

Iranian Journal of Fuzzy Systems

University of Sistan and Baluchestan

Volume 17, Number 6, (2020), pp. 157-174

C^{∞} L-fuzzy manifolds with L-gradation of openness and C^{∞} LG-fuzzy mappings of them

M. Mostafavi¹

¹Department of Mathematics, University of Qom, Qom, Iran mmostafavi14279@gmail.com

Abstract

In this paper, we generalize all of the fuzzy structures which we have discussed in [14] to L-fuzzy set theory, where $L = \langle L, \leq, \bigwedge, \bigvee, \rangle$ denotes a complete distributive lattice with at least two elements. We define the concept of an LG-fuzzy topological space (X,\mathfrak{T}) which X is itself an L-fuzzy subset of a crisp set M and \mathfrak{T} is an L-gradation of openness of L-fuzzy subsets of M which are less than or equal to X. Then we define C^{∞} L-fuzzy manifolds with L-gradation of openness and LG-fuzzy impeddings. We fuzzify the concept of the product manifolds with L-gradation of openness and define LG-fuzzy quotient manifolds when we have an equivalence relation on M and investigate the conditions of the existence of the quotient manifolds. We also introduce LG-fuzzy immersed, imbedded and regular submanifolds.

Keywords: C^{∞} LG-fuzzy n-manifolds, C^{∞} LG -fuzzy mappings, LG-fuzzy quotient manifolds, LG-fuzzy immersion, regular LG-fuzzy submanifolds.

1 Introduction

The concept of fuzzy sets was introduced by Zadeh [21]. Then Chang [1] confined his attention to the more basic concepts of general topology and generalized them to fuzzy topological spaces. In his definition, fuzziness in the concept of openness of a fuzzy subset, is absent. In consequence of the development of fuzzy topology, many authors like Wong [19], Lowen [10] introduced various concepts of fuzzy topology. R. Lowen [11] suggested that the properties should be considered fuzzy, that is, one should be able to measure a degree to which a property holds. E. Lowen and R. Lowen [12] considered compactness degrees, and in [20], investigated measures of separation in [0,1]-topological spaces. In 1985, Shostak [15] gave a new definition of fuzzy topology by introducing a concept of gradation of openness of fuzzy subsets of X. Later, Chattopadhyay [2] et al. attempted to introduce a concept of gradation of openness of a fuzzy set of X by a map $\tau:I^X\to I$ satisfying three weaker conditions than [15] and later in [3] made a slight modification in their definition and rediscovered the Shostak's concept of fuzzy topology. Gregori [7] proved that each gradation of openness δ is the supremum (infimum) of a strictly increasing (decreasing) sequence of gradations of openness which are equivalent to δ . Stadler and Vicente [13] have introduced a new concept of fuzzy topological subspace over each fuzzy subset from the fuzzy topology δ , which coincides with the usual definition in the case that $\mu = X^Y$, $Y \subset X$. In [16], Shostak developed a theory of compactness degrees and connectedness degrees in [0,1]-fuzzy topological spaces, and in [17], brought up a theory of degrees of precompactness and completeness in the so-called Hutton fuzzy uniform spaces. In 2016 Ibedou [9] discussed graded fuzzy topological spaces. While all of the researches about the C^1 or C^{∞} fuzzy manifolds, focused on a crisp set, in [14] and in this paper, we demonstrate the possibility of improving current definitions using a new method. In [14], we investigated some properties of a novel fuzzy topological space (X, τ) , where X is itself a fuzzy subset of a crisp set M. Perhaps the most important generalization of the aforementioned structures in [14], is the consideration of lattice L beyond the unit interval I = [0,1]. Let $L = \langle L, \leq, \wedge, \vee, ' \rangle$ be a complete distributive lattice set with at least 2 elements; 0 is the bottom element and 1 is the top element of L. An L-fuzzy

Corresponding Author: M. Mostafavi

Received: February 2019; Revised: April 2020; Accepted: May 2020.

158 M. Mostafavi

subset D of the crisp set M, in Goguen's sense [6], is a function $D: M \to L$ and is denoted by $D \in L^M$. In this manuscript, we define the concept of L-fuzzy topological space (X,\mathfrak{T}) with the L-gradation of openness, where X is an L-fuzzy subset of a crisp set M. We introduce C^{∞} L-fuzzy manifolds (X,\mathfrak{T}) with L-gradation of openness, called C^{∞} LG-fuzzy manifolds, with a different perception from [5] and [4] and obtain C^{∞} n-premanifolds of them. We define C^{∞} LG-fuzzy mappings of C^{∞} LG-fuzzy manifolds and prove the LG-fuzzy rank theorem. Then we define and discuss LG-fuzzy immersions and LGP-fuzzy imbedding functions. We proceed to define the LG-fuzzy immersed, imbedded submanifolds as well as LG-fuzzy regular submanifolds, and then some theorems about the relations between them are deduced.

2 Preliminaries

Definition 2.1. Let X be an L-fuzzy subset of M. Then any L-fuzzy subset of M which is less than or equal to X is called an L-fuzzy subset of X. We denote the set of all L-fuzzy subsets of X by L_X^M . If τ as a collection of L-fuzzy subsets of X, satisfies the following conditions, then (X, τ) is called an L-fuzzy topological space (L-fts):

- 1) $X, \phi \in \tau$,
- 2) $\{A_i\}_{i\in I} \subseteq \tau \Rightarrow \bigcup_{i\in I} A_i \in \tau$,
- 3) $A, B \in \tau \implies A \cap B \in \tau$.

Example 2.2. Let $M = \mathbb{R}^n$ and X = 1 be a constant L-fuzzy subset of M. Let B(a, r, b) be an L-fuzzy subset that is equal to zero outside or on the sphere B(a, r) and equal to the function b with values in L, inside B(a, r). We call the L-fuzzy topology induced by

$$\beta_{Ln} = \{B(a,r,b), a \in \mathbb{R}^n, r \in \mathbb{R}^+, b : B(a,r) \to L, \text{ is a function}\},$$

the L-fuzzy Euclidean topology of dimension n and denote it by τ_{Ln} . Therefore we have the L-fuzzy Euclidean topological space $(1_{\mathbb{R}^n}, \tau_{Ln})$.

Definition 2.3. Let $\mathfrak{T}: L_X^M \to L$, be a mapping satisfying:

- i) $\mathfrak{T}(X) = \mathfrak{T}(\tilde{0}) = 1$,
- $ii) \ \mathfrak{T}(A \cap B) \geq \mathfrak{T}(A) \wedge \mathfrak{T}(B),$
- iii) $\mathfrak{T}(\bigcup_{j\in J} A_j) \ge \bigwedge_{j\in J} \mathfrak{T}(A_j)$.

Then $\mathfrak T$ is called an L-gradation of openness on X and $(X,\mathfrak T)$ is called an LG-fuzzy topological space (L-gfts). Let $x\in M$ and $A\in L_X^M$. When we write $x\in A$, we mean $x\in supp A$.

Example 2.4. Let $M = \mathbb{R}^n$ and X = 1 be a constant L-fuzzy subset of M. As three useful examples, we define

$$\mathfrak{T}_{Ln}: L_X^M \to L, \qquad \mathfrak{T}_{Ln}(B) = \begin{cases} 1 & B \in \tau_{Ln}, \\ 0 & elsewhere. \end{cases}$$
 (1)

and

$$\mathfrak{T}_{Lsup} : L_X^M \to L, \qquad \mathfrak{T}_{Lsup}(B) = \begin{cases} 1 & B = \tilde{0}, \\ sup\{B(x) : x \in M\} & \tilde{0} \neq B \in \tau_{L_n}, \\ 0 & elsewhere, \end{cases}$$
 (2)

If we set "inf" instead of "sup" in the above definition, then we have L-gradation of openness \mathfrak{T}_{Linf} . Let \mathfrak{T}_{Ln} be any L-gradation of openness on $1_{\mathbb{R}^n}$, such that $supp\mathfrak{T} = \tau_{Ln}$, then we call $(1_{\mathbb{R}^n}, \mathfrak{T}_{Ln})$ the LG-fuzzy Euclidean topological space.

Definition 2.5. Let (X,\mathfrak{T}) be an L-gfts. Set $supp\mathfrak{T} = \{A \in L_X^M : \mathfrak{T}(A) > 0\}$, then A is called an LG-open subset of X if $A \in supp\mathfrak{T}$. Furthermore

1) Suppose $x \in X$ and $V \in L_X^M$. If there exists an LG-open subset U of X such that U(x) = V(x) and $U \leq V$, then V is called an LG-neighborhood of x in X. We denote the set of all LG-neighborhoods of x in X by LGN(x).

- 2) If for all $x, y \in X$, $x \neq y$, there exist two LG-neighborhoods $U_x \in LGN(x)$, $U_y \in LGN(y)$ such that $U_x \cap U_y = 0$. Then (X, \mathfrak{T}) is called a Hausdorff L-gfts.
- 3) For each L-fuzzy subset A of X and any $U \subset supp X$, we define the L-fuzzy subset $\chi_{U,A}$ of X by:

$$\chi_{U,A}(z) = \begin{cases}
A(z) & z \in U, \\
0 & elsewhere.
\end{cases}$$

From now on, we write χ_U instead of $\chi_{U,X}$.

- 4) A is called an LG-closed subset of X if $X A \in supp \mathfrak{T}$.
- 5) Let Z be an LG-open subset of X. Define $\mathfrak{T}_Z:L_Z^M\to L$, by $\mathfrak{T}_Z(A)=\mathfrak{T}(A)$. Then (Z,\mathfrak{T}_Z) is called an LG-fuzzy topological subspace of X (L-gtfss).

Definition 2.6. If $\mathfrak{C}: L_X^M \to L$, satisfies the following conditions:

- $i) \ \mathfrak{C}(X) = \mathfrak{C}(\tilde{0}) = 1.$
- $ii) \ \mathfrak{C}(A \cup B) \ge \mathfrak{C}(A) \wedge \mathfrak{C}(B).$
- iii) $\mathfrak{C}(\bigcap_{i \in J} A_i) \ge \bigwedge_{i \in J} \mathfrak{C}(A_i)$.

