C∞ L-fuzzy manifolds with L-gradation of openness and C∞ LG-fuzzy mappings of them

M. Mostafavi1

1Department of Mathematics, University of Qom, Qom, Iran
mmostafavi4279@gmail.com

Abstract
In this paper, we generalize all of the fuzzy structures which we have discussed in [14] to L-fuzzy set theory, where \(L = \langle L, \leq, \wedge, \vee', > \) denotes a complete distributive lattice with at least two elements. We define the concept of an LG-fuzzy topological space \((X, \mathfrak{T})\) which \(X\) is itself an L-fuzzy subset of a crisp set \(M\) and \(\mathfrak{T}\) is an \(L\)-gradation of openness of \(L\)-fuzzy subsets of \(M\) which are less than or equal to \(X\). Then we define \(C^\infty\) L-fuzzy manifolds with \(L\)-gradation of openness and \(C^\infty\) LG-fuzzy mappings of them such as \(LG\)-fuzzy immersions and \(LG\)-fuzzy imbeddings. We fuzzify the concept of the product manifolds with \(L\)-gradation of openness and define \(LG\)-fuzzy quotient manifolds when we have an equivalence relation on \(M\) and investigate the conditions of the existence of the quotient manifolds. We also introduce \(LG\)-fuzzy immersed, imbedded and regular submanifolds.

Keywords: \(C^\infty\) LG-fuzzy n-manifolds, \(C^\infty\) LG -fuzzy mappings, LG-fuzzy quotient manifolds, LG-fuzzy immersion, regular LG-fuzzy submanifolds.

1 Introduction
The concept of fuzzy sets was introduced by Zadeh [2]. Then Chang [1] confined his attention to the more basic concepts of general topology and generalized them to fuzzy topological spaces. In his definition, fuzziness in the concept of openness of a fuzzy subset, is absent. In consequence of the development of fuzzy topology, many authors like Wong [19], Lowen [10] introduced various concepts of fuzzy topology. R. Lowen [11] suggested that the properties should be considered fuzzy, that is, one should be able to measure a degree to which a property holds. E. Lowen and R. Lowen [12] considered compactness degrees, and in [20], investigated measures of separation in \([0,1]\)-topological spaces. In 1985, Shostak [15] gave a new definition of fuzzy topology by introducing a concept of gradation of openness of fuzzy subsets of \(X\). Later, Chattopadhyay [2] et al. attempted to introduce a concept of gradation of openness of a fuzzy set of \(X\) by a map \(\tau : I^X \to I\) satisfying three weaker conditions than [15] and later in [9] made a slight modification in their definition and rediscovered the Shostak’s concept of fuzzy topology. Gregori [7] proved that each gradation of openness \(\delta\) is the supremum (infimum) of a strictly increasing (decreasing) sequence of gradations of openness which are equivalent to \(\delta\). Stadler and Vicente [13] have introduced a new concept of fuzzy topological subspace over each fuzzy subset from the fuzzy topology \(\delta\), which coincides with the usual definition in the case that \(\mu = X^Y, Y \subset X\). In [16], Shostak developed a theory of compactness degrees and connectedness degrees in \([0,1]\)-fuzzy topological spaces, and in [17], brought up a theory of degrees of precompactness and completeness in the so-called Hutton fuzzy uniform spaces. In 2016 Ibedou [9] discussed graded fuzzy topological spaces. While all of the researches about the \(C^1\) or \(C^\infty\) fuzzy manifolds, focused on a crisp set, in [14] and in this paper, we demonstrate the possibility of improving current definitions using a new method. In [14], we investigated some properties of a novel fuzzy topological space \((X, \tau)\), where \(X\) is itself a fuzzy subset of a crisp set \(M\). Perhaps the most important generalization of the aforementioned structures in [14], is the consideration of lattice \(L\) beyond the unit interval \(I = [0, 1]\). Let \(L = \langle L, \leq, \wedge, \vee', > \) be a complete distributive lattice set with at least 2 elements; 0 is the bottom element and 1 is the top element of \(L\). An \(L\)-fuzzy
subset \(D \) of the crisp set \(M \), in Goguen’s sense \[6\], is a function \(D : M \rightarrow L \) and is denoted by \(D \in L^M \). In this manuscript, we define the concept of \(L \)-fuzzy topological space \((X, \mathcal{T})\) with the \(L \)-gradation of openness, where \(X \) is an \(L \)-fuzzy subset of a crisp set \(M \). We introduce \(C^\infty \) \(L \)-fuzzy manifolds \((X, \mathcal{T})\) with \(L \)-gradation of openness, called \(C^\infty \) \(LG \)-fuzzy manifolds, with a different perception from \([5]\) and \([4]\) and obtain \(C^\infty \) \(n \)-premanifolds of them. We define \(C^\infty \) \(LG \)-fuzzy mappings of \(C^\infty \) \(LG \)-fuzzy manifolds and prove the \(LG \)-fuzzy rank theorem. Then we define and discuss \(LG \)-fuzzy immersions and \(LGP \)-fuzzy imbedding functions. We proceed to define the \(LG \)-fuzzy immersed, imbedded submanifolds as well as \(LG \)-fuzzy regular submanifolds, and then some theorems about the relations between them are deduced.

2 Preliminaries

Definition 2.1. Let \(X \) be an \(L \)-fuzzy subset of \(M \). Then any \(L \)-fuzzy subset of \(M \) which is less than or equal to \(X \) is called an \(L \)-fuzzy subset of \(X \). We denote the set of all \(L \)-fuzzy subsets of \(X \) by \(L^M_X \). If \(\tau \) as a collection of \(L \)-fuzzy subsets of \(X \), satisfies the following conditions, then \((X, \tau)\) is called an \(L \)-fuzzy topological space (\(L \)-fts):

1) \(X, \phi \in \tau \),
2) \(\{A_i\}_{i \in I} \subseteq \tau \Rightarrow \bigcup_{i \in I} A_i \in \tau \),
3) \(A, B \in \tau \Rightarrow A \cap B \in \tau \).

Example 2.2. Let \(M = \mathbb{R}^n \) and \(X = 1 \) be a constant \(L \)-fuzzy subset of \(M \). Let \(B(a, r, b) \) be an \(L \)-fuzzy subset that is equal to zero outside or on the sphere \(B(a, r) \) and equal to the function \(b \) with values in \(L \), inside \(B(a, r) \). We call the \(L \)-fuzzy topology induced by

\[
\beta_{L_n} = \{B(a, r, b), a \in \mathbb{R}^n, r \in \mathbb{R}^+, b : B(a, r) \rightarrow L, \text{ is a function}\},
\]

the \(L \)-fuzzy Euclidean topology of dimension \(n \) and denote it by \(\tau_{L_n} \). Therefore we have the \(L \)-fuzzy Euclidean topological space \((1_{\mathbb{R}^n}, \tau_{L_n})\).

Definition 2.3. Let \(\mathcal{T} : L^M_X \rightarrow L \), be a mapping satisfying:

i) \(\mathcal{T}(X) = \mathcal{T}(\emptyset) = 1 \),
ii) \(\mathcal{T}(A \cap B) \geq \mathcal{T}(A) \wedge \mathcal{T}(B) \),
iii) \(\mathcal{T}(\bigcup_{j \in J} A_j) \geq \bigwedge_{j \in J} \mathcal{T}(A_j) \).

Then \(\mathcal{T} \) is called an \(L \)-gradation of openness on \(X \) and \((X, \mathcal{T}) \) is called an \(LG \)-fuzzy topological space (\(L \)-gfts). Let \(x \in M \) and \(A \in L^M_X \). When we write \(x \in A \), we mean \(x \in \text{supp}A \).

Example 2.4. Let \(M = \mathbb{R}^n \) and \(X = 1 \) be a constant \(L \)-fuzzy subset of \(M \). As three useful examples, we define

\[
\mathcal{T}_{L_n} : L^M_X \rightarrow L, \quad \mathcal{T}_{L_n}(B) = \begin{cases} 1 & B \in \tau_{L_n}, \\ 0 & \text{elsewhere}, \end{cases}
\]

and

\[
\mathcal{T}_{Lsup} : L^M_X \rightarrow L, \quad \mathcal{T}_{Lsup}(B) = \begin{cases} 1 & \sup\{B(x) : x \in M\} B = \emptyset, \\ 0 & B \neq \emptyset \in \tau_{L_n}, \text{ elsewhere}, \end{cases}
\]

If we set “inf” instead of “sup” in the above definition, then we have \(L \)-gradation of openness \(\mathcal{T}_{Linf} \).

Let \(\mathcal{T}_{L_n} \) be any \(L \)-gradation of openness on \(1_{\mathbb{R}^n} \), such that \(\text{supp}\mathcal{T} = \tau_{L_n} \), then we call \((1_{\mathbb{R}^n}, \mathcal{T}_{L_n})\) the \(LG \)-fuzzy Euclidean topological space.

Definition 2.5. Let \((X, \mathcal{T})\) be an \(L \)-gfts. Set \(\text{supp}\mathcal{T} = \{A \in L^M_X : \mathcal{T}(A) > 0\} \), then \(A \) is called an \(LG \)-open subset of \(X \) if \(A \in \text{supp}\mathcal{T} \). Furthermore

1) Suppose \(x \in X \) and \(V \in L^M_X \). If there exists an \(LG \)-open subset \(U \) of \(X \) such that \(U(x) = V(x) \) and \(U \leq V \), then \(V \) is called an \(LG \)-neighborhood of \(x \) in \(X \). We denote the set of all \(LG \)-neighborhoods of \(x \) in \(X \) by \(LGN(x) \).
2) If for all \(x, y \in X\), \(x \neq y\), there exist two \(L\)-neighborhoods \(U_x \in \text{LGN}(x)\), \(U_y \in \text{LGN}(y)\) such that \(U_x \cap U_y = 0\). Then \((X, \mathfrak{T})\) is called a Hausdorff \(L\)-gtfs.

3) For each \(L\)-fuzzy subset \(A\) of \(X\) and any \(U \subset \supp X\), we define the \(L\)-fuzzy subset \(\chi_{U, A}\) of \(X\) by:

\[
\chi_{U, A}(z) = \begin{cases} A(z) & z \in U, \\ 0 & \text{elsewhere.} \end{cases}
\]

From now on, we write \(\chi_u\) instead of \(\chi_{U, X}\).

4) \(A\) is called an \(L\)-closed subset of \(X\) if \(X - A \in \supp \mathfrak{T}\).

5) Let \(Z\) be an \(L\)-open subset of \(X\). Define \(\mathfrak{T}_Z : L^M_X \rightarrow L\), by \(\mathfrak{T}_Z(A) = \mathfrak{T}(A)\). Then \((Z, \mathfrak{T}_Z)\) is called an \(L\)-fuzzy topological subspace of \(X\) (\(L\)-gtfss).

Definition 2.6. If \(\mathfrak{C} : L^M_X \rightarrow L\), satisfies the following conditions:

1) \(\mathfrak{C}(X) = \mathfrak{C}(\tilde{0}) = 1\).
2) \(\mathfrak{C}(A \cup B) \geq \mathfrak{C}(A) \wedge \mathfrak{C}(B)\).
3) \(\mathfrak{C}\left(\bigcap_{j \in J} A_j\right) \geq \bigwedge_{j \in J} \mathfrak{C}(A_j)\).

Then \(\mathfrak{C}\) is called an \(L\)-gradation of closedness on \(X\).

Proposition 2.7. Let \(\mathfrak{C}\) and \(\mathfrak{T}\) be \(L\)-gradations of closedness and openness respectively on \(X\). Then

1) The mapping \(\mathfrak{T}_{\mathfrak{C}} : L^M_X \rightarrow L\), defined by \(\mathfrak{T}_{\mathfrak{C}}(A) = \mathfrak{C}(X - A)\), is an \(L\)-gradation of openness on \(X\), where \((X - A)\) is an \(L\)-fuzzy subset of \(M\) defined by \((X - A)(p) = X(p) - A(p)\).
2) The mapping \(\mathfrak{C}_{\mathfrak{T}} : L^M_X \rightarrow L\), defined by \(\mathfrak{C}_{\mathfrak{T}}(A) = \mathfrak{T}(X - A)\), is an \(L\)-gradation of closedness on \(X\).
3) We have \(\mathfrak{T}_{\mathfrak{C}_\mathfrak{T}} = \mathfrak{C}\), \(\mathfrak{C}_{\mathfrak{T}_{\mathfrak{C}}} = \mathfrak{T}\).

The proof is straightforward.

