG-open subset of X. Since F[A] <V, we can suppose W < V. Thus ¢[W] is an LG-open subset of ¢[B]
containing the origin in R™ and ¢[F[A]] < p[W], which is a slice S of ¢[V], S ={z € ¢[V] | 2441 = ... = z, = 0}.
Hence we may select an (smaller) LG-open subset ¢[V'] < ¢[W] and ¢’ = ¢|suppy. This is an LG-local coordinate
neighborhood of q for which F[A] NV’ = V' N N ; furthermore, taking A’ = F~1[V’], we see that (A’,v’), with
' = Y|suppar, is an LG-local coordinate neighborhood of p and the pair (A, ¢’) and (V', ¢’) have exactly the properties
needed in 7.1 and F[A'] = V/ < N. This proves at the same time, that N has the LG-fuzzy k-submanifold property.
This is true since the inverse of F' € LGRf(N',N) is given in the preferred LG-local coordinates (V', o ¢’) and
(A, by ﬁ'_l(a:l,, ooy @) = (21, ..., Tx), which is C*°. O

Remark 7.7. Suppose that N < X is an LG-fuzzy immersed submanifold and that ¢ € N. Then there is an LG-
neighborhood (V, 1) of q, with ¢ (p) = (0,...,0) such that the slice S’ C suppV, consisting of all points of V' whose last
n — k coordinates vanish, is an LG-open set and an LG-local coordinate neighborhood of the LG- fuzzy submanifold
structure of N 1is given by LG-local coordinate map

W) =mov(q) = (x1(a), -, zk(q))-

Theorem 7.8. If ' € LGRf(N, X) is a one-to-one LG-fuzzy immersion and N is a compact L-gfts, then F is an
LG-fuzzy imbedding and N = F[N] an LG-fuzzy regular submanifold.

Proof. Since F is LG-continuous and both N and N are Hausdorff L-gfts’s, we have an LG-continuous (one-to-one)
mapping from a compact L-gfts to a Hausdorfl L-gfts. Since an LG-closed subset K of N is compact, so F(K) is
compact and therefore LG-closed. Thus F' takes LG-closed subsets of N to LG-closed subsets of X, and since F is
one-to-one and onto, it takes LG-open subsets to LG-open subsets as well. It follows that F~! is LG-continuous, so
F e LGRf(N, N ) is an LG-homeomorphism and therefore an LG-imbedding. O

Theorem 7.9. Let F € LGRf(X,Y) be a C* LG-fuzzy mapping. Suppose that F' has constant rank k on X and that
q € F(X). Let D denotes F~1(q); then x,, is an LG-closed, LG-fuzzy regular submanifold of X of dimension n — k.
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Proof. Let p € D; since F has constant rank k£ on an LG-neighborhood of p, we may find LG-local coordinate
neighborhoods (A4,1), (B, ) such that holds. By Example the fuzzy point 01 is an IG-closed subset of R™,
then xy,y, is an LG-closed subset of Y. Hence x,, is an LG-closed subset since the inverse image of x(4}, under a
continuous map, is LG-closed. We shall show that x, has the LG-fuzzy n — k submanifold property. This means that
the only points of D mapped onto ¢ are those whose first k& coordinates are zero, that is,

suppAND = Y (o F Lo 1(0) = HE7H0) = Hz € p(A) | 21 = ... =z =0}
Hence x,, is a regular LG-fuzzy (n — k)-submanifold since it has the LG-fuzzy submanifold property. O

Corollary 7.10. If F € LGRf(X,Y) is a C* LG-fuzzy mapping of LG-fuzzy manifolds, dimX =n <m = dimY,
and rank F = n at every point of D = F~(q), then x, is an LG-closed, reqular LG-fuzzy submanifold of X. The
corollary holds because at p € A, F' has the mazimum rank possible, namely m. It follows from the independence of
rank on LG-local coordinates that, in some LG-neighborhood of p in N, F also has this rank; thus the rank of F' is m
on an LG-open subset of N containing A. But such an LG-fuzzy subset is itself an LG-fuzzy n-manifold (an LG-open
submanifold) to which we may apply the theorem.

8 Conclusion

In this paper, we generalize all of the fuzzy structures which we have discussed in [14] to L-fuzzy set theory, where
L =< L,<,A\,V, > denotes a complete distributive lattice with at least two elements. We define the concept of an
LG-fuzzy topological space (X,%) which X is itself an L-fuzzy subset of a crisp set M and ¥ is an L-gradation of
openness of L-fuzzy subsets of M which are less than or equal to X. Then we define C*° L-fuzzy manifolds with
L-gradation of openness and C*° LG-fuzzy mappings of them such as LG-fuzzy immersions and LG-fuzzy imbeddings.
We fuzzify the concept of the product manifolds with L-gradation of openness and define LG-fuzzy quotient manifolds
when we have an equivalence relation on M and investigate the conditions of the existence of the quotient manifolds.
We also introduce LG-fuzzy immersed, imbedded and regular submanifolds.
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