Then \mathfrak{C} is called an L-gradation of closedness on X.

Proposition 2.7. Let $\mathfrak C$ and $\mathfrak T$ be L-gradations of closedness and openness respectively on X. Then

- i) The mapping $\mathfrak{T}_{\mathfrak{C}}: L_X^M \to L$, defined by $\mathfrak{T}_{\mathfrak{C}}(A) = \mathfrak{C}(X-A)$, is an L-gradation of openness on X, where (X-A) is an L-fuzzy subset of M defined by (X-A)(p) = X(p) A(p).
- ii) The mapping $\mathfrak{C}_{\mathfrak{T}}: L_X^M \to L$, defined by $\mathfrak{C}_{\mathfrak{T}}(A) = \mathfrak{T}(X-A)$, is an L-gradation of closedness on X.
- iii) We have $\mathfrak{C}_{\mathfrak{T}_{\mathfrak{C}}}=\mathfrak{C},\ \mathfrak{T}_{\mathfrak{C}_{\mathfrak{T}}}=\mathfrak{T}.$

The proof is straightforward.

Proposition 2.8. Let $\mathfrak{M}_{\mathfrak{T}}(X)$ be the set of all L-gradations of openness on X. We write $\mathfrak{T}_1 \leq \mathfrak{T}_2$, if we have $\mathfrak{T}_1(A) \leq \mathfrak{T}_2(A)$, $\forall A \in L_X^M$. Then $(\mathfrak{M}_{\mathfrak{T}}(X), \leq)$ is a complete lattice.

Proof. It is clear that the relation \leq between the functions from L_X^M to L, is an equivalence relation. Therefore $(\mathfrak{M}_{\mathfrak{T}}(X), \leq)$ is a partially ordered set. Further we define two mappings \mathfrak{T}_0 , $\mathfrak{T}_1: L_X^M \to L$, by

$$\mathfrak{T}_0(\tilde{0}) = \mathfrak{T}_0(X) = 1, \ \mathfrak{T}_0(A) = 0, \ \forall A \in L_X^M - \{\tilde{0}, X\}, \ \mathfrak{T}_1(A) = 1, \ \forall A \in L_X^M.$$

Then \mathfrak{T}_0 , \mathfrak{T}_1 are two L-gradations of openness on X and we have:

$$\mathfrak{T}_0(A) \le \mathfrak{T}(A) \le \mathfrak{T}_1(A), \ \forall A \in L_X^M.$$

Hence \mathfrak{T}_0 , \mathfrak{T}_1 are minimal and maximal elements of $\mathfrak{M}_{\mathfrak{T}}(X)$, respectively.

An arbitrary intersection of gradations of openness on X, is a gradation of openness. Thus any subset of $\mathfrak{M}_{\mathfrak{T}}(X)$, has a lower bound in it. To prove this, let $\{\mathfrak{T}_k, \ k \in K\}$, be an arbitrary family of L-gradations of openness on X. We show that $\mathfrak{T} = \bigwedge_{k \in K} \mathfrak{T}_k$ is an L-gradation of openness on X. Obviously, $\mathfrak{T}(X) = \mathfrak{T}(\tilde{0}) = 1$. Also,

$$\mathfrak{T}(\bigcup_{j}A_{j}) = \bigwedge_{k}\mathfrak{T}_{k}(\bigcup_{j}A_{j}) \geq \bigwedge_{k}(\bigwedge_{j}\mathfrak{T}_{k}(A_{j})) = \bigwedge_{j}(\bigwedge_{k}\mathfrak{T}_{k}(A_{j}) = \bigwedge_{j}(\mathfrak{T}(A_{j}),$$

and

$$\mathfrak{T}(A\cap B) = \bigwedge_k \mathfrak{T}_k(A\cap B) \geq \bigwedge_k (\mathfrak{T}_k(A) \wedge \mathfrak{T}_k(B)) \geq \bigwedge_k \mathfrak{T}_k(A) \wedge \bigwedge_k \mathfrak{T}_k(B) \geq \mathfrak{T}(A) \wedge \mathfrak{T}(B).$$

This completes the proof.

Example 2.9. Consider $(1_{\mathbb{R}^n}, \mathfrak{T}_{In})$ and $0 \in \mathbb{R}^n$. We show that the fuzzy point 0_1 is an IG-closed subset of $1_{\mathbb{R}^n}$: The fuzzy point $0_1 = \chi_{\{0\}}$ is an I-fuzzy subset of \mathbb{R}^n . So,

$$(1_{\mathbb{R}^n} - 0_1)(x) = 1 - \chi_{\{0\}}(x) = \begin{cases} 1 & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Therefore,

$$(1_{\mathbb{R}^n} - 0_1)(x) = \bigcup_{0 \neq k \in \mathbb{Z}} B(k, 1, 1)(x).$$

Hence, $(1_{\mathbb{R}^n} - 0_1) \in \tau_{I_n}$. Thus $\mathfrak{T}_{I_n}(1_{\mathbb{R}^n} - 0_1) \geq 0$. So, $1_{\mathbb{R}^n} - 0_1$ is an IG-open set. Hence, 0_1 is an IG-closed subset.

Definition 2.10. Let (X,\mathfrak{T}) be a fuzzy topological space and A, B be any fuzzy subsets of X,

- 1) A fuzzy subset V of X is called an LG-neighborhood of A if there exists an LG-open subset U such that $A \leq U \leq V$. We denote the set of all LG-neighborhoods of A by LGN(A).
- 2) Let $B \leq A$. Then B is called an LG-interior set of A if $A \in LGN(B)$. The union of all LG-interior sets of A is denoted by LGA° .
- 3) The intersection of all LG-closed subsets containing A is called an LG-closure of A and is denoted by LGĀ.
- 4) x is called an LG-boundary point of A if for every LG-neighborhood V of x, we have $V \not \leq A$. The set of these points is called an LG-boundary of A and is denoted by $LG \partial A$.
- 5) If x belongs to the LG-closure of $A \chi_{\{x\}, A}$, then x is called an LG-limited point of A and the set of these points is denoted by LGA'.
- 6) A is said to be an LG-dense subset of X, if $LG\bar{A} = X$.

From now on, we suppose that M_1 , M_2 are two crisp sets, $X \in L^{M_1}$, $Y \in L^{M_2}$ and (X, \mathfrak{T}) , (Y, \mathfrak{R}) are two LG-fuzzy topological spaces.

Definition 2.11. Let $f: M_1 \to M_2$ be a function and f[X] be an L-fuzzy subset of M_2 , defined by

$$f[X](y) = \bigvee \{X(x) \mid x \in f^{-1}(y)\}.$$

If we have $f[X] \leq Y$, then f is called an LG-related function from X to Y and the set of all such functions is denoted by LGRf(X,Y). Furthermore, if we have $\mathfrak{R}(H) \leq \mathfrak{T}(f^{-1}[H])$ for all LG-fuzzy subset H of Y, then f is an L-gradation-preserving LG-related function so it is called an LGP-related function or LGP-fuzzy mapping from X to Y, $f \in LGRf(X,Y)$.

- i) f is called a one-to-one LG-related (LGP-related) function if $f|_{suppX}$: $suppX \to suppY$ is a one-to-one function.
- ii) f is called an onto LG-related (LGP-related) function if f[X] = Y.

Remark 2.12. Let $A \in supp\mathfrak{T}$ and $B \in supp\mathfrak{R}$. Let f be an LGP-fuzzy mapping from X to Y such that $f[A] \leq B$. Then we have $\mathfrak{R}(H) \leq \mathfrak{T}(f^{-1}[H])$ for each LG-fuzzy subset of Y and in paticular $H \leq B$. Thus $\mathfrak{R}_B(H) \leq \mathfrak{T}_A(f^{-1}[H])$ for each LG-fuzzy subset H of Y with $H \leq B$. Therefore f can be considered as an LGP-fuzzy mapping of two L-gfts's, (A,\mathfrak{T}_A) and (B,\mathfrak{R}_B) . So we can write $f \in LGPRf(A,B)$.

Definition 2.13. Let $f \in LGRf(X, Y)$, then

- i) f is called LG-open if $f[A] \in supp \mathfrak{R} \{\tilde{0}, Y\}, \ \forall A \in supp \mathfrak{T} \{\tilde{0}, X\} \ and \ f[X] \in supp \mathfrak{R}.$
- $ii) \ f \ is \ called \ LG-continuous \ if \ f^{-1}[H] \in supp \mathfrak{T} \{\tilde{0},X\}, \ \forall H \in supp \mathfrak{R} \{\tilde{0},Y\} \ and \ f^{-1}[Y] \in supp \mathfrak{T}.$
- iii) f is called an LG-homeomorphism if it is one -to -one, onto, LG-continuous, LG-open and $f^{-1} \in LGRf(Y, X)$.
- iv) f is called an LGP-homeomorphism if it is bijective and f, f^{-1} are LGP-fuzzy mapping.

Proposition 2.14. Let A, B be LG-open subsets of X, Y respectively. Let $\psi: M_1 \to M_2$ be a function. Then ψ is an LGP-homeomorphism from A to B if and only if ψ satisfies the two following conditions:

- i) $A(p) = B(\psi(p))$ for all $p \in A$ or $B(q) = A(\psi^{-1}(q))$ for all $q \in B$
- ii) $\mathfrak{R}(H) = \mathfrak{T}(\psi^{-1}[H])$ for all LG-fuzzy subset H of B.

Proof. Let ψ satisfies conditions (i) and (ii), then by Definition 2.11 and Remark 2.12 we have $\psi \in LGPRf(A, B)$ and ψ is an LGP-homeomorphism from A to B. Conversely suppose ψ is an LGP-homeomorphism from A to B. We prove that ψ satisfies (i) and (ii).