Proposition 2.8. Let \(\mathfrak{M}_{\mathfrak{T}}(X)\) be the set of all \(L\)-gradations of openness on \(X\). We write \(\mathfrak{T}_1 \leq \mathfrak{T}_2\), if we have \(\mathfrak{T}_1(A) \leq \mathfrak{T}_2(A)\), \(\forall A \in L^M_X\). Then \((\mathfrak{M}_{\mathfrak{T}}(X), \leq)\) is a complete lattice.

Proof. It is clear that the relation \(\leq\) between the functions from \(L^M_X\) to \(L\), is an equivalence relation. Therefore \((\mathfrak{M}_{\mathfrak{T}}(X), \leq)\) is a partially ordered set. Further we define two mappings \(\mathfrak{T}_0, \mathfrak{T}_1 : L^M_X \rightarrow L\), by

\[
\mathfrak{T}_0(\tilde{0}) = \mathfrak{T}_0(X) = 1, \quad \mathfrak{T}_0(A) = 0, \quad \forall A \in L^M_X - \{\tilde{0}, X\}, \quad \mathfrak{T}_1(A) = 1, \quad \forall A \in L^M_X.
\]

Then \(\mathfrak{T}_0, \mathfrak{T}_1\) are two \(L\)-gradations of openness on \(X\) and we have:

\[
\mathfrak{T}_0(A) \leq \mathfrak{T}(A) \leq \mathfrak{T}_1(A), \quad \forall A \in L^M_X.
\]

Hence \(\mathfrak{T}_0, \mathfrak{T}_1\) are minimal and maximal elements of \(\mathfrak{M}_{\mathfrak{T}}(X)\), respectively.

An arbitrary intersection of gradations of openness on \(X\), is a gradation of openness. Thus any subset of \(\mathfrak{M}_{\mathfrak{T}}(X)\), has a lower bound in it. To prove this, let \(\{\mathfrak{T}_k, k \in K\}\), be an arbitrary family of \(L\)-gradations of openness on \(X\). We show that \(\mathfrak{T} = \bigwedge_{k \in K} \mathfrak{T}_k\) is an \(L\)-gradation of openness on \(X\). Obviously, \(\mathfrak{T}(X) = \mathfrak{T}(\tilde{0}) = 1\). Also,

\[
\mathfrak{T}\left(\bigcup_j A_j\right) = \bigwedge_k \mathfrak{T}_k\left(\bigcup_j A_j\right) \geq \bigwedge\left(\bigwedge_k \mathfrak{T}_k(A_j)\right) = \bigwedge\left(\bigwedge_k \mathfrak{T}_k(A_j)\right) = \bigwedge_j (\mathfrak{T}(A_j),
\]

and

\[
\mathfrak{T}(A \cap B) = \bigwedge_k \mathfrak{T}_k(A \cap B) \geq \bigwedge_k (\mathfrak{T}_k(A) \wedge \mathfrak{T}_k(B)) \geq \bigwedge_k \mathfrak{T}_k(A) \wedge \bigwedge_k \mathfrak{T}_k(B) \geq \mathfrak{T}(A) \wedge \mathfrak{T}(B).
\]

This completes the proof. \(\square\)
Example 2.9. Consider \((1_{\mathbb{R}^n}, \mathcal{I}_{1n})\) and \(0 \in \mathbb{R}^n\). We show that the fuzzy point \(0_1\) is an IG-closed subset of \(1_{\mathbb{R}^n}\): The fuzzy point \(0_1 = \chi_{(0)}\) is an I-fuzzy subset of \(\mathbb{R}^n\). So,

\[
(1_{\mathbb{R}^n} - 0_1)(x) = 1 - \chi_{(0)}(x) = \begin{cases} 1 & x \neq 0, \\ 0 & x = 0. \end{cases}
\]

Therefore,

\[
(1_{\mathbb{R}^n} - 0_1)(x) = \bigcup_{0 \leq k \in \mathbb{Z}} B(k, 1, 1)(x).
\]

Hence, \((1_{\mathbb{R}^n} - 0_1) \in \tau_{1n}\). Thus \(\mathcal{I}_{1n}(1_{\mathbb{R}^n} - 0_1) \geq 0\). So, \(1_{\mathbb{R}^n} - 0_1\) is an IG-open set. Hence, \(0_1\) is an IG-closed subset.

Definition 2.10. Let \((X, \mathfrak{S})\) be a fuzzy topological space and \(A, B\) be any fuzzy subsets of \(X\),

1) A fuzzy subset \(V\) of \(X\) is called an LG-neighborhood of \(A\) if there exists an LG-open subset \(U\) such that \(A \subseteq U \subseteq V\). We denote the set of all LG-neighborhoods of \(A\) by \(\text{LGN}(A)\).

2) Let \(B \subseteq A\). Then \(B\) is called an LG-interior set of \(A\) if \(A \in \text{LGN}(B)\). The union of all LG-interior sets of \(A\) is denoted by \(\text{LGA}\).

3) The intersection of all LG-closed subsets containing \(A\) is called an LG-closure of \(A\) and is denoted by \(\text{LGC}(A)\).

4) \(x\) is called an LG-boundary point of \(A\) if for every LG-neighborhood \(V\) of \(x\), we have \(V \nsubseteq A\). The set of these points is called an LG-boundary of \(A\) and is denoted by \(\text{LG∂}(A)\).

5) If \(x\) belongs to the LG-closure of \(A - \chi(x), A\), then \(x\) is called an LG-limited point of \(A\) and the set of these points is denoted by \(\text{LGL}(A)\).

6) \(A\) is said to be an LG-dense subset of \(X\), if \(\text{LG∂}(X) = X\).

From now on, we suppose that \(M_1, M_2\) are two crisp sets, \(X \in L^{M_1}, Y \in L^{M_2}\) and \((X, \mathfrak{S}), (Y, \mathcal{R})\) are two LG-fuzzy topological spaces.

Definition 2.11. Let \(f : M_1 \rightarrow M_2\) be a function and \(f\{X\}\) be an L-fuzzy subset of \(M_2\), defined by

\[
f\{X\}(y) = \bigvee \{X(x) \mid x \in f^{-1}(y)\}.
\]

If we have \(f\{X\} \leq Y\), then \(f\) is called an LG-related function from \(X\) to \(Y\) and the set of all such functions is denoted by \(\text{LGRf}(X, Y)\). Furthermore, if we have \(\mathcal{R}(H) \leq \mathfrak{S}(f^{-1}[H])\) for all LG-fuzzy subset \(H\) of \(Y\), then \(f\) is an L-gradation-preserving LG-related function so it is called an LGP-related function or LGP-fuzzy mapping from \(X\) to \(Y\), \(f \in \text{LGRf}(X, Y)\).

i) \(f\) is called a one-to-one LG-related (LGP-related) function if \(f|\supp X : \supp X \rightarrow \supp Y\) is a one-to-one function.

ii) \(f\) is called an onto LG-related (LGP-related) function if \(f\{X\} = Y\).

Remark 2.12. Let \(A \in \supp \mathfrak{S}\) and \(B \in \supp \mathcal{R}\). Let \(f\) be an LGP-fuzzy mapping from \(X\) to \(Y\) such that \(f[A] \leq B\). Then we have \(\mathcal{R}(H) \leq \mathfrak{S}(f^{-1}[H])\) for each LG-fuzzy subset \(H\) of \(Y\) and in particular \(H \leq B\). Thus \(\mathcal{R}(H) \leq \mathfrak{S}(f^{-1}[H])\) for each LG-fuzzy subset \(H\) of \(Y\) with \(H \leq B\). Therefore \(f\) can be considered as an LGP-fuzzy mapping of two LGft's, \((A, \mathfrak{S}_A)\) and \((B, \mathcal{R}_B)\). So we can write \(f \in \text{LGRf}(A, B)\).

Definition 2.13. Let \(f \in \text{LGRf}(X, Y)\), then

i) \(f\) is called LG-open if \(f[A] \subseteq \supp \mathcal{R} - \{0, Y\}, \forall A \in \supp \mathfrak{S} - \{0, X\}\) and \(f[X] \subseteq \supp \mathcal{R}\).

ii) \(f\) is called LG-continuous if \(f^{-1}[H] \subseteq \supp \mathfrak{S} - \{0, X\}, \forall H \in \supp \mathcal{R} - \{0, Y\}\) and \(f^{-1}[Y] \subseteq \supp \mathfrak{S}\).

iii) \(f\) is called an LG-homeomorphism if it is one-to-one, onto, LG-continuous, LG-open and \(f^{-1} \in \text{LGRf}(Y, X)\).

iv) \(f\) is called an LGP-homeomorphism if it is bijective and \(f, f^{-1}\) are LGP-fuzzy mapping.

Proposition 2.14. Let \(A, B\) be LG-open subsets of \(X, Y\) respectively. Let \(\psi : M_1 \rightarrow M_2\) be a function. Then \(\psi\) is an LGP-homeomorphism from \(A\) to \(B\) if and only if \(\psi\) satisfies the two following conditions:
\[(LGPRf) \]

\[(\forall q \in B, \exists p \in A : \psi^{-1}(q) = \{ p \}) \]

So we have \(\psi[A] = \sup \{ A(\alpha) \mid \alpha \in \psi^{-1}(q) \} = A(p) \). On the other hand by Definition 2.11 we have \(\psi[A] \leq B \). Hence \(A(p) \leq B(q) \). We see \(\psi^{-1}[B](p) = B(\psi(p)) = B(q) \). Since by Definition 2.13 (iv), we have \(\psi^{-1} \in LGPRf(Y, X) \), then \(\psi^{-1}[B] \leq A \). Hence \(B(q) \leq A(p) \). Therefore \(A(p) = B(q) \). Therefore \(A(p) = B(\psi(p)) \), for all \(p \in A \) and \(B(q) = A\psi^{-1}(q) \), for all \(q \in B \). Thus \(A = \psi^{-1}[B] \) and \(\psi[A] = B \).

ii) Since \(\psi \in LGPRf(A, B) \), we have \(\mathcal{R}(H) \leq \mathcal{T}(\psi^{-1}[H]) \) for all \(LG-fuzzy \) subset \(H \) of \(Y \), and since \(\psi^{-1} \in LGPRf(B, A) \), we have \(\mathcal{T}(D) \leq \mathcal{R}(\psi[D]) \). Set \(\psi[D] = H \). Then \(D = \psi^{-1}[H] \) by injectivity of \(\psi \). So \(\mathcal{T}(D) \leq \mathcal{R}(H) \).

Hence we have \(\mathcal{T}(\psi^{-1}[H]) = \mathcal{R}(H) \).

\[\Box \]

Proposition 2.15. Every \(LG-fuzzy \) mapping from \(X \) to \(Y \) is an \(LG-continuous \) related function, but the converse is not true.

Proof. Let \(f \) be an \(LG-fuzzy \) mapping from \(X \) to \(Y \), then \(\forall H \in \supp \mathcal{R} \setminus \{ 0, Y \} \), we have \(0 < \mathcal{R}(H) \leq \mathcal{T}(f^{-1}[H]) \).

Hence \(f^{-1}[H] \in \supp \mathcal{T} \setminus \{ 0, X \} \). Therefore \(f \) is \(LG-continuous \).

Conversely, we define an \(LG-continuous \) function which is not an \(LG-fuzzy \) mapping: Following Example 2.4 consider \(f = id : (\mathbb{R}^n, \mathcal{T}_L) \rightarrow (\mathbb{R}^n, \mathcal{T}_{L,S}). \) Since \(f[\mathbb{R}^n] = \mathbb{R}^n \) and we have \(f^{-1}[H] = H \in \supp \mathcal{T}_L \setminus \{ 0, X \} = \tau_L \setminus \{ 0, 1_{\mathbb{R}^n} \} \), \(\forall H \in \supp \mathcal{T}_{L,S} \setminus \{ 0, Y \} = \tau_{L,S} \setminus \{ 0, 1_{\mathbb{R}^n} \} \), and \(f^{-1}[1_{\mathbb{R}^n}] \in \supp \mathcal{T}_L \).

Therefore \(f \) is \(LG-continuous \). Now let \(A = \left\{ \begin{array}{ll} x^2 & \text{if } x \in (0, \frac{1}{2}) \\ 0 & \text{elsewhere.} \end{array} \right. \) Then \(A \in \tau_L \) and \(\mathcal{T}_{L,S}(f[A]) = \frac{1}{2} \). But \(\mathcal{T}_L(A) = 1 \). Hence the condition \(\mathcal{T}_L(A) \leq \mathcal{T}_{L,S}(f[A]) \) does not hold. Hence \(f \) is not an \(LG-fuzzy \) mapping.

\[\Box \]

3 **L-fuzzy topological manifolds with L-gradation of openness**

Definition 3.1. Let \(\mathcal{T} \) be an \(L-gradation \) of openness on \(X \). Then \((X, \mathcal{T}) \) is an \(LG-fuzzy \) topological space of dimension \(n \), if for any \(x \in X \), there exists an \(LG-open \) subset \(A \) of \(X \) containing \(x \) and an \(LG-open \) subset \(B \) of \(\{ \mathbb{R}_n, \mathcal{T}_L \} \), together with an \(LG-fuzzy \) topological \(\psi \in LGPRf(A, B) \). The pair \((A, \psi) \) is called an \(LG-local \) coordinate neighborhood of each \(q \in A \) and we assign to \(q \) the \(n \) \(LG-local \) coordinates \(x_1(q), x_2(q), ..., x_n(q) \) of its image \(\psi(q) \) in \(\mathbb{R}^n \).