- i) Since ψ is bijective, for any $q \in B$, there is exactly one element $p \in A$, such that $\psi^{-1}(q) = \{p\}$. So we have $\psi[A](q) = \sup\{A(a) | a \in \psi^{-1}(q)\} = A(p)$. On the other hand by Definition 2.11, we have $\psi[A] \leq B$. Hence $A(p) \leq B(q)$. We see $\psi^{-1}[B](p) = B(\psi(p)) = B(q)$. Since by Definition 2.13 (iv), we have $\psi^{-1} \in LGPRf(Y, X)$, then $\psi^{-1}[B] \leq A$. Hence $B(q) \leq A(p)$. Therefore A(p) = B(q). Therefore $A(p) = B(\psi(p))$, for all $p \in A$ and $B(q) = A(\psi^{-1}(q))$, for all $q \in B$. Thus $A = (\psi^{-1}[B])$ and $\psi[A] = B$.
- ii) Since $\psi \in LGPRf(A, B)$, we have $\mathfrak{R}(H) \leq \mathfrak{T}(\psi^{-1}[H])$ for all LG-fuzzy subset H of Y, and since $\psi^{-1} \in LGPRf(B, A)$, we have $\mathfrak{T}(D) \leq \mathfrak{R}(\psi[D])$. Set $\psi[D] = H$. Then $D = \psi^{-1}[H]$ by injectivity of ψ . So $\mathfrak{T}(D) \leq \mathfrak{R}(H)$. Hence we have $\mathfrak{T}(\psi^{-1}[H]) = \mathfrak{R}(H)$.

Proposition 2.15. Every LGP-fuzzy mapping from X to Y is an LG-continuous related function, but the converse is not true.

Proof. Let f be an LGP-fuzzy mapping from X to Y, then $\forall H \in supp \mathfrak{R} - \{\tilde{0}, Y\}$, we have $0 < \mathfrak{R}(H) \leq \mathfrak{T}(f^{-1}[H])$. Hence $f^{-1}[H] \in supp \mathfrak{T} - \{\tilde{0}, X\}$. Therefore f is LG-continuous.

Conversely, we define an LG-continuous function which is not an LGP-fuzzy mapping:

Following Example 2.4, consider $f = id : (1_{\mathbb{R}^n}, \mathfrak{T}_{Ln}) \to (1_{\mathbb{R}^n}, \mathfrak{T}_{Lsup})$. Since $f[1_{\mathbb{R}^n}] = 1_{\mathbb{R}^n}$ and we have

$$f^{-1}[H] = H \in supp \mathfrak{T}_{Ln} - \{\tilde{0}, X\} = \tau_{Ln} - \{\tilde{0}, 1_{\mathbb{R}^n}\}, \qquad \forall H \in supp \mathfrak{T}_{Lsup} - \{\tilde{0}, Y\} = \tau_{Ln} - \{\tilde{0}, 1_{\mathbb{R}^n}\},$$

and $f^{-1}[1_{\mathbb{R}^n}] \in supp \mathfrak{T}_{Ln}$. Therefore f is LG-continuous. Now Let $A = \begin{cases} x^2 & x \in (0, \frac{1}{2}), \\ 0 & \text{elsewhere.} \end{cases}$ Then $A \in \tau_{Ln}$ and $\mathfrak{T}_{Lsup}(f[A]) = \frac{1}{4}$. But $\mathfrak{T}_{Ln}(A) = 1$. Hence the condition $\mathfrak{T}_{Ln}(A) \leq \mathfrak{T}_{Lsup}(f[A])$ dose not hold. Hence f is not an LGP-fuzzy mapping.

3 L-fuzzy topological manifolds with L-gradation of openness

Definition 3.1. Let \mathfrak{T} be an L-gradation of openness on X. Then (X,\mathfrak{T}) is an LG-fuzzy topological space of dimension n, if for any $x \in X$, there exists an LG-open subset A of X containing x and an LG-open subset B of $(1_{\mathbb{R}^n}, \mathfrak{T}_{Ln})$, together with an LGP-homeomorphism $\psi \in LGPRf(A,B)$. The pair (A,ψ) is called an LG-local coordinate neighborhood of each $q \in A$ and we assign to q the n LG-local coordinates $x_1(q), x_2(q), ..., x_n(q)$ of its image $\psi(q)$ in \mathbb{R}^n .

Definition 3.2. Let $\mathfrak{A} = \{(A_i, \psi_i) \mid i \in J\}$ be a collection of LG-local coordinate neighborhoods. Since ψ_i is an LGP-homeomorphism for all $i \in J$, then for all $i, j \in J$ whenever $A_i \cap A_j \neq \phi$,

$$\psi_j \circ \psi_i^{-1} : \psi_i(supp(A_i \cap A_j)) \to \psi_j(supp(A_i \cap A_j)),$$

is an LGP-homeomorphism, that is called an LG-transition function. -

$$\psi_j \circ \psi_i^{-1}(x_1^i, x_2^i, ..., x_n^i) = (x_1^j, x_2^j, ..., x_n^j).$$

If $\psi_i \circ \psi_j^{-1}$ and $\psi_j \circ \psi_i^{-1}$ changing the LG-local coordinates are infinitely differentiable or C^{∞} , we shall say that (A_i, ψ_i) is C^{∞} compatible with (A_j, ψ_j) whenever $A_i \cap A_j \neq \phi$.

Definition 3.3. An LG-fuzzy topological space (X, \mathfrak{T}) is called an LG-fuzzy topological manifold of dimension n, if it satisfies the two following conditions:

- i) X is an LG-fuzzy topological space of dimension n,
- ii) X is a Hausdorff L-gfts.

Definition 3.4. A differentiable or C^{∞} LG-fuzzy structure on an LG-fuzzy topological manifold (X,\mathfrak{T}) , is a family $\mathfrak{A} = \{(A_{\alpha}, \psi_{\alpha}), \alpha \in J\}$ of LG-local coordinate neighborhoods such that

1)
$$X = \bigcup_{\alpha \in J} A_{\alpha};$$

- 2) Each pair $(A_{\alpha}, \psi_{\alpha})$ and $(A_{\beta}, \psi_{\beta})$ are compatible for all $\alpha, \beta \in J$.
- 3) Any LG-local coordinate neighborhood (V,φ) that is compatible with every $(A_{\alpha}, \psi_{\alpha}), \alpha \in J$ is in $\mathfrak A$ itself.

A C^{∞} LG-fuzzy manifold (X,\mathfrak{T}) is an LG-fuzzy topological manifold with a C^{∞} LG-fuzzy structure on it. In what follows, for convenience, "LG-fuzzy manifold with LG-fuzzy structure" will mean C^{∞} LG-fuzzy manifold with C^{∞} LG-fuzzy structure,

Example 3.5. Let $M = \mathbb{R}^3$, $X : \mathbb{R}^3 \to I$, $X(x) = \begin{cases} 1 & ||x|| = 1, \\ 0 & ||x|| \neq 1. \end{cases}$ Then $supp X = S^2$, the unit sphere. Set

$$\mathfrak{T} \ : \ I_X^M \to I, \quad \mathfrak{T}(A) = \left\{ \begin{array}{ll} \sup\{A(x) \mid x \in X\} & A \in \tau_{{\scriptscriptstyle I}n}, \ A \leq X, \\ 0 & elsewhere. \end{array} \right.$$

Then (X,\mathfrak{T}) is an IG-fuzzy manifold of dimension 2.

Proof. Let $J = \{1, 2, 3\}$. We define six IG-open subsets covering X by:

$$\forall x = (x_1, x_2, x_3), \quad A_j^{\pm}(x) = \begin{cases} \pm x_j & \pm x_j > 0, \ \|x\| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then we show that all A_i^{\pm} are diffeomorphic to IG-open subset $B: \mathbb{R}^2 \to I$, defined by:

$$\forall y = (y_1, y_2), \quad B(y) = \begin{cases} \sqrt{1 - y_1^2 - y_2^2} & ||y|| < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Since supp B = B(0,1), so $B \in \tau_{I_2}$. We define six bijections ψ_j^{\pm} from $supp A_j^{\pm} = \{(x_1, x_2, x_3) \mid \pm x_j > 0, \|x\| = 1\}$ to $supp B = \{(y_1, y_2) \mid \|y\| < 1\}$, for all $j \in J$ by:

$$\psi_1^{\pm}(x_1, x_2, x_3) = (x_2, x_3), \quad (\psi_1^{\pm})^{-1}(y_1, y_2) = (\pm \sqrt{1 - y_1^2 - y_2^2}, y_1, y_2).$$

$$\psi_2^{\pm}(x_1, x_2, x_3) = (x_1, x_3), \quad (\psi_2^{\pm})^{-1}(y_1, y_2) = (y_1, \pm \sqrt{1 - y_1^2 - y_2^2}, y_2).$$

$$\psi_3^{\pm}(x_1, x_2, x_3) = (x_1, x_2), \quad (\psi_3^{\pm})^{-1}(y_1, y_2) = (y_1, y_2, \pm \sqrt{1 - y_1^2 - y_2^2}).$$

Also, it is seen that $\psi_i^{\pm} \circ (\psi_i^{\pm})^{-1}$ is infinitely differentiable for all $i, j \in J$. For example:

$$\psi_2^{\pm} \circ (\psi_1^{\pm})^{-1}(y_1, y_2) = \psi_2^{\pm}(\pm \sqrt{1 - y_1^2 - y_2^2}, y_1, y_2) = (\pm \sqrt{1 - y_1^2 - y_2^2}, y_2).$$

Therefore, each pair $(A_i^{\pm}, \psi_i^{\pm})$ and $(A_j^{\pm}, \psi_j^{\pm})$ are compatible, for all $i, j \in J$. We see

$$\forall j \in J, \ A_j^{\pm}(x) = \pm x_j = B_j(\psi_j^{\pm}(x)), \ \forall x \in A_j^{\pm}.$$

Let H be an IG-fuzzy subset of $1_{\mathbb{R}^2}$ with $H \leq B$. We show that $\mathfrak{T}((\psi_j^{\pm})^{-1}[H]) = \mathfrak{T}_{Isup}(H)$. Using (2), we have $\mathfrak{T}_{Isup}(H) = \sup\{H(a) | a \in \mathbb{R}^2\}$. Since ψ_j^{\pm} is bijective, for each $a \in \mathbb{R}^2$, there exists one and only one element $p \in supp A_j^{\pm}$ such that $\psi_j^{\pm}(p) = a \text{ or } (\psi_j^{\pm})^{-1}(a) = p$. Hence

$$\mathfrak{T}_{Isup}(H) = \sup\{H\left(\psi_{i}^{\pm}(p)\right) | \ p \in supp A_{i}^{\pm}\} = \sup\{\left((\psi_{i}^{\pm})^{-1}[H]\right)(p) | \ p \in supp A_{i}^{\pm}\} = \mathfrak{T}\left((\psi_{i}^{\pm})^{-1}[H]\right).$$

Hence $\psi_i^{\pm} \in IGPRf(A_i^{\pm}, B)$ is an IGP-homeomorphism for all $j \in J$ and this completes the proof.

Example 3.6. The set of natural numbers, \mathbb{N} , partially ordered by divisibility, is a distributive lattice set, for which the unique supremum is the least common multiple and the unique infimum is the greatest common divisor. Let $L = \mathbb{N} \cup \{\infty\}$. Then L is a complete lattice. Notice that we denote the top element of any lattice by 1, but in this example, ∞ is the top element of $\mathbb{N} \cup \{\infty\}$. We define the LG-fuzzy Euclidean topological space $(1_{\mathbb{R}^{mn}}, \mathfrak{T}_{Lsup})$ by

$$1_{\mathbb{R}^{mn}}: \mathbb{R}^{mn} \to L, \qquad 1_{\mathbb{R}^{mn}}((a_1, a_2, \dots, a_{mn})) = \infty,$$

$$\mathfrak{T}_{Lmn}: L_{1_{\mathbb{R}^{mn}}}^{\mathbb{R}^{mn}} \to L, \qquad \mathfrak{T}_{Lmn}(D) = \left\{ \begin{array}{ll} \infty & D \in \tau_{_{Lmn}}, \\ 0 & \textit{elsewhere}. \end{array} \right.$$

Let $M = \mathcal{M}_{m \times n}(\mathbb{R})$ and $X \in L^M$ be defined by

$$X((a_{ij})) = 2 + max\{ | |a_{ij}| | | 1 \le i \le m, 1 \le j \le n \},$$

where ||x|| is equal to the greatest integer less than or equal to |x|. There is a bijection ψ from M to \mathbb{R}^{mn} :

$$\psi(a_{ij}) = (a_{11}, \ldots, a_{1n}, \ldots, a_{m1}, \ldots, a_{mn}).$$

Hence using ψ and (1), we define

$$\mathfrak{T} \; : \; L_X^M \to L, \qquad \mathfrak{T}(A) = \left\{ \begin{array}{ll} \infty & \psi[A] \in \tau_{{\scriptscriptstyle Lmn}}, \\ 0 & \textit{elsewhere}. \end{array} \right.$$

We show that (X,\mathfrak{T}) is an C^{∞} LG-fuzzy mn-manifold. Let B is an L-fuzzy subset of $1_{\mathbb{R}^{mn}}$ defined by

$$B((a_1, a_2, \dots, a_{mn})) = 2 + max\{ \lfloor |a_k| \rfloor \mid 1 \le k \le mn \}.$$

We see $B = \psi[X]$. Since $supp B = \mathbb{R}^{mn} = \bigcup_{k=1}^{\infty} B(0,k)$, Hence $B \in \tau_{Lmn}$. Therefore using (1), for each LG-open subset H of $1_{\mathbb{R}^{mn}}$, with $H \leq B$, we have $\mathfrak{T}_{Lmn}(H) = \infty = \mathfrak{T}(\psi^{-1}[H])$. So by Proposition 2.14, $\psi \in LGPRf(X,B)$ is an LGP-homeomorphism. We can cover (X,\mathfrak{T}) by the single LG-coordinate neighborhood (X,ψ) . Hence (X,\mathfrak{T}) is an C^{∞} LG-fuzzy mn-manifold.

Definition 3.7. (LG-open submanifolds) Let Z be an LG-open subset of the LG-fuzzy manifold (X,\mathfrak{T}) . If $\mathfrak{A} = \{(A_{\alpha},\psi_{\alpha}),\ \alpha\in J\}$ is an LG-fuzzy structure on X, then (Z,\mathfrak{T}_z) is an LG-fuzzy topology with LG-fuzzy structure consisting of the LG-coordinate neighborhoods $(A_{\alpha}\cap Z,\psi_{\alpha}|_{A_{\alpha}\cap Z})$.

Example 3.8. Let (X, \mathfrak{T}) be as Example 3.6. We define $Z : \mathcal{M}_{m \times n}(\mathbb{R}) \to L$, $Z(A) = \begin{cases} X(A) & det A \neq 0, \\ 0 & det A = 0. \end{cases}$

We have $Z \leq X$ and $U = supp Z = Gl(n, \mathbb{R})$ is an open subset of $\mathcal{M}_{m \times n}$. Hence we can prove that Z is an LG-open subset of X. Therefore (Z, \mathfrak{T}_Z) is an LG-fuzzy submanifold of (X, \mathfrak{T}) with the single LG-local coordinate neighborhood $(Z, \psi|_Z)$ where ψ is a bijection defined in Example 3.6.

Example 3.9. Let $L = \mathbb{N} \cup \{\infty\}$ and $M = \mathbb{R}^{n+1}$. Define an L-fuzzy subset

$$X:M \to L, \quad X(x) = \left\{ \begin{array}{ll} n+2 & \quad \|x\| = 1, \\ 0 & \quad \|x\| \neq 1, \end{array} \right.$$

$$\mathfrak{T}:L_X^M\to L,\quad \mathfrak{T}(A)=\left\{\begin{array}{ll} \infty & A\in\tau_{{\scriptscriptstyle L}(n+1)},\ A\le X,\\ 0 & elsewhere. \end{array}\right.$$

Then $supp X = S^n$. Then (X, \mathfrak{T}) is an LG-fuzzy manifold of dimension n:

Proof. Let $J = \{1, \ldots, n+1\}$. We define 2(n+1) LG-open subsets covering $X, A_j^{\pm}: M \to L, \ j \in J$ by:

$$\forall x = (x_1, \dots x_{n+1}), \quad A_j^{\pm}(x) = \begin{cases} j & \pm x_j > 0, \ ||x|| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then we show that each A_j^{\pm} is LGP-homeomorphic to the LG-open subset $B_j: \mathbb{R}^n \to L$ defined by:

$$\forall y = (y_1, \dots, y_n), \quad B_j(y) = \begin{cases} j & \|y\| < 1, \\ 0 & \text{otherwise.} \end{cases}$$

with 2(n+1) LG-maps $\psi_i^{\pm}: A_j^{\pm} \to B_j$ defined by:

$$\psi_j^{\pm}(x_1, \ldots, x_{n+1}) = (x_1, \ldots, \widehat{x_j}, \ldots, x_{n+1}).$$

$$(\psi_j^{\pm})^{-1}(y_1, \ldots, y_n) = (y_1, \ldots, \pm \sqrt{1 - (y_1^2 + \ldots + y_n^2)}, \ldots, y_n),$$

where $\widehat{x_j}$ means omit x_j . Also it is seen that $\psi_i^{\pm} \circ (\psi_i^{\pm})^{-1}$ is infinitely differentiable for all $i, j \in J$ and we have

$$A_j^{\pm}(x) = j = B_j(\psi_j^{\pm}(x)), \ \forall x \in A_j^{\pm} \ and \ \forall j \in J.$$

Also using (1), for each LG-open subset H_i of $1_{\mathbb{R}^n}$, with $H_i \leq B_i$, we have

$$\mathfrak{T}_{Ln}(H_j) = \infty = \mathfrak{T}(\psi_i^{\pm})^{-1}(H_j) \quad \forall j \in J.$$

Therefore by Proposition 2.14, $\psi_i^{\pm} \in LGPRf(A_i^{\pm}, B_j)$, is an LGP-homeomorphism for all $j \in J$.

Theorem 3.10. Let (M, τ) be a C^{∞} ordinary n-manifold with the C^{∞} structure $\mathfrak{W} = \{(U_k, \psi_k), k \in K\}$. Consider $X = \tilde{1}$, the constant L-fuzzy subset of M. Let δ be the L-fuzzy topology on X generated by $\{\chi_{U_k}, k \in K\}$. Define

$$\mathfrak{T}_{\tau}:L_X^M\to L, \quad \ \mathfrak{T}_{\tau}(A)=\left\{\begin{array}{ll} 1 & A\in\delta,\\ 0 & elsewhere. \end{array}\right.$$

Then (X, \mathfrak{T}_{τ}) is an LG-fuzzy manifold of dimension n.

Proof. First we show that \mathfrak{T}_{τ} is an L-gradation of openness on X:

- 1) Since $\tilde{0}, X \in \delta$, therefore $\mathfrak{T}_{\tau}(\tilde{0}) = \mathfrak{T}_{\tau}(X) = 1$.