Definition 3.2. Let \(\mathfrak{A} = \{(A_i, \psi_i) \in J \) be a collection of \(LG-local \) coordinate neighborhoods. Since \(\psi_i \) is an \(LG-homeomorphism \) for all \(i \in J \), then for all \(i, j \in J \) whenever \(A_i \cap A_j \neq \emptyset \),

\[\psi_j \circ \psi_i^{-1} : \psi_i(\supp(A_i \cap A_j)) \rightarrow \psi_j(\supp(A_i \cap A_j)) \]

is an \(LG-homeomorphism \), that is called an \(LG-transition \) function.

\[\psi_j \circ \psi_i^{-1}(x_1^i, x_2^i, ..., x_n^i) = (x_1^j, x_2^j, ..., x_n^j). \]

If \(\psi_i \circ \psi_i^{-1} \) and \(\psi_j \circ \psi_j^{-1} \) changing the \(LG-local \) coordinates are infinitely differentiable or \(C^\infty \), we shall say that \((A_i, \psi_i) \) is \(C^\infty \) compatible with \((A_j, \psi_j) \) whenever \(A_i \cap A_j \neq \emptyset \).

Definition 3.3. An \(LG-fuzzy \) topological space \((X, \mathcal{T}) \) is called an \(LG-fuzzy \) topological manifold of dimension \(n \), if it satisfies the two following conditions:

i) \(X \) is an \(LG-fuzzy \) topological space of dimension \(n \),

ii) \(X \) is a \(Hausdorff \) \(L-fuzzy \).

Definition 3.4. A differentiable or \(C^\infty \) \(LG-fuzzy \) structure on an \(LG-fuzzy \) topological manifold \((X, \mathcal{T}) \), is a family \(\mathfrak{A} = \{(A_\alpha, \psi_\alpha), \alpha \in J \} \) of \(LG-local \) coordinate neighborhoods such that
1) \(X = \bigcup_{\alpha \in J} A_\alpha; \)

2) Each pair \((A_\alpha, \psi_\alpha)\) and \((A_\beta, \psi_\beta)\) are compatible for all \(\alpha, \beta \in J.\)

3) Any LG-local coordinate neighborhood \((V, \varphi)\) that is compatible with every \((A_\alpha, \psi_\alpha), \alpha \in J\) is in \(\mathfrak{X}\) itself.

A \(C^\infty\) LG-fuzzy manifold \((X, \mathfrak{X})\) is an LG-fuzzy topological manifold with a \(C^\infty\) LG-fuzzy structure on it. In what follows, for convenience, “LG-fuzzy manifold with LG-fuzzy structure” will mean \(C^\infty\) LG-fuzzy manifold with \(C^\infty\) LG-fuzzy structure.

Example 3.5. Let \(M = \mathbb{R}^3, X : \mathbb{R}^3 \rightarrow I, X(x) = \begin{cases} 1 & \|x\| = 1, \\ 0 & \|x\| \neq 1. \end{cases}\) Then \(\text{supp}X = S^2, \) the unit sphere. Set

\[\mathfrak{T} : I_X^M \rightarrow I, \quad \mathfrak{T}(A) = \begin{cases} \sup\{A(x) \mid x \in X\} & A \in \tau_I, A \leq X, \\ 0 & \text{elsewhere.} \end{cases} \]

Then \((X, \mathfrak{T})\) is an IG-fuzzy manifold of dimension 2.

Proof. Let \(J = \{1, 2, 3\}\). We define six IG-open subsets covering \(X\) by:

\[\forall x = (x_1, x_2, x_3), \quad A_j^\pm(x) = \begin{cases} \pm x_j & \pm x_j > 0, \|x\| = 1, \\ 0 & \text{otherwise.} \end{cases} \]

Then we show that all \(A_j^\pm\) are diffeomorphic to IG-open subset \(B : \mathbb{R}^2 \rightarrow I\), defined by:

\[\forall y = (y_1, y_2), \quad B(y) = \begin{cases} \sqrt{1 - y_1^2 - y_2^2} & \|y\| < 1, \\ 0 & \text{otherwise.} \end{cases} \]

Since \(\text{supp}B = B(0, 1)\), so \(B \in \tau_I\). We define six bijections \(\psi_j^\pm\) from \(\text{supp}A_j^\pm = \{(x_1, x_2, x_3) \mid \pm x_j > 0, \|x\| = 1\}\) to \(\text{supp}B = \{(y_1, y_2) \| y \| < 1\}\), for all \(j \in J\) by:

\[\psi_j^\pm(x_1, x_2, x_3) = (x_2, x_3), \quad (\psi_j^\pm)^{-1}(y_1, y_2) = (\pm \sqrt{1 - y_1^2 - y_2^2} , y_1, y_2). \]

\[\psi_j^\pm(x_1, x_2, x_3) = (x_1, x_3), \quad (\psi_j^\pm)^{-1}(y_1, y_2) = (y_1, \pm \sqrt{1 - y_1^2 - y_2^2} , y_2). \]

Also, it is seen that \(\psi_j^\pm \circ (\psi_i^\pm)^{-1}\) is infinitely differentiable for all \(i, j \in J\). For example:

\[\psi_j^\pm \circ (\psi_i^\pm)^{-1}(y_1, y_2) = \psi_j^\mp(\pm \sqrt{1 - y_1^2 - y_2^2} , y_1, y_2) = (\pm \sqrt{1 - y_1^2 - y_2^2} , y_1, y_2). \]

Therefore, each pair \((A_i^\pm, \psi_i^\pm)\) and \((A_j^\pm, \psi_j^\pm)\) are compatible, for all \(i, j \in J\). We see

\[\forall j \in J, \quad A_j^\pm(x) = \pm x_j = B_j(\psi_j^\pm(x)), \quad \forall x \in A_j^\pm. \]

Let \(H\) be an IG-fuzzy subset of \(1_{\mathbb{R}^2}\) with \(H \leq B\). We show that \(\mathfrak{T}((\psi_j^\pm)^{-1}[H]) = \mathfrak{T}_{\text{supp}}(H)\). Using [2], we have \(\mathfrak{T}_{\text{supp}}(H) = \sup\{H(a) \mid a \in \mathbb{R}^2\}\). Since \(\psi_j^\pm\) is bijective, for each \(a \in \mathbb{R}^2\), there exists one and only one element \(p \in \text{supp}A_j^\pm\) such that \(\psi_j^\pm(p) = a \text{ or } (\psi_j^\pm)^{-1}(a) = p\). Hence

\[\mathfrak{T}_{\text{supp}}(H) = \sup\{H(\psi_j^\pm(p)) \mid p \in \text{supp}A_j^\pm\} = \sup\{((\psi_j^\pm)^{-1}[H](p) \mid p \in \text{supp}A_j^\pm\} = \mathfrak{T}((\psi_j^\pm)^{-1}[H]). \]

Hence \(\psi_j^\pm \in \text{IGPR}f(A_j^\pm, B)\) is an IG-homeomorphism for all \(j \in J\) and this completes the proof.

Example 3.6. The set of natural numbers, \(\mathbb{N}\), partially ordered by divisibility, is a distributive lattice set, for which the unique supremum is the least common multiple and the unique infimum is the greatest common divisor. Let \(L = \mathbb{N} \cup \{\infty\}\). Then \(L\) is a complete lattice. Notice that we denote the top element of any lattice by \(1\), but in this example, \(\infty\) is the top element of \(\mathbb{N} \cup \{\infty\}\). We define the LG-fuzzy Euclidean topological space \((1_{\mathbb{R}^{mn}}, \mathfrak{T}_{\text{supp}})\) by

\[1_{\mathbb{R}^{mn}} : \mathbb{R}^{mn} \rightarrow L, \quad 1_{\mathbb{R}^{mn}}((a_1, a_2, \ldots, a_{mn})) = \infty, \]
\[\mathfrak{T}_{L,mn} : L^{R_{mn}}_{1R_{mn}} \to L, \quad \mathfrak{T}_{L,mn}(D) = \begin{cases} 0 & D \in \tau_{L,mn}, \\ \infty & \text{elsewhere.} \end{cases} \]

Let \(M = M_{m \times n}(\mathbb{R}) \) and \(X \in L^M \) be defined by

\[X((a_{ij})) = 2 + \max\{|a_{ij}| \mid 1 \leq i \leq m, \ 1 \leq j \leq n\}, \]

where \(|x|\) is equal to the greatest integer less than or equal to \(|x|\). There is a bijection \(\psi \) from \(M \) to \(\mathbb{R}^{mn} \):

\[\psi(a_{ij}) = (a_{i1}, \ldots, a_{1n}, \ldots, a_{m1}, \ldots, a_{mn}). \]

Hence using \(\psi \) and \([\mathbb{I}]\), we define

\[\mathfrak{T} : L^{M}_X \to L, \quad \mathfrak{T}(A) = \begin{cases} \infty & \psi[A] \in \tau_{L,mn}, \\ 0 & \text{elsewhere.} \end{cases} \]

We show that \((X, \mathfrak{T})\) is an \(\mathcal{C}^\infty \) \(LG \)-fuzzy \(mn \)-manifold. Let \(B \) be an \(L \)-fuzzy subset of \(1_{R^{mn}} \) defined by

\[B((a_{1}, a_{2}, \ldots, a_{mn})) = 2 + \max\{|a_{k}| \mid 1 \leq k \leq mn\}. \]

We see \(B = \psi[X] \). Since \(\text{ supp}\, B = \mathbb{R}^{mn} \cup \bigcup_{k=1}^{n} \mathcal{B}(0,k) \), Hence \(B \in \tau_{L,mn} \). Therefore using \([\mathbb{I}]\), for each \(LG \)-open subset \(H \) of \(1_{R^{mn}} \), with \(H \subseteq B \), we have \(\mathfrak{T}_{L,mn}(H) = \infty = \mathfrak{T}(\psi^{-1}[H]) \). So by Proposition \([2.14] \), \(\psi \) is a \(LG \)-homeomorphism. We can cover \((X, \mathfrak{T})\) by the single \(LG \)-coordinate neighborhood \((X, \psi)\). Hence \((X, \mathfrak{T})\) is an \(\mathcal{C}^\infty \) \(LG \)-fuzzy \(mn \)-manifold.

Definition 3.7. (LG-open submanifolds) Let \(Z \) be an LG-open subset of the LG-fuzzy manifold \((X, \mathfrak{T})\). If \(\mathfrak{A} = \{(A_{\alpha}, \psi_{\alpha}) , \ \alpha \in J\} \) is an LG-fuzzy structure on \(X \), then \((Z, \mathfrak{T}_z)\) is an LG-fuzzy topology with LG-fuzzy structure consisting of the LG-coordinate neighborhoods \((A_{\alpha} \cap Z, \psi_{\alpha}|_{A_{\alpha} \cap Z})\).

Example 3.8. Let \((X, \mathfrak{T})\) be as Example \([3.6] \). We define \(Z : M_{m \times n}(\mathbb{R}) \to L, \quad Z(A) = \begin{cases} X(A) & \det A \neq 0, \\ 0 & \det A = 0. \end{cases} \)

We have \(Z \subseteq X \) and \(U = \text{ supp}\, Z = \text{GL}(n,\mathbb{R}) \) is an open subset of \(M_{m \times n} \). Hence we can prove that \(Z \) is an LG-open subset of \(X \). Therefore \((Z, \mathfrak{T}_z)\) is an LG-fuzzy submanifold of \((X, \mathfrak{T})\) with the single LG-local coordinate neighborhood \((Z, \psi|_Z)\) where \(\psi \) is a bijection defined in Example \([3.6]\).