2) For each family of fuzzy subsets
$$\{A_j\} \subseteq L_X^M$$
, we have two cases:
 $i) \ \{A_j\}_{j \in J} \subseteq \delta \ \Rightarrow \ \bigcup_{j \in J} A_j \in \delta \ and \ \mathfrak{T}_{\tau}(A_j) = 1, \ \forall j \in J \ \Rightarrow \ 1 = \mathfrak{T}_{\tau}(\bigcup_{j \in J} A_j) \geq \bigwedge_{j \in J} \mathfrak{T}_{\tau}(A_j) = 1$

- $ii) \ A_j \subseteq (L_X^M \delta), \text{ for some } j \in J \ \Rightarrow \ \mathfrak{T}_{\tau}(A_j) = 0, \text{ for some } j \in J \ \Rightarrow \ \mathfrak{T}_{\tau}(\bigcup_{j \in J} A_j) \ge \bigwedge_{j \in J} \mathfrak{T}_{\tau}(A_j) = 0$
- 3) For every two fuzzy subsets $A, B \in L_X^M$, we have three cases: i) $A, B \in \delta \Rightarrow A \cap B \in \delta \Rightarrow 1 = \mathfrak{T}_{\tau}(A \cap B) \geq \mathfrak{T}_{\tau}(A) \wedge \mathfrak{T}_{\tau}(B) = 1;$ ii) $A \in (L_X^M \delta), B \in \delta \Rightarrow \mathfrak{T}_{\tau}(A) = 0, \mathfrak{T}_{\tau}(B) = 1 \Rightarrow \mathfrak{T}_{\tau}(A \cap B) \geq 0 = \mathfrak{T}_{\tau}(A) \wedge \mathfrak{T}_{\tau}(B);$ iii) $A, B \in (L_X^M \delta) \Rightarrow \mathfrak{T}_{\tau}(A) = \mathfrak{T}_{\tau}(B) = 0 \Rightarrow \mathfrak{T}_{\tau}(A \cap B) \geq 0 = \mathfrak{T}_{\tau}(A) \wedge \mathfrak{T}_{\tau}(B).$

Next we prove that (X, \mathfrak{T}_{τ}) is an LG-fuzzy manifold:

Let $p \in M$. Then there exists an open subset U_k , $k \in K$ s.t. $p \in U_k$ and an open set V_k of \mathbb{R}^n along with a homeomorphism $\psi_k: U_k \to V_k$. Let τ^{\triangleright} be the L-fuzzy topology on $1_{\mathbb{R}^n}$ generated by $\{\chi_{V_k}, k \in K\}$. Then $\tau^{\triangleright} \subseteq \tau_{Ln}$. Hence we can consider the restriction of \mathfrak{T}_{Ln} on τ^{\triangleright} . We see

$$\mathfrak{T}_{\tau}(\chi_{U_k}) = \mathfrak{T}_{Ln}|_{\tau^{\triangleright}}(\chi_{V_k}).$$

Define LGP-homeomorphisms

$$\psi_k^{\triangleright}: M \to \mathbb{R}^n, \quad \psi_k^{\triangleright}(p) = \psi_k(p) \chi_{U_k} = \left\{ \begin{array}{ll} \psi_k(p) & & \text{if } p \in U_k, \\ 0 & & elsewhere. \end{array} \right.$$

Therefore $\psi_k^{\triangleright} \in LGPRf(\chi_{_{U_k}}, \ \chi_{_{V_k}})$. Thus $\mathfrak{W}_{\tau} = \{(\chi_{_{U_k}}, \ \psi_k^{\triangleright}), \ k \in K\}$ is an LG-fuzzy structure on X.

Theorem 3.11. Let (X,\mathfrak{T}) be an LG-fuzzy n-manifold with LG-fuzzy structure $\mathfrak{A} = \{(A_j, \psi_j), j \in J\}$. If $\mathfrak{T}^{\triangleleft} = \{suppA \mid \mathfrak{T}(A) > 0\}$, then $(suppX, \mathfrak{T}^{\triangleleft})$ is a topological manifold of dimension n called a premanifold with the structure $\mathfrak{A}^{\triangleleft} = \{(supp A_j, \psi_j|_{supp A_i}), j \in J\}$ called a prestructure.

Proof. Since Dom $\mathfrak{T}=L_X^M$, then for all $A\in supp\mathfrak{T}$, we have A is less than X. Hence $suppA\subseteq suppX$.

- i) $\mathfrak{T}(\tilde{0}) = \mathfrak{T}(X) = 1 \implies \phi = supp \tilde{0} \in supp \mathfrak{T}^{\triangleleft} \quad and \quad supp X \in supp \mathfrak{T}^{\triangleleft}.$
- ii) Let $\{A_j, j \in J\} \subseteq \delta$, Then $\mathfrak{T}(A_j) > 0$, $\forall j \in J$. Hence $\mathfrak{T}(\bigcup_{j \in J} A_j) \ge \bigwedge_{j \in J} \mathfrak{T}(A_j) > 0$. Thus $\bigcup_{j \in J} A_j \in supp\mathfrak{T}^{\triangleleft}$.
- iii) Since $\mathfrak{T}(A \cap B) \geq \mathfrak{T}(A) \wedge \mathfrak{T}(B)$. So $A, B \in \mathfrak{T}^{\triangleleft}$ implies that $\mathfrak{T}(A \cap B) > 0$. Thus $A \cap B \in supp\mathfrak{T}^{\triangleleft}$.

Therefore $\mathfrak{T}^{\triangleleft}$ is a topology on supp X. Let $p \in X$. Then there exists an LG-open subset $A_k, k \in K$ such that $p \in A_k$ and there exists an LG-open subset B_k , $k \in K$ with an LGP-homeomorphism $\psi_k \in LGPRf(A_k, B_k)$. Hence $p \in A_k$ supp X, $A_k(p) = B_k(\psi_k(p))$ and $\psi_k|_{supp A_k} : supp A_k \to supp B_k$ is one-to-one and onto. Therefore $(supp A_k, \ \psi_k|_{supp A_k})$ is a coordinate neighborhood of p. Also $\psi_j \circ \psi_i^{-1}$ is infinitely differentiable for all $i, j \in K$, thus $(\psi_j|_{supp(A_i\cap A_j)})\circ(\psi_i^{-1}|_{supp(B_i\cap B_j)})$ is C^{∞} for all $i,j\in K$. Hence $(suppX,\mathfrak{T}^{\triangleleft})$ is a premanifold. **Theorem 3.12.** Let (M, τ) be an n-manifold with structure $\mathfrak{W} = \{(U_j, \varphi_j), j \in J\}$. Let $X = \tilde{1}$. Then $(supp X, (\tau^{\triangleright})^{\triangleleft}) = (M, \tau)$.

Proof. It is clear that supp X = M and for every $U \in \tau$ we have $supp \chi_U = U$. Hence $(\tau^{\triangleright})^{\triangleleft} = \tau$. Since we have $\mathfrak{W}^{\triangleright} = \{(\chi_{U_j}, \varphi_j^{\triangleright}), j \in J\}$, then

$$(\mathfrak{W}^{\triangleright})^{\triangleleft}=\{(supp\chi_{U_{j}},\ \varphi_{j}^{\triangleright}|_{supp\chi_{U_{j}}}),\ j\in J\}=\{(U_{j},\varphi_{j}^{\triangleright}|_{U_{j}}),\ j\in J\}=\{(U_{j},\ \varphi_{j}),\ j\in J\}=\mathfrak{W}.$$

Remark 3.13. Let (X, \mathfrak{T}) be an L-fuzzy topological space with L-gradation of openness, then $\mathfrak{T}_{\mathfrak{T}^{\triangleleft}}$ does not necessarily equal \mathfrak{T} . We show it by the following example.

Example 3.14. Let $M = \mathbb{R}$. We define

$$X: M \to I, \quad X(x) = \left\{ \begin{array}{ll} \dfrac{1}{\lfloor x \rfloor} & x \in (2, +\infty), \\ 0 & elsewhere. \end{array} \right.$$

 $\label{eq:tau_exp} and \ \mathfrak{T}: I_X^M \to I, \ by \ \mathfrak{T}(A) = \left\{ \begin{array}{ll} 1 & \quad A \in \tau_{{\scriptscriptstyle I}{\scriptscriptstyle I}}, \ A \leq X \\ 0 & \quad elsewhere. \end{array} \right..$

Then clearly (X,\mathfrak{T}) is an IG-fuzzy manifold of dimension 1. Then by Theorem 3.11, $(supp X, \mathfrak{T}^{\triangleleft})$ is a manifold, where $\mathfrak{T}^{\triangleleft} = \{supp A | A \in supp \mathfrak{T}\}$. Hence by Theorem 3.10 we have $\mathfrak{T}_{\mathfrak{T}^{\triangleleft}} = \{\chi_{supp A} \mid A \in supp \mathfrak{T}\}$. We have $A(x) \leq X(x) \leq \frac{1}{2}$, $\forall x \in M$ and $\forall A \in \tau_{I_1}$. Hence $1 = \chi_{supp A} \neq A$. Therefore $\mathfrak{T}_{\mathfrak{T}^{\triangleleft}} \neq \mathfrak{T}$.

4 LG-fuzzy quotient manifolds

Definition 4.1. Let M be a crisp set and \sim be an equivalence relation on it. If A is an L-fuzzy subset of M such that A(y) = A(x) whenever $y \sim x$, then we define the L-fuzzy subset:

$$\frac{A}{\approx}: \frac{M}{\approx} \to L, \quad \frac{A}{\approx}([x]) = A(x), \ \forall x \in M,$$

where $[x] = \{y \mid x \sim y\}$. Since $A \leq X$, thus $\frac{A}{\sim} \leq \frac{X}{\sim}$ and hence $\frac{A}{\sim} \in L_{\frac{X}{\sim}}^{\frac{M}{\sim}}$.

Theorem 4.2. Let (X,\mathfrak{T}) be an LG-fuzzy topological space, such that X(y) = X(x) whenever $y \sim x$, then $(\frac{X}{\sim}, \frac{\mathfrak{T}}{\sim})$ is an LG-fuzzy topological space, called the LG-fuzzy quotient space, where

$$\frac{\mathfrak{T}}{\sim}: L_{\frac{X}{\sim}}^{\frac{M}{\sim}} \to L, \quad \frac{\mathfrak{T}}{\sim}(\frac{A}{\sim}) = \mathfrak{T}(A).$$

Proof. We show that all elements of $L_{\frac{X}{\sim}}^{\frac{M}{\sim}}$ are in the form $\frac{A}{\sim}$ for some $A \in L_X^M$. Let B be an L-fuzzy subset of $\frac{M}{\sim}$ less than $\frac{X}{\sim}$. We define L-fuzzy subset A of M by A(x) = B([x]), $\forall x \in M$. Let $x \sim y$ so [x] = [y], then A(x) = B([x]) = B([y]) = A(y) and thus $\frac{A}{\sim} = B$. Also,

1)
$$\frac{\mathfrak{T}}{\sim}(\frac{\tilde{0}}{\sim}) = \mathfrak{T}(\tilde{0}) = 1, \quad \frac{\mathfrak{T}}{\sim}(\frac{X}{\sim}) = \mathfrak{T}(X) = 1.$$

$$2) \ \frac{\mathfrak{T}}{\sim} (\frac{A_1}{\sim} \cap \frac{A_2}{\sim}) = \frac{\mathfrak{T}}{\sim} (\frac{A_1 \cap A_2}{\sim}) = \mathfrak{T}(A_1 \cap A_2) \geq \mathfrak{T}(A_1) \wedge \mathfrak{T}(A_2) = \frac{\mathfrak{T}}{\sim} (\frac{A_1}{\sim}) \wedge \frac{\mathfrak{T}}{\sim} (\frac{A_2}{\sim}).$$

3) Let $\{A_j\}_{j\in J}$ be a sequence of L-fuzzy subsets of X, such that $\forall j\in J,\, A_j(y)=A_j(x),\,$ whenever $y\sim x,\,$ then

$$\bigcup_{j \in J} \frac{A_j}{\sim} \ [y] = \sup \{ \ \frac{A_j}{\sim} [y], \ j \in J \} = \sup \{ \ A_j(y), \ j \in J \} = \sup \{ \ A_j(x), \ j \in J \} = \bigcup_{j \in J} \ \frac{A_j}{\sim} \ [x],$$

$$\frac{\mathfrak{T}}{\sim} \left(\bigcup_{j \in J} \frac{A_j}{\sim} \right) = \frac{\mathfrak{T}}{\sim} \left(\frac{\bigcup_{j \in J} A_j}{\sim} \right) = \mathfrak{T}(\bigcup_{j \in J} A_j) \ge \bigwedge_{j \in J} \mathfrak{T}(A_j) = \bigwedge_{j \in J} \frac{\mathfrak{T}}{\sim} \left(\frac{A_j}{\sim} \right).$$

Hence $\frac{\mathfrak{T}}{\sim}$ is a gradation of openness on $\frac{X}{\sim}$.

This LG-fuzzy topology is nontrivial when L=I, because for each $\alpha \in I$, $\alpha X(x)=\alpha X(y)$ whenever $x\sim y$. Hence $\alpha X \in supp \frac{\mathfrak{T}}{\sim}$.

Definition 4.3. Consider an LG-fuzzy quotient space $(\frac{X}{\sim}, \frac{\mathfrak{T}}{\sim})$. The equivalence relation \sim is called an LG-open relation if for each fuzzy subset $A \in supp\mathfrak{T}$ we have $\frac{A}{\sim} \in supp\mathfrak{T}$.

Theorem 4.4. Let (X,\mathfrak{T}) be an LG-fuzzy manifold and \sim be an LG-open relation. Then $(\frac{X}{\sim},\frac{\mathfrak{T}}{\sim})$ is an LG-fuzzy topological space of dimension n called LG-fuzzy quotient topological space of dimension n. If $supp\mathfrak{T}$ has a countable basis, then $\frac{\mathfrak{T}}{\sim}$ has a countable basis.

Proof. Let (A, ψ) be an LG-locally coordinate neighborhood of $p \in X$ and $\psi \in LGPRf(A, B)$. Since \sim is an LG-open relation, then we have $\frac{\mathfrak{T}}{\mathfrak{T}}(\frac{A}{\mathfrak{T}}) > 0$. We define a corresponding relation \sim^* on supp B as follows:

$$a \sim^* b \iff \psi^{-1}(a) \sim \psi^{-1}(b) \text{ for all } a, b \in supp B.$$

Clearly \sim^* is a reflexive and symmetric relation. Let $a \sim^* b$ and $b \sim^* c$. Then we have $\psi^{-1}(a) \sim \psi^{-1}(b)$, and $\psi^{-1}(b) \sim \psi^{-1}(c)$. Since \sim is transitive, so $\psi_1^{-1}(a) \sim \psi_1^{-1}(c)$. Hence $a \sim^* c$. Therefore \sim^* is transitive and so it is an equivalence relation. Since we have

$$a \sim^* b \implies \psi^{-1}(a) \sim \psi^{-1}(b) \implies A(\psi^{-1}(a)) = A(\psi^{-1}(b)) \implies B(a) = B(b).$$

Therefore, $\frac{B}{2a^*}$ is well-defined. Now we define

$$\frac{\psi}{\sim} : supp(\frac{A}{\sim}) \to supp(\frac{B}{\sim^*}), \quad \frac{\psi}{\sim}([p]) = [\psi(p)].$$

We see

$$[p] = [q] \iff p \sim q \iff \psi(p) \sim^* \psi(q) \iff [\psi(p)] = [\psi(q)] \iff \frac{\psi}{\sim}([p]) = \frac{\psi}{\sim}([q]).$$

Therefore, $\frac{\psi}{\sim}$ is a well-defined and one to one function. Since ψ is onto, we see

$$\forall a \in supp B, \exists p \in supp A \ s.t. \ a = \psi(p) \implies \frac{\psi}{\sim}([p]) = [\psi(p)] = [a].$$

Hence, $\frac{\psi}{\sim}$ is onto. We have

$$\frac{B}{\sim}([a]) = B(a) = A(\psi^{-1}(a)) = \frac{A}{\sim}([\psi^{-1}(a)]) = \frac{A}{\sim}((\frac{\psi}{\sim})^{-1}([a])).$$

On the other hand for each LG-open subset H of $1_{\mathbb{R}^n}$ which $H \leq B$, we have

$$\frac{\mathfrak{T}_{Ln}}{\sim} \left(\frac{H}{\sim}\right) = \mathfrak{T}_{Ln}(H) = 1 = \mathfrak{T}(\psi^{-1}(H)) = \frac{\mathfrak{T}}{\sim} \left(\frac{\psi^{-1}(H)}{\sim}\right).$$

Hence, $\frac{\psi}{\sim} \in LGPRf(\frac{A}{\sim}, \frac{B}{\sim})$. Therefore, if $\mathfrak{A} = \{(A_j, \psi_j), j \in J\}$ be a C^{∞} LG-structure of X. Then $\frac{\mathfrak{A}}{\sim} = \{(\frac{A_j}{\sim}, \frac{\psi_j}{\sim}), j \in J\}$ is a C^{∞} LG-fuzzy structure of $(\frac{X}{\sim}, \frac{\mathfrak{T}}{\sim})$. Now, suppose that $supp\mathfrak{T}$ has a countable basis $\beta = \{A_i, i \in \mathbb{N}\}$. Let $\frac{A}{\sim} \in supp\frac{\mathfrak{T}}{\sim}$ and $A = \bigcup_{j \in K} A_j$. Since $K \subseteq \mathbb{N}$. Hence for all $y \in X$ we have:

$$\frac{A}{\sim}([y]) = A(y) = \bigcup_{j \in J} A_j(y) = \sup\{ A_j(y), \ j \in K \} = \sup\{ \frac{A_j}{\sim}([y]), \ j \in K \} = \bigcup_{j \in K} \frac{A_j}{\sim}([y]).$$

Therefore, $\frac{\beta}{\sim} = \{\frac{A_i}{\sim}, i \in K\}$ is a countable basis for $supp \frac{\mathfrak{T}}{\sim}$.

Example 4.5. Consider the IG-fuzzy Euclidean topological space $(1_{\mathbb{R}}, \mathfrak{T}_{I1})$. We define a relation on \mathbb{R} as follows: $\forall x, y \in 1_{\mathbb{R}}, x \sim y \text{ if } x - y \in \mathbb{Z}$. Since $1_{\mathbb{R}}(y) = 1_{\mathbb{R}}(x) = 1$ whenever $y \sim x$. Hence $\frac{1_{\mathbb{R}}}{\sim}$ is well-defined and hence by Theorem 4.2 we have the IG-fuzzy quotient topological space $(\frac{1_{\mathbb{R}}}{\sim}, \frac{\mathfrak{T}_{I1}}{\sim})$. We show that it is an IG-fuzzy topological manifold:

Let $A : \mathbb{R} \to I$, $A(x) = x - \lfloor x \rfloor$. Since

$$supp A = \mathbb{R} - \mathbb{Z} = \bigcup_{k \in \mathbb{Z}} (k, \ k+1) = \bigcup_{k \in \mathbb{Z}} B(k + \frac{1}{2}, \ \frac{1}{2}).$$

Then we see:

$$A = \bigcup_{k \in \mathbb{Z}} B(k + \frac{1}{2}, \frac{1}{2}, b_k), \quad where \quad b_k : B(k + \frac{1}{2}, \frac{1}{2}) \to I, \quad b_k(x) = x - \lfloor x \rfloor.$$

Therefore by Example 2.2, $A \in \tau_{I_1}$ and hence by Example 2.4, $\mathfrak{T}_{I1}(A) = 1$. Since for all $x, y \in \mathbb{R}$ we have

$$x \sim y \quad \Rightarrow \quad y = x + k, \ k \in \mathbb{Z} \quad \Rightarrow \quad |y| = k + |x|.$$

$$y - |y| = k + x - (k + |x|) = x - |x| \Rightarrow A(y) = A(x).$$
 (3)

Hence $\frac{A}{\sim}$ is well-defined. So $\frac{\mathfrak{T}_{I1}}{\sim}(\frac{A}{\sim}) = \mathfrak{T}_{I1}(A) = 1$. Define

$$B: \mathbb{R} \to I, \ B(y) = \left\{ \begin{array}{ll} y & y \in (0,1), \\ 0 & otherwise. \end{array} \right.$$