Example 3.9. Let \(L = \mathbb{N} \cup \{\infty\} \) and \(M = \mathbb{R}^{n+1} \). Define an \(L \)-fuzzy subset

\[X : M \to L, \quad X(x) = \begin{cases} n+2 \quad & \|x\| = 1, \\ 0 \quad & \|x\| \neq 1, \end{cases} \]

\[\mathfrak{T} : L^{M}_X \to L, \quad \mathfrak{T}(A) = \begin{cases} \infty \quad & A \in \tau_{L(n+1)}, A \subseteq X, \\ 0 \quad & \text{elsewhere.} \end{cases} \]

Then \(\text{ supp}\, X = S^n \). Then \((X, \mathfrak{T})\) is an LG-fuzzy manifold of dimension \(n \):

Proof. Let \(J = \{1, \ldots, n+1\} \). We define \(2(n+1) \) LG-open subsets covering \(X \), \(A_j^\pm : M \to L \), \(j \in J \) by:

\[\forall x = (x_1, \ldots, x_{n+1}), \quad A_j^\pm(x) = \begin{cases} j \quad & \pm x_j > 0, \|x\| = 1, \\ 0 \quad & \text{otherwise.} \end{cases} \]

Then we show that each \(A_j^\pm \) is LGP-homeomorphic to the LG-open subset \(B_j : \mathbb{R}^{n} \to L \) defined by:

\[\forall y = (y_1, \ldots, y_n), \quad B_j(y) = \begin{cases} j \quad & \|y\| < 1, \\ 0 \quad & \text{otherwise.} \end{cases} \]

with \(2(n+1) \) LG-maps \(\psi_j^\pm : A_j^\pm \to B_j \) defined by:

\[\psi_j^\pm(x_1, \ldots, x_{n+1}) = (x_1, \ldots, \hat{x_j}, \ldots, x_{n+1}). \]

\[(\psi_j^\pm)^{-1}(y_1, \ldots, y_n) = (y_1, \ldots, \pm \sqrt{1 - (y_1^2 + \ldots + y_n^2)}, \ldots, y_n), \]
where \widehat{x}_j means omit x_j. Also it is seen that $\psi_j^+ \circ (\psi_i^+)^{-1}$ is infinitely differentiable for all $i, j \in J$ and we have

$$A_j^+(x) = j = B_j(\psi_j^+(x)), \quad \forall x \in A_j^+ \quad \text{and} \quad \forall j \in J.$$

Also using $[1]$, for each L^G-open subset H_j of $1_{\mathbb{R}^n}$ with $H_j \subseteq B_j$, we have

$$\mathfrak{T}_{Ln}(H_j) = \infty = \mathfrak{T}(\psi_j^+)^{-1}(H_j) \quad \forall j \in J.$$

Therefore by Proposition 2.14, $\psi_j^+ \in LGPRf(A_j^+, B_j)$, is an LGP-homeomorphism for all $j \in J$. \hfill \square

Theorem 3.10. Let (M, τ) be a C^∞ ordinary n-manifold with the C^∞ structure $\mathfrak{M} = \{(U_k, \psi_k), k \in K\}$. Consider $X = \widetilde{1}$, the constant L-fuzzy subset of M. Let δ be the L-fuzzy topology on X generated by $\{\chi_{U_k}, k \in K\}$. Define

$$\mathfrak{T}_\tau : L^M_X \to L, \quad \mathfrak{T}_\tau(A) = \begin{cases} 1 & A \in \delta, \\ 0 & \text{elsewhere.} \end{cases}$$

Then (X, \mathfrak{T}_τ) is an L-fuzzy manifold of dimension n.

Proof. First we show that \mathfrak{T}_τ is an L-gradation of openness on X:

1) Since $\widetilde{0}, X \in \delta$, therefore $\mathfrak{T}_\tau(\widetilde{0}) = \mathfrak{T}_\tau(X) = 1$.

2) For each family of fuzzy subsets $\{A_j\} \subseteq L^M_X$, we have two cases:

 i) $\{A_j\}_{j \in J} \subseteq \delta \Rightarrow \bigcup_{j \in J} A_j \in \delta$ and $\mathfrak{T}_\tau(A_j) = 1, \forall j \in J \Rightarrow 1 = \mathfrak{T}_\tau(\bigcup_{j \in J} A_j) \geq \bigwedge_{j \in J} \mathfrak{T}_\tau(A_j) = 1$

 ii) $A_j \subseteq (L^M_X - \delta)$, for some $j \in J \Rightarrow \mathfrak{T}_\tau(A_j) = 0$, for some $j \in J \Rightarrow \mathfrak{T}_\tau(\bigcup_{j \in J} A_j) \geq \bigwedge_{j \in J} \mathfrak{T}_\tau(A_j) = 0$

3) For every two fuzzy subsets $A, B \in L^M_X$, we have three cases:

 i) $A, B \in \delta \Rightarrow A \cap B \in \delta \Rightarrow 1 = \mathfrak{T}_\tau(A \cap B) \geq \mathfrak{T}_\tau(A) \land \mathfrak{T}_\tau(B) = 1$

 ii) $A \subseteq (L^M_X - \delta), B \in \delta \Rightarrow \mathfrak{T}_\tau(A) = 0, \mathfrak{T}_\tau(B) = 1 \Rightarrow \mathfrak{T}_\tau(A \cap B) \geq 0 = \mathfrak{T}_\tau(A) \lor \mathfrak{T}_\tau(B)$

 iii) $A, B \subseteq (L^M_X - \delta) \Rightarrow \mathfrak{T}_\tau(A) = \mathfrak{T}_\tau(B) = 0 \Rightarrow \mathfrak{T}_\tau(A \cap B) \geq 0 = \mathfrak{T}_\tau(A) \lor \mathfrak{T}_\tau(B)$.

Next we prove that (X, \mathfrak{T}_τ) is an L-fuzzy manifold:

Let $p \in M$. Then there exists an open subset $U_k, k \in K$ s.t. $p \in U_k$ and an open set V_k of \mathbb{R}^n along with a homeomorphism $\psi_k : U_k \to V_k$. Let τ^ϕ be the L-fuzzy topology on $1_{\mathbb{R}^n}$ generated by $\{\chi_{V_k}, k \in K\}$. Then $\tau^\phi \subseteq \tau_{Ln}$. Hence we can consider the restriction of \mathfrak{T}_{Ln} on τ^ϕ. We see

$$\mathfrak{T}_\tau(\chi_{U_k}) = \mathfrak{T}_{Ln}|_{\tau^\phi}(\chi_{V_k}).$$

Define LGP-homeomorphisms

$$\psi_k^\phi : M \to \mathbb{R}^n, \quad \psi_k^\phi(p) = \psi_k(p)\chi_{U_k} = \begin{cases} \psi_k(p) & \text{if } p \in U_k, \\ 0 & \text{elsewhere.} \end{cases}$$

Therefore $\psi_k^\phi \in LGPRf(\chi_{U_k}, \chi_{V_k})$. Thus $\mathfrak{M}_\tau = \{(\chi_{U_k}, \psi_k^\phi), k \in K\}$ is an L-fuzzy structure on X. \hfill \square

Theorem 3.11. Let (X, \mathfrak{T}) be an L-fuzzy n-manifold with L-fuzzy structure $\mathfrak{A} = \{(A_j, \psi_j), j \in J\}$. If $\mathfrak{T}_A = \{\text{supp}A \mid \mathfrak{T}(A) > 0\}$, then $(\text{supp}X, \mathfrak{T}_A)$ is a topological manifold of dimension n called a premanifold with the structure $\mathfrak{T}_A = \{((\text{supp}A_j, \psi_j|_{\text{supp}A_j}), j \in J\}$ called a prestructure.

Proof. Since $\operatorname{Dom}\mathfrak{T} = L^M_X$, then for all $A \in \text{supp}\mathfrak{T}$, we have A is less than X. Hence $\text{supp}A \subseteq \text{supp}X$.

i) $\mathfrak{T}(\widetilde{0}) = \mathfrak{T}(X) = 1 \Rightarrow \phi = \text{supp}\widetilde{0} \in \text{supp}\mathfrak{T}_A$ and $\text{supp}X \in \text{supp}\mathfrak{T}_A$.

ii) Let $\{A_j, j \in J\} \subseteq \delta$, Then $\mathfrak{T}(A_j) > 0, \forall j \in J$. Hence $\mathfrak{T}(\bigcup_{j \in J} A_j) \geq \bigwedge_{j \in J} \mathfrak{T}(A_j) > 0$. Thus $\bigcup_{j \in J} A_j \in \text{supp}\mathfrak{T}_A$.

iii) Since $\mathfrak{T}(A \cap B) \geq \mathfrak{T}(A) \lor \mathfrak{T}(B)$. So $A, B \in \mathfrak{T}_A$ implies that $\mathfrak{T}(A \cap B) > 0$. Thus $A \cap B \in \text{supp}\mathfrak{T}_A$.

Therefore \mathfrak{T}_A is a topology on $\text{supp}X$. Let $p \in X$. Then there exists an L^G-open subset $A_k, k \in K$ such that $p \in A_k$ and there exists an L^G-open subset $B_k, k \in K$ with an L^G-homeomorphism $\psi_k \in LGPRf(A_k, B_k)$. Hence $p \in \text{supp}X, A_k(p) = B_k(\psi_k(p))$ and $\psi_k|_{\text{supp}A_k} : \text{supp}A_k \to \text{supp}B_k$ is one-to-one and onto. Therefore $(\text{supp}A_k, \psi_k|_{\text{supp}A_k})$ is a coordinate neighborhood of p. Also $\psi_j \circ \psi_i^{-1}$ is infinitely differentiable for all $i, j \in K$, thus $(\psi_j|_{\text{supp}(A_i \cap A_j)}) \circ (\psi_i^{-1}|_{\text{supp}(B_i \cap B_j)})$ is C^∞ for all $i, j \in K$. Hence $(\text{supp}X, \mathfrak{T}_A)$ is a premanifold. \hfill \square
Theorem 3.12. Let \((M, \tau)\) be an n-manifold with structure \(\mathfrak{M} = \{(U_j, \varphi_j)\}, j \in J\). Let \(X = \tilde{1}\). Then
\((\text{supp}X, (\tau^p)^\circ) = (M, \tau)\).

Proof. It is clear that \(\text{supp}X = M\) and for every \(U \in \tau\) we have \(\text{supp}X_u = U\). Hence \((\tau^p)^\circ = \tau\). Since we have
\[\mathfrak{M}^p = \{(x_{U_j}, \varphi_j^p), j \in J\}, \]
then
\[\mathfrak{M}^p = \{(\text{supp}X_{U_j}, \varphi_j^p|_{\text{supp}X_{U_j}}), j \in J\} = \{(U_j, \varphi_j)|_{U_j}, j \in J\} = \mathfrak{M}^p = \mathfrak{M}.\]

\[\blacksquare\]

Remark 3.13. Let \((X, \mathfrak{T})\) be an L-fuzzy topological space with L-gradation of openness, then \(\mathfrak{T}_{\mathfrak{T}_{\mathfrak{L}}}\) does not necessarily equal \(\mathfrak{T}\). We show it by the following example.

Example 3.14. Let \(M = \mathbb{R}\). We define
\[X : M \to I, \quad X(x) = \begin{cases} \frac{1}{x} & x \in (2, +\infty), \\ 0 & \text{elsewhere}. \end{cases} \]
and \(\mathfrak{T} : I^M_X \to I\), by \(\mathfrak{T}(A) = \begin{cases} 1 & A \in \tau_{11}, A \leq X \\ 0 & \text{elsewhere}. \end{cases} \)
Then clearly \((X, \mathfrak{T})\) is an IG-fuzzy manifold of dimension 1. Then by Theorem 3.11 \((\text{supp}X, \mathfrak{T}^\circ)\) is a manifold, where \(\mathfrak{T}^\circ = \{\text{supp}A | A \in \text{supp}\mathfrak{T}\}\). Hence by Theorem 3.10 we have \(\mathfrak{T}_{\mathfrak{T}_{\mathfrak{L}}} = \{\chi_{\text{supp}A} | A \in \text{supp}\mathfrak{T}\}\). We have
\[A(x) \leq X(x) \leq \frac{1}{2}, \forall x \in M \text{ and } \forall A \in \tau_{11}. \text{ Hence } 1 = \chi_{\text{supp}A} \neq A. \text{ Therefore } \mathfrak{T}_{\mathfrak{T}_{\mathfrak{L}}} \neq \mathfrak{T}.\]

4 \ IG-fuzzy quotient manifolds

Definition 4.1. Let \(M\) be a crisp set and \(\sim\) be an equivalence relation on it. If \(A\) is an L-fuzzy subset of \(M\) such that \(A(y) = A(x)\) whenever \(y \sim x\), then we define the L-fuzzy subset:
\[A \sim M \to L, \quad A \sim (\left[x\right]) = A(x), \quad \forall x \in M,\]
where \([x] = \{y | x \sim y\}\). Since \(A \leq X\), thus \(A \sim X \sim\) and hence \(A \sim L^M_{X \sim}\).