We can write $B = B(\frac{1}{2}, \frac{1}{2}, b)$, where $b : B(\frac{1}{2}, \frac{1}{2}) \to I$, b(y) = y. So $B \in \tau_{I1}$. Hence $\mathfrak{T}_{I1}(B) = 1 = \frac{\mathfrak{T}_{I1}}{\sim}(\frac{A}{\sim})$. We define $\psi : supp \xrightarrow{A} \to supp B$ by $\psi[x] = x - \lfloor x \rfloor$. If [x] = [y], then it means that $x \sim y$, so by (3), we have $x - \lfloor x \rfloor = y - \lfloor y \rfloor$. Hence $\psi([x]) = \psi([y])$. Therefore ψ is well-defined. We show that ψ is injective:

$$\psi([x]) = \psi([y]) \quad \Rightarrow \quad x - \lfloor x \rfloor = y - \lfloor y \rfloor \quad \Rightarrow \quad y - x = \lfloor y \rfloor - \lfloor x \rfloor \in \mathbb{Z} \quad \Rightarrow \quad x \sim y \quad \Rightarrow \quad [x] = [y].$$

Since $\forall t \in (0,1), \ \lfloor t \rfloor = 0$, so $\psi([t]) = t - \lfloor t \rfloor = t$. Therefore ψ is surjective. So by Definition 2.11 we have $\frac{A}{A}([x]) = B(\psi([x]))$. On the other hand for each LG-open subset H of $1_{\mathbb{R}^n}$ with $H \leq B$, we have

$$\frac{\mathfrak{T}_{I1}}{\sim} \left(\psi^{-1}(H) \right) = \frac{\mathfrak{T}_{I1}}{\sim} \left(\frac{H}{\sim} \right) = \mathfrak{T}_{I1}(H) = 1.$$

Hence $\psi \in IGPRf(\frac{A}{\sim}, B)$. Thus we have a single IG-local coordinate neighborhood $(\frac{A}{\sim}, \psi)$ for all points of $\frac{1_{\mathbb{R}}}{\sim}$.

Proposition 4.6. Consider all of the hopotheses of Theorem 4.4. Let $R = \{(x,y) \mid x \sim y\}$. Then $(\frac{X}{\sim}, \frac{\mathfrak{T}}{\sim})$ is a Hausdorff L-gfts if and only if $\chi_{R,X\times X}$ is an LG-closed subset of $X\times X$.

Proof. Let $(\frac{X}{\sim}, \frac{\mathfrak{T}}{\sim})$ be a Hausdorff L-gfts, then for each [x], $[y] \in \frac{X}{\sim}$ where $[x] \neq [y]$, there exist $\frac{U}{\sim}, \frac{V}{\sim} \in supp \frac{\mathfrak{T}}{\sim}$ such that $[x] \in \frac{U}{\sim}, [y] \in \frac{V}{\sim}$ and $\frac{U}{\sim} \cap \frac{V}{\sim} = \phi$. So for each $(x,y) \in (X \times X)$ where $(x,y) \notin R$ there exist $U, V \in supp \mathfrak{T}$, such that $U \cap V = \phi$ and $(x,y) \in (U \times V)$. we show that $supp(U \times V) \cap R = \phi$.

$$(a,b) \in supp(U \times V) \cap R \quad \Rightarrow \quad a \in U, \ b \in V, \ a \sim b \Rightarrow \quad [a] \in \frac{U}{\sim}, \ [b] \in \frac{V}{\sim}, \ [a] = [b] \Rightarrow \quad \frac{U}{\sim} \cap \frac{V}{\sim} \neq \phi,$$

that is a contradition. It means that for each $(x,y) \in supp(X \times X - \chi_{R,X \times X})$ there exists $U \times V \in supp(\mathfrak{T} \times \mathfrak{T})$ such that $(x,y) \in U \times V \leq (X \times X - \chi_{R,X \times X})$. Therefore, $(\mathfrak{T} \times \mathfrak{T})(X \times X - \chi_{R,X \times X}) > \mathfrak{T}(U) \wedge \mathfrak{T}(V) > 0$. Hence $\chi_{R,X \times X}$ is an LG-closed subset of $X \times X$.

Conversely, suppose that $\chi_{R,X\times X}$ is an LG-closed subset of $X\times X$. Then $(X\times X-\chi_{R,X\times X})$ is an LG-open subset. By Theorem 3.11,

$$supp(X \times X - \chi_{R,X \times X}) \in (\mathfrak{T} \times \mathfrak{T})^{\triangleleft}.$$

Hence $supp(X \times X) - R$ is an ordinary open subset. So for each $(x,y) \in (supp(X \times X) - R)$, there exists an open subsets $U \times V \in (\mathfrak{T} \times \mathfrak{T})^{\triangleleft}$ such that $(x,y) \in U \times V \subseteq (supp(X \times X) - R)$. We show that $U \cap V = \phi$

$$a \in U \cap V \implies a \sim a \text{ and } (a, a) \in U \times V \implies (a, a) \in (U \times V) \cap R,$$

that is a contradition. It means that for each $(x,y) \in supp(X \times X)$ where $(x,y) \notin R$, there exist $U, V \in supp\mathfrak{T}$, such that $U \cap V = \phi$ and $(x,y) \in U \times V$. Since \sim is an LG-open relation, then we have $\mathfrak{T}(\frac{U}{\sim}) \geq 0$ and $\mathfrak{T}(\frac{V}{\sim}) \geq 0$. Therefore for each $[x], [y] \in \frac{X}{\sim}$ where $[x] \neq [y]$, there exist $\frac{U}{\sim}, \frac{V}{\sim} \in supp\frac{\mathfrak{T}}{\sim}$ such that $[x] \in \frac{U}{\sim}, [y] \in \frac{V}{\sim}$ and $\frac{U}{\sim} \cap \frac{V}{\sim} = \phi$. So $(\frac{X}{\sim}, \frac{\mathfrak{T}}{\sim})$ is a Hausdorff L-gfts.

5 LG-fuzzy product manifolds

The concept of the product of fuzzy topological spaces was introduced by C. K. Wong [19] and later by Hutton [8]. We define and investigate LG-fuzzy product manifolds by the following theorem:

Theorem 5.1. Let $X \in L^{M_1}$, $X_2 \in L^{M_2}$ and (X_1, \mathfrak{T}_1) , (X_2, \mathfrak{T}_2) be two LG-fuzzy manifolds of dimensions m, n and with the LG-fuzzy structures $\mathfrak{A}_i = \{(A_{\alpha_i}, \psi_{\alpha_i}) | \alpha_i \in K_i\}$, i = 1, 2 respectively. Then $(X_1 \times X_2, \mathfrak{T}_1 \times \mathfrak{T}_2)$ is an LG-fuzzy manifold of dimension m + n.

Proof. We define for all $A_1 \in L_{X_1}^{M_1}$, $A_2 \in L_{X_2}^{M_2}$:

$$A_1 \times A_2 \in L_{X_1 \times X_2}^{M_1 \times M_2}, \quad (A_1 \times A_2)(x, y) = A_1(x) \wedge A_2(y),$$

and

$$(\mathfrak{T}_1 \times \mathfrak{T}_2)(A_1 \times A_2) = \mathfrak{T}_1(A_1) \wedge \mathfrak{T}_2(A_2).$$

It can be verified that $\mathfrak{T}_1 \times \mathfrak{T}_2$ is an L-gradation of openness on $X_1 \times X_2$. Now let $p_1 \in X_1, p_2 \in X_2$. Then there exist two LG-open subsets A_i of X_i containing p_i , for i=1,2 and two LG-open subsets B_i of LG-fuzzy Euclidean spaces of dimension m,n, respectively together with two LGP-homeomorphisms $\psi_i \in (A_i,B_i)$. Therefore for any $(p_1,p_2) \in X_1 \times X_2$, there exists an LG-open subset $A_1 \times A_2$ of $X_1 \times X_2$ containing (p_1,p_2) and an LG-open subset $B_1 \times B_2$ of LG-fuzzy Euclidean space of dimension m+n, together with an LGP-homeomorphism $\psi_1 \times \psi_2 \in (A_1 \times A_2, B_1 \times B_2)$ such that for each LG-open subsets $H_1 \leq B_1, H_2 \leq B_2$ we have

$$\mathfrak{T}_{L(m+n)}(H_1 \times H_2) = (\mathfrak{T}_1 \times \mathfrak{T}_2) (\psi_1^{-1}(H_1) \times \psi_2^{-1}(H_2)),$$

where $(\psi_1 \times \psi_2)$ $(x_1, x_2) = (\psi_1(x_1), \psi_2(x_2)) \in \mathbb{R}^{m+n}$. One can prove easily that

$$\mathfrak{A}_1 \times \mathfrak{A}_2 = \left\{ \left((A_{\alpha_1} \times A_{\alpha_2}), (\psi_{\alpha_1} \times \psi_{\alpha_2}) \right) \mid \alpha_1 \in K_1, \ \alpha_2 \in K_2 \right\},\,$$

is an LG-fuzzy structure on $X_1 \times X_2$.

Example 5.2. Let $M = \mathbb{R}^2$, $X = \chi_{S^1}$. One can easily prove that (X, \mathfrak{T}_{I3}) is an LG-fuzzy manifold of dimension 1, similarly to Example 3.6. Then $(X \times X, \mathfrak{T}_{I3} \times \mathfrak{T}_{I3})$ is an LG-fuzzy manifold of dimensions 2 and $supp(X \times X) = S^1 \times S^1$.

6 C^{∞} LG-fuzzy mappings of LG-fuzzy manifolds

The concept of the fuzzy vector space (V, η) over a field F was defined in [18]. We extend this definition by L-fuzzificaion:

Definition 6.1. An L-fuzzy vector space (V, η) or ηV over a field F is an ordinary vector space V over the field F, with a map $\eta: V \to L$ satisfying the following conditions for all $a, b \in V$ and $r \in F$.

1)
$$\eta(a+b) > \min\{\eta(a), \eta(b)\},\$$

2)
$$\eta(-a) = \eta(a)$$
,

- 3) $\eta(0) = 1$,
- 4) $\eta(ra) \geq \eta(a)$,

Definition 6.2. Let (X,\mathfrak{T}) be an LG-fuzzy manifold of dimension n, $U \in supp\mathfrak{T}$ and $V \in supp\mathfrak{T}_{L1}$. The LG-related function f from U to V, is called a C^{∞} LG-fuzzy mapping, if for every $p \in U$,

$$\hat{f} = f \circ \psi^{-1} : \psi(supp(A \cap U)) \rightarrow suppV,$$

is C^{∞} where (A, ψ) is an LG-local coordinate neighborhood of p.