Theorem 4.2. Let \((X, \mathfrak{T})\) be an LG-fuzzy topological space, such that \(X(y) = X(x)\) whenever \(y \sim x\), then \(\frac{X}{\sim} \sim \frac{\mathfrak{T}}{\sim} : L^M_{X \sim} \to L\), \(\frac{X}{\sim} \sim \frac{A}{\sim} = \mathfrak{T}(A)\).

Proof. We show that all elements of \(L^M_{X \sim}\) are in the form \(\frac{A}{\sim}\) for some \(A \in L^M_X\). Let \(B\) be an L-fuzzy subset of \(\frac{M}{\sim}\) less than \(\frac{X}{\sim}\). We define L-fuzzy subset \(A \sim M\) of \(M\) by \(A(x) = B([x]), \forall x \in M\). Let \(x \sim y\) so \([x] = [y]\), then \(A(x) = B([x]) = B([y]) = A(y)\) and thus \(A \sim B\). Also,

1) \(\frac{X}{\sim} \sim \frac{0}{\sim} = \mathfrak{T}(0) = 1, \quad \frac{X}{\sim} \sim \frac{X}{\sim} = \mathfrak{T}(X) = 1.\)

2) \(\frac{X}{\sim} \sim \frac{A_1 \sim \cap A_2 \sim}{\sim} = \mathfrak{T} \frac{A_1 \cap A_2}{\sim} = \mathfrak{T}(A_1 \cap A_2) \geq \mathfrak{T}(A_1) \wedge \mathfrak{T}(A_2) = \frac{X}{\sim} \sim \frac{A_1}{\sim} \wedge \frac{X}{\sim} \sim \frac{A_2}{\sim}.\)

3) Let \(\{A_j\}_{j \in J}\) be a sequence of L-fuzzy subsets of \(X\), such that \(\forall j \in J, A_j(y) = A_j(x)\), whenever \(y \sim x\), then
\[\bigcup_{j \in J} \frac{A_j}{\sim} [y] = \sup \{\frac{A_j}{\sim} [y], j \in J\} = \sup \{A_j(y), j \in J\} = \sup \{A_j(x), j \in J\} = \bigcup_{j \in J} \frac{A_j}{\sim} [x],\]
\[\frac{X}{\sim} \sim \frac{\bigcup_{j \in J} A_j}{\sim} = \mathfrak{T} \frac{\bigcup_{j \in J} A_j}{\sim} = \mathfrak{T}(\bigcup_{j \in J} A_j) \geq \bigwedge_{j \in J} \mathfrak{T}(A_j) = \bigwedge_{j \in J} \frac{X}{\sim} \sim \frac{A_j}{\sim}.\]
Hence $\frac{\mathbb{T}}{\sim}$ is a gradation of openness on X. □

This LG-fuzzy topology is nontrivial when $L = I$, because for each $a \in I$, $aX(x) = aX(y)$ whenever $x \sim y$. Hence $aX \in \text{supp}\frac{\mathbb{T}}{\sim}$.

Definition 4.3. Consider an LG-fuzzy quotient space (X, \mathbb{T}). The equivalence relation \sim is called an LG-open relation if for each fuzzy subset $A \in \text{supp}\mathbb{T}$ we have $A \sim \mathbb{T} \sim A \sim \mathbb{T}$.

Theorem 4.4. Let (X, \mathbb{T}) be an LG-fuzzy manifold and \sim be an LG-open relation. Then (X, \mathbb{T}) is an LG-fuzzy topological space of dimension n called LG-fuzzy quotient topological space of dimension n. If $\text{supp}\mathbb{T}$ has a countable basis, then $\frac{\mathbb{T}}{\sim}$ has a countable basis.

Proof. Let (A, ψ) be an LG-locally coordinate neighborhood of $p \in X$ and $\psi \in LGPRf(A, B)$. Since \sim is an LG-open relation, then we have $\frac{\mathbb{T}}{\sim}(A) > 0$. We define a corresponding relation \sim^* on $\text{supp}B$ as follows:

$$a \sim^* b \iff \psi^{-1}(a) \sim \psi^{-1}(b) \text{ for all } a, b \in \text{supp}B.$$

Clearly \sim^* is a reflexive and symmetric relation. Let $a \sim^* b$ and $b \sim^* c$. Then we have $\psi^{-1}(a) \sim \psi^{-1}(b)$, and $\psi^{-1}(b) \sim \psi^{-1}(c)$. Since \sim is transitive, so $\psi^{-1}(a) \sim \psi^{-1}(c)$. Hence $a \sim^* c$. Therefore \sim^* is transitive and so it is an equivalence relation. Since we have

$$a \sim^* b \implies \psi^{-1}(a) \sim \psi^{-1}(b) \implies A(\psi^{-1}(a)) = A(\psi^{-1}(b)) \implies B(a) = B(b).$$

Therefore, $B \sim^*$ is well-defined. Now we define

$$\psi: \text{supp}\frac{A}{\sim} \to \text{supp}\frac{B}{\sim^*}, \quad \psi([p]) = [\psi(p)].$$

We see

$$[p] = [q] \iff p \sim q \iff \psi(p) \sim^* \psi(q) \iff [\psi(p)] = [\psi(q)] \iff \psi([p]) = \psi([q]).$$

Therefore, ψ is a well-defined and one to one function. Since ψ is onto, we see

$$\forall a \in \text{supp}B, \exists p \in \text{supp}A \text{ s.t. } a = \psi(p) \implies \psi([p]) = [\psi(p)] = [a].$$

Hence, ψ is onto. We have

$$\frac{B}{\sim}([a]) = B(a) = A(\psi^{-1}(a)) = \frac{A}{\sim}([\psi^{-1}(a)]) = \frac{A}{\sim}((\psi^{-1})([a])).$$

On the other hand for each LG-open subset H of $1_{\mathbb{R}^n}$ which $H \leq B$, we have

$$\frac{\mathbb{T}}{\sim} \mathbb{A} \sim H \mathbb{T} \sim = \mathbb{A} \sim \mathbb{T} \sim 1 \sim = \mathbb{T} \sim (\psi^{-1}(H)) = \frac{\mathbb{T}}{\sim} \mathbb{A} \sim (\psi^{-1}(H)).$$

Hence, $\psi \in LGPRf\left(\frac{A}{\sim}, \frac{B}{\sim}\right)$. Therefore, if $\mathbb{A} = \{(A_j, \psi_j), j \in J\}$ be a C^∞ LG-structure of X. Then $\frac{\mathbb{A}}{\sim} = \left\{\left(\frac{A_j}{\sim}, \frac{\psi_j}{\sim}\right), j \in J\right\}$ is a C^∞ LG-fuzzy structure of (X, \mathbb{T}). Now, suppose that $\text{supp}\mathbb{T}$ has a countable basis $\beta = \{A_i, i \in \mathbb{N}\}$. Let $\frac{A}{\sim} \in \text{supp}\frac{\mathbb{T}}{\sim}$ and $A = \bigcup_{j \in K} A_j$. Since $K \subseteq \mathbb{N}$. Hence for all $y \in X$ we have:

$$\frac{A}{\sim}([y]) = A(y) = \bigcup_{j \in A} A_j(y) = sup\{A_j(y), j \in K\} = sup\left\{\frac{A_j}{\sim}([y]), j \in K\right\} = \bigcup_{j \in K} \frac{A_j}{\sim}([y]).$$

Therefore, $\beta \sim = \left\{\frac{A_i}{\sim}, i \in K\right\}$ is a countable basis for $\text{supp}\frac{\mathbb{T}}{\sim}$. □
Example 4.5. Consider the IG-fuzzy Euclidean topological space \((1_R, \Sigma_{11})\). We define a relation on \(R\) as follows:
\[\forall x, y \in 1_R, \ x \sim y \text{ if } x - y \in \mathbb{Z}. \]
Since \(1_R(y) = 1_R(x) = 1\) whenever \(y \sim x\). Hence \(1_R \sim \) is well-defined and hence by Theorem 4.2 we have the IG-fuzzy quotient topological space \((1_R \sim, \Sigma_{11} \sim)\). We show that it is an IG-fuzzy topological manifold:
Let \(A : R \rightarrow I, \ A(x) = x - [x]. \) Since
\[\text{supp} A = R - \mathbb{Z} = \bigcup_{k \in \mathbb{Z}} (k, k + 1) = \bigcup_{k \in \mathbb{Z}} B(k + \frac{1}{2}, \frac{1}{2}). \]
Then we see:
\[A = \bigcup_{k \in \mathbb{Z}} B(k + \frac{1}{2}, \frac{1}{2}, b_k), \text{ where } b_k : B(k + \frac{1}{2}, \frac{1}{2}) \rightarrow I, \ b_k(x) = x - [x]. \]
Therefore by Example 2.2 \(A \in \tau_i, \) and hence by Example 2.4 \(\Sigma_{11}(A) = 1. \) Since for all \(x, y \in R\) we have
\[x \sim y \Rightarrow y = x + k, \ k \in \mathbb{Z} \Rightarrow [y] = k + [x]. \]
\[y - [y] = k + x - (k + [x]) = x - [x] \Rightarrow A(y) = A(x). \] (3)
Hence \(A \sim \) is well-defined. So \(\Sigma_{11}(A \sim) = \Sigma_{11}(A) = 1. \) Define
\[B : R \rightarrow I, \ B(y) = \begin{cases} y & y \in (0, 1), \\ 0 & \text{otherwise}. \end{cases} \]
We can write \(B = B(\frac{1}{2}, \frac{1}{2}, b), \) where \(b : B(\frac{1}{2}, \frac{1}{2}) \rightarrow I, \) \(b(y) = y. \) So \(B \in \tau_i. \) Hence \(\Sigma_{11}(B) = 1 = \Sigma_{11}(A \sim). \) We define \(\psi : \text{supp} A \sim \rightarrow \text{supp} B \) by \(\psi([x]) = x - [x]. \) If \([x] = [y], \) then it means that \(x \sim y, \) so by (3), we have
\[x - [x] = y - [y]. \]
Hence \(\psi([x]) = \psi([y]). \) Therefore \(\psi\) is well-defined. We show that \(\psi\) is injective:
\[\psi([x]) = \psi([y]) \Rightarrow x - [x] = y - [y] \Rightarrow y - x = [y] - [x] \in \mathbb{Z} \Rightarrow x \sim y \Rightarrow [x] = [y]. \]
Since \(\forall t \in (0, 1), \) \([t] = 0, \) so \(\psi([t]) = t - |t| = t. \) Therefore \(\psi\) is surjective. So by Definition 2.11 we have
\[A \sim([x]) = B(\psi([x])). \]
On the other hand for each LG-open subset \(H\) of \(1_R\) with \(H \leq B, \) we have
\[\frac{\Sigma_{11}}{\sim} (\psi^{-1}(H)) = \frac{\Sigma_{11}}{\sim} (H) = \Sigma_{11}(H) = 1. \]
Hence \(\psi \in IGPRf(A \sim, B). \) Thus we have a single IG-local coordinate neighborhood \((A \sim, \psi)\) for all points of \(1_R \sim. \)

Proposition 4.6. Consider all of the hypotheses of Theorem 4.4. Let \(R = \{(x, y) \mid x \sim y\}. \) Then \((X, \Sigma)\) is a Hausdorff \(L\)-gft if and only if \(\chi_{R,x,x} \) is an LG-closed subset of \(X \times X. \)

Proof. Let \((X, \Sigma)\) be a Hausdorff \(L\)-gft, then for each \([x], \ [y] \in X \sim\) where \([x] \neq [y], \) there exist \(U \sim, \ V \sim \in \text{supp} \sim\) such that \([x] \in U \sim, \ [y] \in V \sim\) and \(U \sim \cap V \sim = \phi. \) So for each \((x, y) \in (X \times X)\) where \((x, y) \notin R\) there exist \(U, V \in \text{supp} \Sigma, \) such that \(U \cap V = \phi\) and \((x, y) \in (U \times V). \) We show that \(\text{supp}(U \times V) \cap R = \phi. \)
\[(a, b) \in \text{supp}(U \times V) \cap R \Rightarrow a \in U, \ b \in V, \ a \sim b \Rightarrow [a] \in U \sim, \ [b] \in V \sim, \ [a] = [b] \Rightarrow U \sim \cap V \sim \neq \phi, \] that is a contradiction. It means that for each \((x, y) \in \text{supp}(X \times X - \chi_{R,x,x})\) there exists \(U \times V \in \text{supp}(\Sigma \times \Sigma)\) such that \((x, y) \in U \times V \leq (X \times X - \chi_{R,x,x}). \) Therefore, \((\Sigma \times \Sigma)(X \times X - \chi_{R,x,x}) > \Sigma(U) \wedge \Sigma(V) > 0. \) Hence \(\chi_{R,x,x}\) is an LG-closed subset of \(X \times X.\)
Conversely, suppose that $\chi_{r,x} \times \chi_{r,x}$ is an LG-closed subset of $X \times X$. Then $(X \times X - \chi_{r,x} \times \chi_{r,x})$ is an LG-open subset. By Theorem 3.11, $\text{supp}(X \times X - \chi_{r,x} \times \chi_{r,x}) \in (\mathcal{I} \times \mathcal{I})^d$.

Hence $\text{supp}(X \times X) - R$ is an ordinary open subset. So for each $(x, y) \in (\text{supp}(X \times X) - R)$, there exists an open subsets $U \times V \in (\mathcal{I} \times \mathcal{I})^d$ such that $(x, y) \in U \times V \subseteq (\text{supp}(X \times X) - R)$. We show that $U \cap V = \emptyset$

$$a \in U \cap V \implies a \sim a \text{ and } (a, a) \in U \times V \implies (a, a) \in (U \times V) \cap R,$$

that is a contradiction. It means that for each $(x, y) \in \text{supp}(X \times X)$ where $(x, y) \notin R$, there exist $U, V \in \text{supp}\mathcal{I}^r$, such that $U \cap V = \emptyset$ and $(x, y) \in U \times V$. Since \sim is an LG-open relation, then we have $\mathcal{I}(U) \geq 0$ and $\mathcal{I}(V) \geq 0$. Therefore for each $[x], [y] \in \mathcal{I}$ where $[x] \neq [y]$, there exist $U \sim, V \sim \in \text{supp}\mathcal{I}$ such that $[x] \in U \sim, [y] \in V \sim$ and $U \sim \cap V \sim = \emptyset$. So $(\mathcal{I} \sim, \mathcal{I} \sim)$ is a Hausdorff LG-fs.

5 \textbf{LG-fuzzy product manifolds}

The concept of the product of fuzzy topological spaces was introduced by C. K. Wong [19] and later by Hutton [8]. We define and investigate LG-fuzzy product manifolds by the following theorem:

\textbf{Theorem 5.1.} Let $X \in L^{M_1}$, $X_2 \in L^{M_2}$ and $(X_1, \mathcal{I}_1), (X_2, \mathcal{I}_2)$ be two LG-fuzzy manifolds of dimensions m, n and with the LG-fuzzy structures $\mathcal{I}_1 = \{(A_{\alpha_1}, \psi_{\alpha_1})| \alpha_i \in K_i\}, i = 1, 2$ respectively. Then $(X_1 \times X_2, \mathcal{I}_1 \times \mathcal{I}_2)$ is an LG-fuzzy manifold of dimension $m + n$.

\textbf{Proof.} We define for all $A_1 \in L^{M_1}_{X_1}$, $A_2 \in L^{M_2}_{X_2}$:

$$A_1 \times A_2 \in L^{M_1 \times M_2}_{X_1 \times X_2}, \quad (A_1 \times A_2)(x, y) = A_1(x) \wedge A_2(y),$$

and

$$(\mathcal{I}_1 \times \mathcal{I}_2)(A_1 \times A_2) = \mathcal{I}_1(A_1) \wedge \mathcal{I}_2(A_2).$$

It can be verified that $\mathcal{I}_1 \times \mathcal{I}_2$ is an L-gradation of openness on $X_1 \times X_2$. Now let $p_1 \in X_1$, $p_2 \in X_2$. Then there exist two LG-open subsets A_i of X_i containing p_i, for $i = 1, 2$ and two LG-open subsets B_i of LG-fuzzy Euclidean spaces of dimension m, n, respectively together with two LGP-homeomorphisms $\psi_i = (A_i, B_i)$. Therefore for any $(p_1, p_2) \in X_1 \times X_2$, there exists an LG-open subset $A_1 \times A_2$ of $X_1 \times X_2$ containing (p_1, p_2) and an LG-open subset $B_1 \times B_2$ of LG-fuzzy Euclidean space of dimension $m + n$, together with an LGP-homeomorphism $\psi_1 \times \psi_2 = (A_1 \times A_2, B_1 \times B_2)$ such that for each LG-open subsets $H_1 \leq B_1, H_2 \leq B_2$ we have

$$\mathcal{I}_{(m+n)}(H_1 \times H_2) = (\mathcal{I}_1 \times \mathcal{I}_2)(\psi_1^{-1}(H_1) \times \psi_2^{-1}(H_2)),$$

where $(\psi_1 \times \psi_2)(x_1, x_2) = (\psi_1(x_1), \psi_2(x_2)) \in \mathbb{R}^{m+n}$. One can prove easily that

$$\mathcal{I}_1 \times \mathcal{I}_2 = \{(A_{\alpha_1} \times A_{\alpha_2}, (\psi_{\alpha_1} \times \psi_{\alpha_2})| \alpha_1 \in K_1, \alpha_2 \in K_2\},$$

is an LG-fuzzy structure on $X_1 \times X_2$. □

\textbf{Example 5.2.} Let $M = \mathbb{R}^2, X = \chi_{S^1}$. One can easily prove that (X, \mathcal{I}_{13}) is an LG-fuzzy manifold of dimension 1, similarly to Example 3.6. Then $(X \times X, \mathcal{I}_{13} \times \mathcal{I}_{13})$ is an LG-fuzzy manifold of dimensions 2 and $\text{supp}(X \times X) = S^1 \times S^1$.

6 \textbf{C^∞ LG-fuzzy mappings of LG-fuzzy manifolds}

The concept of the fuzzy vector space (V, η) over a field F was defined in [18]. We extend this definition by L-fuzzification:

\textbf{Definition 6.1.} An L-fuzzy vector space (V, η) or ηV over a field F is an ordinary vector space V over the field F, with a map $\eta : V \rightarrow L$ satisfying the following conditions for all $a, b \in V$ and $r \in F$:

1) $\eta(a + b) \geq \min\{\eta(a), \eta(b)\}$,

2) $\eta(-a) = \eta(a)$,
3) \(\eta(0) = 1 \),
4) \(\eta(ra) \geq \eta(a) \),

Definition 6.2. Let \((X, \mathcal{X})\) be an LG-fuzzy manifold of dimension \(n \), \(U \in \text{supp}\mathcal{X} \) and \(V \in \text{supp}\mathcal{X}_{L1} \). The LG-related function \(f \) from \(U \) to \(V \), is called a \(C^\infty \) LG-fuzzy mapping, if for every \(p \in U \),
\[
\hat{f} = f \circ \psi^{-1} : \psi(\text{supp}(A \cap U)) \to \text{supp}V,
\]
is \(C^\infty \) where \((A, \psi)\) is an LG-local coordinate neighborhood of \(p \).

We denote the set of all \(C^\infty \) LG-fuzzy mappings from an LG-open subset \(U \) of \(X \), containing \(p \) to 1, by \(C^\infty_L(p) \).

If we define \(\eta : C^\infty_L(p) \to L \), \(\eta(f) = A(p) \), where \((A, \psi)\) is an LG-coordinate neighborhood of \(p \), then \(C^\infty_L(p) \) may be considered as an \(L \)-fuzzy vector space \((C^\infty_L(p), \eta)\). Let \(\psi(q) = (x_1, \ldots, x_n) \), \(\forall q \in \text{supp}(A \cap U) \). Then \(\hat{f}(x_1, \ldots, x_n) = y(q) \), and since \(\hat{f} \) is \(C^\infty \), there exist all partial derivatives of any order of \(y \).

Example 6.3. In Example 3.8, if we define \(f : M_{m \times n} \to \mathbb{R}, f((a_{ij})) = \det((a_{ij})) \), then using the single IG-local coordinate neighborhood \((Z, \psi|_Z)\), we have \(\hat{f} = f \circ \psi \) is \(C^\infty \). Hence \(f \in C^\infty(p) \) for all \(p \in Z \).

From now on, we suppose that \(M_1, M_2 \) are two crisp sets, \(X \in L^{M_1}, Y \in L^{M_2} \) such that \((X, \mathcal{X}), (Y, \mathcal{R})\) are two LG-fuzzy manifolds of dimension \(n, m \) and LG-fuzzy structures \(\mathfrak{A} = \{(A_i, \psi_i), i \in K\} \) and \(\mathfrak{D} = \{(D_j, \varphi_j), j \in J\} \) respectively and \(U \in \text{supp}\mathcal{X}, V \in \text{supp}\mathcal{D} \).

Definition 6.4. An LG-fuzzy function \(F \in \text{LGR}f(U, V) \) is a \(C^\infty \) LG-fuzzy mapping if for every \(p \in U \),
\[
\hat{F} = \varphi \circ f \circ \psi^{-1} : \psi(\text{supp}(A \cap U)) \to \varphi(\text{supp}(B \cap V)),
\]
is \(C^\infty \) where \((A, \psi), (B, \varphi)\) are LG-local coordinate neighborhoods of \(p \) and \(F(p) \) respectively. \(F \in \text{LGR}f(U, V) \) is called a LG-diffeomorphism if it is an LG-homeomorphism and \(F, F^{-1} \) are \(C^\infty \).

More precisely, if \(\psi(q) = (x_1, \ldots, x_n) \), \(\forall q \in \text{supp}(A \cap U) \) and \(\varphi(w) = (y_1, \ldots, y_m) \), \(\forall w \in B \), then
\[
\hat{F}(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)),
\]
and each \(y_i = f_i(x_1, \ldots, x_n) \) is \(C^\infty \) on \(\psi(A) \).

Definition 6.5. The rank of \(F \in \text{LGR}f(X, Y) \) at \(p \) is equal to the rank at \(x = \psi(q) \) of the Jacobian matrix:
\[
\left(\begin{array}{ccc}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n}
\end{array} \right) .
\]

Example 6.6. Let \(M_1 = M_2 = \mathbb{R}^2 \), \(L = I \) and \(X : M_1 \to I, Y : M_2 \to I \) be defined by:
\[
X(x_1, x_2) = \begin{cases}
1 & \|x\| = 1, \\
0 & \|x\| \neq 1,
\end{cases}
\quad \text{and} \quad
Y(y_1, y_2) = \begin{cases}
1 & \|y\| = 1, \\
0 & \|y\| \neq 1.
\end{cases}
\]
If we define \(\mathcal{T} : I^{M_1}_X \to I \), and \(\mathcal{R} : I^{M_2}_Y \to I \), by
\[
\mathcal{T}(A) = \begin{cases}
1 & A \in \text{supp}\mathcal{X}, A \leq X, \\
0 & \text{elsewhere}.
\end{cases}
\quad \text{and} \quad
\mathcal{R}(D) = \begin{cases}
1 & D \in \text{supp}\mathcal{X}, D \leq Y, \\
0 & \text{elsewhere}.
\end{cases}
\]
In a similar manner to the Example 3.3, we can prove that \((X, \mathcal{X}), (Y, \mathcal{R})\) are IG-fuzzy manifolds. Let \(F : M_1 \to M_2, F(x_1, x_2) = (x_1 - x_2, \sqrt{2x_1x_2}) \).

We prove that \(F \in \text{IGR}f(X, Y) \) is a \(C^\infty \) IG-fuzzy mapping. First we show \(F|\text{supp}X : \text{supp}X \to \text{supp}Y \) is well-defined and \(F[X] = Y \):
\[
(x_1, x_2) \in S^1 \Rightarrow x_1^2 + x_2^2 = 1 \Rightarrow (x_1 - x_2)^2 + (\sqrt{2x_1x_2})^2 = 1 \Rightarrow F(x_1, x_2) \in S^1,
\]
\[
F[X](y_1, y_2) = \sqrt{(x_1(x_1, x_2) : (x_1, x_2) \in F^{-1}(y_1, y_2))} = 1 = Y(y_1, y_2).
\]
Let \((A_1^+, \psi_1^+), (D_2^+, \varphi_2^+)\) be IG-local coordinate neighborhoods on \(X, Y \) respectively, then we see:
\[
\varphi_2^+ \circ F \circ \psi_1^{-1}(y) = \varphi_2^+ \circ F(\sqrt{1-y^2}, y) = \varphi_2^+ (\sqrt{1-y^2} - y, \sqrt{2y\sqrt{1-y^2}}) = \sqrt{1-y^2} - y,
\]
is \(C^\infty \). Similarly, one can show that \(\varphi_i^+ \circ F \circ \psi_j^{-1} \) is \(C^\infty \) for all \(i, j = 1, 2 \).
Example 6.7. Let \(F : \mathbb{R} \to \mathbb{R}^2 \), \(F(t) = (\cos(t - \frac{\pi}{2}), \sin(t - \frac{\pi}{2})) \). Then \(F \in \text{IGPRf}(1_{\mathbb{R}}, 1_{\mathbb{R}^2}) \) and rank \(F = 1 \) at every point of \(X \).

Theorem 6.8. (LG-fuzzy rank theorem) Let \(F \in \text{LGRf}(U,Y) \) be a \(C^\infty \) fuzzy mapping and rank \(F = k \) at every point of \(X \). If \(p \in X \), then there exist LG-local coordinate neighborhoods \((A,\psi), (B,\varphi)\) such that

\[
\psi(p) = (0,\ldots,0) \in \mathbb{R}^n, \quad \varphi(F(p)) = (0,\ldots,0) \in \mathbb{R}^m,
\]

and \(\hat{F} = \varphi \circ F \circ \psi^{-1} \) is given by:

\[
\hat{F}(x_1, \ldots, x_n) = (x_1, \ldots, x_k, 0, \ldots, 0).
\]

Proof. Using Theorem 3.11, we see that \((\text{supp}X, \mathcal{T}^q)\) and \((\text{supp}Y, \mathcal{R}^q)\) are two topological manifolds of dimension \(n, m \) with the structures \(\mathcal{A}^q = \{(\text{supp}A_i, \psi_i|_{\text{supp}A_i}) | i \in K\} \) and \(\mathcal{D}^q = \{(\text{supp}D_j, \varphi_j|_{\text{supp}D_j}) | j \in J\} \) respectively. Also \(F|_{\text{supp}X} : \text{supp}X \to \text{supp}Y \) is a \(C^\infty \) mapping and rank \(F = k \) at every point of \(X \). Fix \(p \in \text{supp}X \), then by the rank theorem, there exist coordinate neighborhoods \((\text{supp}A, \psi|_{\text{supp}A}), (\text{supp}D, \varphi|_{\text{supp}D})\) of \(p \) and \(F(p) \) respectively such that

\[
\psi|_{\text{supp}A}(p) = (0,\ldots,0) \in \mathbb{R}^n, \quad \varphi|_{\text{supp}D}(F|_{\text{supp}X}(p)) = (0,\ldots,0) \in \mathbb{R}^m,
\]

and \(\tilde{F}|_{\psi(\text{supp}A)} = \varphi|_{\text{supp}D} \circ F|_{\text{supp}A} \circ \psi^{-1}|_{\psi(\text{supp}A)} \) is given by:

\[
\tilde{F}|_{\psi(\text{supp}A)}(x_1, \ldots, x_n) = (x_1, \ldots, x_k, 0, \ldots, 0).
\]

Therefore the LG-fuzzy rank theorem holds for LG-fuzzy manifolds.

Remark 6.9. We can cover \(X \) and \(\tilde{X} = F[X] \) by these LG-local coordinate neighborhoods \(\mathfrak{A} = \{(A_s, \psi_s) | s \in S\} \), and \(\mathfrak{D} = \{(D_s, \varphi_s) | s \in S\} \) respectively where \(S \subseteq K \). Since \(\mathfrak{A} \) is an LG-structure of \(X \), one can show that \(\mathfrak{D} \) is an LG-structure of \(F[X] \). If \(F \) is an LG-diffeomorphism, then we have rank \(F = \dim X = \dim Y \).

Definition 6.10. The \(C^\infty \) \(L \)-related function \(F \in \text{LGRf}(X,Y) \) is an LG-fuzzy immersion (submersion) if rank \(F = \dim X = \dim Y \) at every point of \(X \).

Theorem 6.11. Let \(F \in \text{LGRf}(X,Y) \) be a \(C^\infty \) LG-fuzzy mapping. If \(F \) is an injective LG-fuzzy immersion, then \((\tilde{X}, \tilde{\mathcal{T}})\) is an LG-fuzzy submanifold of dimension \(n \), called an LG-fuzzy immersed submanifold and \(F \in \text{LGRf}(X, \tilde{X}) \) is an LG-diffeomorphism.

Proof. \(F \) establishes a one-to-one correspondence between \(\text{supp}X \) and \(\text{F}(\text{supp}X) \). Thus, \(F \in \text{LGRf}(X, \tilde{X}) \) is one-to-one and onto. Since for each \(q \in \text{F}(\text{supp}X) \), there exists only one \(p \in \text{supp}X \) such that \(F^{-1}(q) = \{p\} \), hence

\[
\hat{X}(q) = F[X](q) = \text{sup}(X(a)|F(a) = q) = X(p).
\]

Since \(F \in \text{LGRf}(X,Y) \), we have \(F[X] \leq Y \); therefore \(\tilde{X} \leq Y \). Hence \(\tilde{X} \) is an LG-fuzzy subset of \(Y \). We use \(F \) to endow \(\tilde{X} \) with an LG-structure

\[
\tilde{\mathcal{D}} = \{(D_s|_{\tilde{X}}, \pi \circ \varphi_s|_{\tilde{X}}) | (D_s, \varphi_s) \in \mathfrak{D}, \forall s \in S\},
\]

where \(\pi(y_1, \ldots, y_m) = (y_1, \ldots, y_n) \) is the projection and an LG-fuzzy topology

\[
\tilde{\mathcal{T}} : L^{M_2}_{\tilde{X}} \to L, \quad \tilde{\mathcal{T}}(H) = \mathcal{T}(F^{-1}[H]).
\]

Then \((\tilde{X}, \tilde{\mathcal{T}})\) is an LG-fuzzy manifold of dimension \(n \), called an LG-fuzzy immersed submanifold and \(F \in \text{LGRf}(X, \tilde{X}) \) is an LG-gradation-preserving. Therefore \(F \) is an LG-diffeomorphism. \(\square \)

In general, gradation of openness \(\tilde{\mathcal{T}} \) and the LG-fuzzy structure on \(\tilde{X} \) depend on \(F \) as well as \(X \), i.e. \((\hat{X}, \tilde{\mathcal{T}})\) is not a submanifold of \((Y, \mathcal{T})\). So we add the condition of LG-continuity of \(F, F^{-1} \) in the following definition:

Definition 6.12. An LG-fuzzy imbedding is a one-to-one LG-fuzzy immersion \(F \in \text{LGRf}(X,Y) \) with \(F \in \text{LGRf}(X, \tilde{X}) \) is an LG-homeomorphism from \(X \) to \(\tilde{X} = F[X] \) as an LG-fuzzy subspace of \(Y \). The image of an LG-fuzzy imbedding is called an LG-fuzzy imbedded submanifold.

Theorem 6.13. Let \(F \in \text{LGRf}(X,Y) \) be an LG-fuzzy immersion. Then for each \(p \in X \), exists an LG-neighborhood \(A \) of \(p \) such that \(F|_{\text{supp}A} \) is an LG-fuzzy imbedding.
Proof. According to Theorem 6.8, we may choose \((A, \psi)\) and \((D, \varphi)\), the LG-local coordinate neighborhoods of \(p\) and \(F(p)\), respectively, such that (4) holds. Since \(F|A| = D\) and \(D\) is an LG-open subset of \(Y\), hence \(\mathcal{L}\)-gradation of openness \(\mathfrak{Z}\) of \(F|A|\), is the same as its \(\mathcal{L}\)-gradation of openness \(\mathfrak{D}|D\) as an \(\mathcal{L}\)-fuzzy of \(Y\), i.e. \(\mathfrak{Z}(H) = \mathfrak{D}(F^{-1}(H)) = \mathfrak{D}(H)\), for all \(\mathcal{L}\)-open subset \(H\) of \(D\). On the other hand, \(\psi\) and \(\varphi\) are \(\mathcal{L}\)-homeomorphisms, hence \(\hat{F}\) is an \(\mathcal{L}\)-homeomorphism of \(\psi|A|\) and \(\varphi|D|\). Therefore \(F|_{\text{supp}A}\) is a homeomorphism, and thus the theorem holds.

Example 6.14. Let \(Z = \chi_{(1, +\infty)}\). Then \(Z\) is an \(\mathcal{L}\)-open subset of \(1_{\mathbb{R}}\). If \(\mathfrak{Z} = \mathfrak{Z}_{11}\), then \((Z, \mathfrak{Z}_Z)\) is an \(\mathcal{L}\)-fuzzy submanifold of \((1_{\mathbb{R}}, \mathfrak{Z}_{11})\). Let \(W = B((0, 0), 1, 1)\), then \(W\) is an \(\mathcal{L}\)-open subset of \(1_{\mathbb{R}^2}\). Consider \(F : \mathbb{R} \to \mathbb{R}^2\), \(F(t) = (\frac{1}{t} \cos 2\pi t, \frac{1}{t} \sin 2\pi t)\). Then \(F \in IGRf(Z, W)\) and rank \(F = 1\) at every point of \(Z\). We see \(F^{-1}(x, y) = \frac{1}{\sqrt{x^2 + y^2}}\), so \(F\) is a one-to-one \(\mathcal{L}\)-fuzzy immersion. Since \(F \in IGRf(Z, \mathfrak{Z})\) is an \(\mathcal{L}\)-homeomorphism, \(F\) is an \(\mathcal{L}\)-fuzzy imbedding.

7 \(\mathcal{L}\)-fuzzy submanifolds of \(\mathcal{L}\)-fuzzy manifolds

Definition 7.1. An \(\mathcal{L}\)-fuzzy subset \(N\) of an \(\mathcal{L}\)-fuzzy manifold \((X, \mathfrak{Z})\), is said to have the \(\mathcal{L}\)-fuzzy \(k\)-submanifold property if each \(p \in N\) has an \(\mathcal{L}\)-local coordinate neighborhood \((A, \psi)\) on \(X\) with \(\mathcal{L}\)-local coordinates \(x_1, x_2, \ldots, x_n\) such that \(\psi(p) = (0, \ldots, 0) \in \mathbb{R}^n\), and

\[
\psi(\text{supp}A \cap \text{supp}N) = \{(x_1, x_2, \ldots, x_n) \in \psi(A) \mid x_{k+1} = \ldots = x_n = 0\}.
\]

If \(N\) has this property, \(\mathcal{L}\)-coordinate neighborhoods of this type are called preferred \(\mathcal{L}\)-local coordinates.

Denote by \(\pi : \mathbb{R}^n \to \mathbb{R}^k\), \(k \leq n\), the projection to the first \(k\) coordinates. Using the notation above, we may state the following proposition:

Theorem 7.2. Let \(N \subseteq X\) have the \(\mathcal{L}\)-fuzzy \(k\)-submanifold property. Then each \(\mathcal{L}\)-preferred \(\mathcal{L}\)-local coordinate system \((A, \psi)\) of \(X\) defines an \(\mathcal{L}\)-local coordinate neighborhood \((A', \psi')\) on \(X\) where \(A' = A \cap N\), \(\psi' = \pi \circ \psi|A'\). Therefore the inclusion \(i \in IGRf(N, X)\) is an \(\mathcal{L}\)-fuzzy imbedding.

Proof. Since \(N\) is an \(\mathcal{L}\)-open subset of \(X\), thus \((N, \mathfrak{Z}_N)\) is an \(\mathcal{L}\)-fuzzy topological subspace of \(X\). Then \((A', \psi')\) are \(\mathcal{L}\)-coordinate neighborhoods covering \(N\), where \(A' = A \cap N\) is an \(\mathcal{L}\)-open subset of \(N\) and \(\psi' = \pi \circ \psi|A'\) is an \(\mathcal{L}\)-homeomorphism. Suppose that for two preferred neighborhoods \((A'_1, \psi'_1)\) and \((A'_2, \psi'_2)\), \(A'_1, A'_2\) have a nonempty intersection. We know that the change of \(\mathcal{L}\)-local coordinates is given by \(\mathcal{L}\)-homeomorphisms \(\psi'_1 \circ \psi'^{-1}_2\) and \(\psi'_2 \circ \psi'^{-1}_1\) which we must show to be \(C^\infty\). Let

\[
\gamma(x_1, \ldots, x_k) = (x_1, \ldots, x_k, 0, \ldots, 0) \in \mathbb{R}^n,
\]

so that \(\pi \circ \gamma\) is the identity on \(\mathbb{R}^k\). This map \(\gamma\) is \(C^\infty\). Hence its restriction to \(\psi'(A')\), an \(\mathcal{L}\)-open subset of \(\mathbb{R}^k\), is \(C^\infty\); thus \(\psi'^{-1} = \psi \circ \gamma\) is \(C^\infty\), since it is a composition of \(C^\infty\) maps. On the other hand, \(\psi' = \pi \circ \psi\) so \(\psi'\) is a \(C^\infty\) map on \(A'\). Hence \(\psi'_1 \circ \psi'^{-1}_2\) is \(C^\infty\). If \(y_i = f_i(x_1, \ldots, x_k), i = 1, \ldots, k\), are the functions giving \(\psi'_1 \circ \psi'^{-1}_2\), which we know to be \(C^\infty\), then it can easily be checked that \(\psi'_1 \circ \psi'^{-1}_2\) is given by \(y_i = f_i(x_1, \ldots, x_k, 0, \ldots, 0), i = 1, \ldots, k\). Therefore \(\psi'_1 \circ \psi'^{-1}_2\) is \(C^\infty\) by Definition 3.2. Thus the totality of these \(\mathcal{L}\)-neighborhoods define a unique differentiable structure on \(N\). In preferred \(\mathcal{L}\)-local coordinates \((A', \psi')\), \(\in IGRf(N, X)\) is given on \(V\) by

\[
\psi \circ i \circ \psi'^{-1}(x_1, \ldots, x_k) = (x_1, \ldots, x_k, 0, \ldots, 0).
\]

So the map \(i\) is clearly an \(\mathcal{L}\)-fuzzy immersion. Because we have taken the relative \(\mathcal{L}\)-fuzzy topology on \(N\), the fuzzy map \(i\) is by Definition 2.13 (iii) an \(\mathcal{L}\)-homeomorphism to its image \(i(N)\), with the \(\mathcal{L}\)-fuzzy subspace topology, that is, \(i\) is an \(\mathcal{L}\)-fuzzy imbedding.

Definition 7.3. A regular \(\mathcal{L}\)-fuzzy submanifold of an \(\mathcal{L}\)-fuzzy manifold \((X, \mathfrak{Z})\) is any \(\mathcal{L}\)-fuzzy topological subspace \(N\) with the \(\mathcal{L}\)-fuzzy submanifold property and with the structure that the corresponding preferred \(\mathcal{L}\)-local coordinate neighborhoods determine on it.

Example 7.4. Let \(M = \mathbb{R}^3\), \(X : \mathbb{R}^3 \to I\), \(X(x) = \begin{cases} 1 & \|x\| = 1, \\ 0 & \|x\| \neq 1. \end{cases}\). Then \(\text{supp}X = S^2\), the unit sphere. Let \(\mathfrak{Z} : \gamma_x \to I\), \(\mathfrak{Z}(A) = \begin{cases} 1 & A \in \tau_{13}, A \leq X \\ 0 & \text{elsewhere.} \end{cases}\). We shall see that \(X\) is an \(\mathcal{L}\)-fuzzy submanifold of \((1_{\mathbb{R}^3}, \mathfrak{Z}_{13})\). If

\[
\mathfrak{Z} : \gamma_x \to I, \mathfrak{Z}(A) = \begin{cases} 1 & A \in \tau_{13}, A \leq X \\ 0 & \text{elsewhere.} \end{cases}\.
\]
q = (x_1, x_2, x_3) is an arbitrary point in suppX, it cannot lie on more than one coordinate axis. For convenience, we assume that it does not lie on the x_3-axis. We introduce the spherical LG-local coordinates (ρ, θ, φ); they are defined on _R^3_ \setminus \{x_3 = 0\} and if (1, θ_0, φ_0) are the LG-coordinates of q, we may change them a little so that it is replaced by \(\rho = \rho - 1 \), \(\theta = \theta - \theta_0 \), and \(\phi = \phi - \phi_0 \). Then it defines an LG-coordinate neighborhood of q, with q having LG-coordinates (0, 0, 0) and with the LG-open subset V of X.

Remark 7.5. So far, we have defined three classes of LG-fuzzy manifolds of an LG-fuzzy n-manifold (X, S). The first of these, which we usually simply call an LG-fuzzy submanifold, was defined (in 6.11) as the image N = F[N'] of an LG-fuzzy immersion F of N' into X. Since F : N' \to N \subseteq X is one-to-one and onto, we conduct (as part of the definition) carry over to N the LG-fuzzy topology and LG-fuzzy structure of N'. LG-open subsets of N are the images of LG-open sets of N' and LG-coordinate neighborhoods (A, ψ) of N are of the form A = F[A'], \(\psi = \psi \circ F^{-1} \), where (A', ψ') is an LG-local coordinate neighborhood of N'. The fact that F is LG-continuous shows that the LG-fuzzy topology of N gained in this way is in general finer than its relative LG-fuzzy topology as an LG-fuzzy subspace of X, that is, if D is LG-open subset of X, then D \cap N is LG-open subset of N, but there may be LG-open subsets of N which are not of this form.

An LG-fuzzy imbedding is a particular type of LG-fuzzy immersion, one in which A is LG-open subset of N if and only if \(A = F[U'] = D \cap N \) for some LG-open subset D of X so that the LG-fuzzy topology of the submanifold N = F[N'] is exactly its relative LG-fuzzy topology as an LG-fuzzy topological subspace of X. An LG-fuzzy imbedded submanifold is so a special type of (immersed) LG-fuzzy submanifold.

Ultimately, if N \subseteq X is an LG-fuzzy regular submanifold, then it is also an LG-fuzzy imbedded submanifold since the inclusion \(i : N \to M \) is an LG-fuzzy imbedding as we proved in 7.2.

Theorem 7.6. Let \(F \in LGRf(N', X) \) be an LG-fuzzy imbedding of an LG-fuzzy manifold N' of dimension k in an LG-fuzzy manifold of dimension n. Then N = F[N'] has the LG-fuzzy k-submanifold property and thus N is an LG-fuzzy regular submanifold. As such, it is LG-diffeomorphic to N' with respect to the LG-fuzzy mapping \(F \in LGRf(N', N) \).

Proof. Let q = F(p) be any point of N. According to Theorem 7.2 (and its proof), there are (A, ψ) and (B, φ), LG-local coordinate neighborhoods of p and F(p), respectively, such that (\ref{eq:coordinate_neighborhood}) holds. If F[A] = V \subseteq N, then the LG-neighborhood V would be a preferred LG-local coordinate neighborhood relative to N. To deduce this result, we should use the fact that F is an LG-imbedding. This denotes at least that F[A] is a relatively LG-open subset of N, that is, F[A] = W \cap N, where W is LG-open subset of X. Since F[A] \subseteq V, we can suppose W \subseteq V. Thus \(\psi[W] \) is an LG-open subset of \(\varphi[B] \) containing the origin in \(\mathbb{R}^n \) and \(\varphi[F[A]] \subseteq \psi[W] \), which is a slice S of \(\varphi[V] \), \(S = \{ x \in \varphi[V] | x_k + 1 = \ldots = x_m = 0 \} \). Hence we may select an (smaller) LG-open subset \(\varphi[V'] \subseteq \psi[W] \) and \(\varphi' = \varphi|_{\text{supp}V'} \). This is an LG-local coordinate neighborhood of q for which \(F[A] \cap V' = V' \cap N \); furthermore, taking \(A' = F^{-1}[V'] \), we see that (A', ψ'), with \(\psi' = \psi|_{\text{supp}A'} \), is an LG-local coordinate neighborhood of p and the pair \((A', \psi') \) and \((V', \varphi') \) have exactly the properties needed in 7.1 and \(F[A'] = V' \subseteq N \). This proves at the same time, that N has the LG-fuzzy k-submanifold property.

This is true since the inverse of F in \(LGRf(N', N) \) is given in the preferred LG-local coordinates \((V', \pi \circ \varphi') \) and \((A', \psi') \) by \(F^{-1}(x_1, \ldots, x_k) = (x_1, \ldots, x_k) \), which is \(C^\infty \).

Remark 7.7. Suppose that N \subseteq X is an LG-fuzzy immersed submanifold and that q \in N. Then there is an LG-neighborhood (V, ψ) of q, with \(\psi(p) = (0, \ldots, 0) \) such that the slice S' \subseteq \text{supp}V, consisting of all points of V whose last \(n - k \) coordinates vanish, is an LG-open set and an LG-local coordinate neighborhood of the LG-fuzzy submanifold structure of N is given by LG-local coordinate map

\[
\psi'(q) = \pi \circ \psi(q) = (x_1(q), \ldots, x_k(q)).
\]

Theorem 7.8. If \(F \in LGRf(N, X) \) is a one-to-one LG-fuzzy immersion and N is a compact L-gfts, then F is an LG-fuzzy imbedding and \(\bar{N} = F[N] \) an LG-fuzzy regular submanifold.

Proof. Since F is LG-continuous and both N and \(\bar{N} \) are Hausdorff L-gfts’s, we have an LG-continuous (one-to-one) mapping from a compact L-gfts to a Hausdorff L-gfts. Since an LG-closed subset K of N is compact, so F(K) is compact and therefore LG-closed. Thus F takes LG-closed subsets of N to LG-closed subsets of X, and since F is one-to-one and onto, it takes LG-open subsets to LG-open subsets as well. It follows that \(F^{-1} \) is LG-continuous, so \(F \in LGRf(N, \bar{N}) \) is an LG-homeomorphism and therefore an LG-imbedding.

Theorem 7.9. Let \(F \in LGRf(X, Y) \) be a \(C^\infty \) LG-fuzzy mapping. Suppose that F has constant rank k on X and that \(q \in F(X) \). Let \(D \) denote \(F^{-1}(q) \); then \(\chi_{L} \) is an LG-closed, LG-fuzzy regular submanifold of X of dimension \(n - k \).
Proof. Let \(p \in D \); since \(F \) has constant rank \(k \) on an \(LG \)-neighborhood of \(p \), we may find \(LG \)-local coordinate neighborhoods \((A, \psi), (B, \varphi) \) such that (1) holds. By Example 2.9 the fuzzy point \(0_{1} \) is an \(LG \)-closed subset of \(\mathbb{R}^{n} \), then \(\chi_{(q)} \) is an \(LG \)-closed subset of \(Y \). Hence \(\chi_{(q)} \) is an \(LG \)-closed subset since the inverse image of \(\chi_{(q)} \), under a continuous map, is \(LG \)-closed. We shall show that \(\chi_{(q)} \) has the \(LG \)-fuzzy \(n - k \) submanifold property. This means that the only points of \(D \) mapped onto \(q \) are those whose first \(k \) coordinates are zero, that is,

\[
\text{supp}A \cap D = \psi^{-1}(\psi \circ F^{-1} \circ \varphi^{-1}(0)) = \psi^{-1}(\tilde{F}^{-1}(0)) = \psi^{-1}\{x \in \psi(A) | x_{1} = \ldots = x_{k} = 0\}.
\]

Hence \(\chi_{(q)} \) is a regular \(LG \)-fuzzy \((n - k) \)-submanifold since it has the \(LG \)-fuzzy submanifold property.

\[\square\]

Corollary 7.10. If \(F \in LGRf(X,Y) \) is a \(C^{\infty} \) \(LG \)-fuzzy mapping of \(LG \)-fuzzy manifolds, \(\dim X = n \leq m = \dim Y \), and rank \(F = n \) at every point of \(D = F^{-1}(q) \), then \(\chi_{(q)} \) is an \(LG \)-closed, regular \(LG \)-fuzzy submanifold of \(X \). The corollary holds because at \(p \in A \), \(F \) has the maximum rank possible, namely \(m \). It follows from the independence of rank on \(LG \)-local coordinates that, in some \(LG \)-neighborhood of \(p \) in \(N \), \(F \) also has this rank; thus the rank of \(F \) is \(m \) on an \(LG \)-open subset of \(N \) containing \(A \). But such an \(LG \)-fuzzy subset is itself an \(LG \)-fuzzy \(n \)-manifold (an \(LG \)-open submanifold) to which we may apply the theorem.

8 Conclusion

In this paper, we generalize all of the fuzzy structures which we have discussed in [13] to \(L \)-fuzzy set theory, where \(L = \langle L, \leq, \wedge, \vee, ' \rangle \) denotes a complete distributive lattice with at least two elements. We define the concept of an \(LG \)-fuzzy topological space \((X, \mathcal{T})\) which \(X \) is itself an \(L \)-fuzzy subset of a crisp set \(M \) and \(\mathcal{T} \) is an \(LG \)-gradation of openness of \(L \)-fuzzy subsets of \(M \) which are less than or equal to \(X \). Then we define \(C^{\infty} \) \(L \)-fuzzy manifolds with \(L \)-gradation of openness and \(C^{\infty} \) \(LG \)-fuzzy mappings of them such as \(LG \)-fuzzy immersions and \(LG \)-fuzzy imbeddings. We fuzzify the concept of the product manifolds with \(L \)-gradation of openness and define \(LG \)-fuzzy quotient manifolds when we have an equivalence relation on \(M \) and investigate the conditions of the existence of the quotient manifolds. We also introduce \(LG \)-fuzzy immersed, imbedded and regular submanifolds.

References