We denote the set of all C^{∞} LG-fuzzy mappings from an LG-open subset U of X, containing p to $1_{\mathbb{R}}$, by $C_L^{\infty}(p)$. If we define $\eta: C_L^{\infty}(p) \to L$, $\eta(f) = A(p)$, where (A, ψ) is an LG-coordinate neighborhood of p, then $C_L^{\infty}(p)$ may be considered as an L-fuzzy vector space $(C_L^{\infty}(p), \eta)$. Let $\psi(q) = (x_1, \ldots, x_n)$, $\forall q \in supp(A \cap U)$. Then $\hat{f}(x_1, \ldots, x_n) = y(q)$, and since \hat{f} is C^{∞} , there exist all partial derivatives of any order of y.

Example 6.3. In Example 3.8, if we define $f: \mathcal{M}_{m \times n} \to \mathbb{R}$, $f((a_{ij})) = det((a_{ij}))$, then using the single IG-local coordinate neighborhood $(Z, \psi|_Z)$, we have $\hat{f} = f \circ \psi$ is C^{∞} . Hence $f \in C_L^{\infty}(p)$ for all $p \in Z$.

From now on, we suppose that M_1 , M_2 are two crisp sets, $X \in L^{M_1}$, $Y \in L^{M_2}$ such that (X, \mathfrak{T}) , (Y, \mathfrak{R}) are two LG-fuzzy manifolds of dimension n, m and LG-fuzzy structures $\mathfrak{A} = \{(A_i, \psi_i), i \in K\}$ and $\mathfrak{D} = \{(D_j, \varphi_j), j \in J\}$ respectively and $U \in supp\mathfrak{T}$, $V \in supp\mathfrak{D}$.

Definition 6.4. An LG-fuzzy function $F \in LGRf(U,V)$ is a C^{∞} LG-fuzzy mapping if for every $p \in U$,

$$\hat{F} = \varphi \circ F \circ \psi^{-1} : \psi(supp(A \cap U)) \ \to \ \varphi(supp(B \cap V)),$$

is C^{∞} where (A, ψ) , (B, φ) are LG-local coordinate neighborhoods of p and F(p) respectively. $F \in LGRf(U, V)$ is called a LG-diffeomorphism if it is an LG-homeomorphism and F, F^{-1} are C^{∞} .

More precisely, if $\psi(q) = (x_1, \ldots, x_n), \forall q \in supp(A \cap U)$ and $\varphi(w) = (y_1, \ldots, y_m), \forall w \in B$, then

$$\hat{F}(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)),$$

and each $y_i = f_i(x_1, \ldots, x_n)$ is C^{∞} on $\psi(A)$.

Definition 6.5. The rank of $F \in LGRf(X,Y)$ at p is equal to the rank at $x = \psi(q)$ of the Jacobian matrix:

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}_{x}.$$

Example 6.6. Let $M_1 = M_2 = \mathbb{R}^2$, L = I and $X : M_1 \to I$, $Y : M_2 \to I$ be defined by.

$$X(x_1, x_2) = \begin{cases} 1 & ||x|| = 1, \\ 0 & ||x|| \neq 1, \end{cases}$$
 and $Y(y_1, y_2) = \begin{cases} 1 & ||y|| = 1, \\ 0 & ||y|| \neq 1. \end{cases}$

If we define $\mathfrak{T}:I_X^{M_1}\to I, \ and \ \mathfrak{R}:I_Y^{M_2}\to I, \ by$

$$\mathfrak{T}(A) = \left\{ \begin{array}{ll} 1 & A \in supp\mathfrak{T}_{I2}, \ A \leq X, \\ 0 & elsewhere. \end{array} \right. \quad and \quad \mathfrak{R}(D) = \left\{ \begin{array}{ll} 1 & D \in supp\mathfrak{T}_{I2}, \ D \leq Y, \\ 0 & elsewhere. \end{array} \right.$$

In a similar manner to the Example 3.5, we can prove that (X,\mathfrak{T}) , (Y,\mathfrak{R}) are IG-fuzzy manifolds. Let

$$F: M_1 \to M_2, \quad F(x_1, x_2) = (x_1 - x_2, \sqrt{2x_1x_2}).$$

We prove that $F \in IGRf(X,Y)$ is a C^{∞} IG-fuzzy mapping. First we show F|suppX: suppX: suppX is well-defined and F[X] = Y:

$$(x_1, x_2) \in S^1 \Rightarrow x_1^2 + x_2^2 = 1 \Rightarrow (x_1 - x_2)^2 + (\sqrt{2x_1x_2})^2 = 1 \Rightarrow F(x_1, x_2) \in S^1,$$

 $F[X](y_1, y_2) = \bigvee \{X(x_1, x_2) : (x_1, x_2) \in F^{-1}(y_1, y_2)\} = 1 = Y(y_1, y_2).$

Let (A_1^+, ψ_1^+) , (D_2^+, φ_2^+) be IG-local coordinate neighborhoods on X, Y respectively, then we see:

$$\varphi_2^+ \circ F \circ (\psi_1^+)^{-1}(y) = \varphi_2^+ \circ F(\sqrt{1 - y^2}, y) = \varphi_2^+(\sqrt{1 - y^2} - y, \sqrt{2y\sqrt{1 - y^2}}) = \sqrt{1 - y^2} - y,$$

is C^{∞} . Similarly, one can show that $\varphi_i^{\pm} \circ F \circ (\psi_i^{\pm})^{-1}$ is C^{∞} for all i, j = 1, 2.

Example 6.7. Let $F: \mathbb{R} \to \mathbb{R}^2$, $F(t) = (cos(t - \frac{\pi}{2}), \ sin(t - \frac{\pi}{2}))$. Then $F \in IGPRf(1_{\mathbb{R}}, \ 1_{\mathbb{R}^2})$ and rank F = 1 at every point of X.

Theorem 6.8. (LG-fuzzy rank theorem) Let $F \in LGRf(U,Y)$ be a C^{∞} fuzzy mapping and rank F = k at every point of X. If $p \in X$, then there exist LG-local coordinate neighborhoods (A, ψ) , (B, φ) such that

$$\psi(p) = (0, \dots, 0) \in \mathbb{R}^n, \ \varphi(F(p)) = (0, \dots, 0) \in \mathbb{R}^m,$$

and $\hat{F} = \varphi \circ F \circ \psi^{-1}$ is given by:

$$\hat{F}(x_1, \ldots, x_n) = (x_1, \ldots, x_k, 0, \ldots, 0). \tag{4}$$

Proof. Using Theorem 3.11, we see that $(suppX, \mathfrak{T}^{\triangleleft})$ and $(suppY, \mathfrak{R}^{\triangleleft})$ are two topological manifolds of dimension n, m with the structures $\mathfrak{A}^{\triangleleft} = \{(suppA_i, \ \psi_i|_{suppA_i}), \ i \in K\}$ and $\mathfrak{D}^{\triangleleft} = \{(suppD_j, \ \varphi_j|_{suppD_j}), \ j \in J\}$ respectively. Also $F|_{suppX} : suppX \to suppY$ is a C^{∞} mapping and rankF = k at every point of X. Fix $p \in suppX$, then by the rank theorem, there exist coordinate neighborhoods $(suppA, \ \psi|_{suppA}), \ (suppD, \ \varphi|_{suppD})$ of p and F(p) respectively such that

$$\psi|_{suppA}(p) = (0, \dots, 0) \in \mathbb{R}^n, \quad \varphi|_{suppD}(F|_{suppX}(p)) = (0, \dots, 0) \in \mathbb{R}^m,$$

and $\hat{F}|_{\psi(suppA)} = \varphi|_{suppD} \circ F|_{suppA} \circ \psi^{-1}|_{\psi(suppA)}$ is given by:

$$\hat{F}|_{\psi(suppA)}(x_1, \ldots, x_n) = (x_1, \ldots, x_k, 0, \ldots, 0).$$

Therefore the LG-fuzzy rank theorem holds for LG-fuzzy manifolds.

Remark 6.9. We can cover X and $\tilde{X} = F[X]$ by these LG-local coordinate neighborhoods $\mathfrak{A} = \{(A_s, \psi_s) | s \in S\}$, and $\mathfrak{D} = \{(D_s, \varphi_s) | s \in S\}$ respectively where $S \subseteq K$. Since \mathfrak{A} is an LG-structure of X, one can show that \mathfrak{D} is an LG-structure of F[X]. If F is an LG-diffeomorphism, then we have rank $F = \dim X = \dim Y$.

Definition 6.10. The C^{∞} L-related function $F \in LGRf(X,Y)$ is an LG-fuzzy immersion (submersion) if rank $F = \dim X (= \dim Y)$. at every point of X.

Theorem 6.11. Let $F \in LGRf(X,Y)$ be a C^{∞} LG-fuzzy mapping. If F is an injective LG-fuzzy immersion, then $(\tilde{X},\tilde{\mathfrak{T}})$ is an LG-fuzzy submanifold of dimension n, called an LG-fuzzy immersed submanifold and $F \in LGRf(X,\tilde{X})$ is an LG-diffeomorphism.

Proof. F establishes a one-to-one correspondence between suppX and F(suppX). Thus, $F \in LGRf(X, \tilde{X})$ is one-to-one and onto. Since for each $q \in F(suppX)$, there exists only one $p \in suppX$ such that $F^{-1}(q) = \{p\}$, hence

$$\tilde{X}(q) = F[X](q) = \sup\{X(a)|\ F(a) = q\} = X(p).$$

Since $F \in LGRf(X,Y)$, we have $F[X] \leq Y$; therefore $\tilde{X} \leq Y$. Hence \tilde{X} is an LG-fuzzy subset of Y. We use F to endow \tilde{X} with an LG-structure

$$\tilde{\mathfrak{D}} = \{ (D_s|_{\tilde{X}}, \ \pi \circ \varphi_s|_{\tilde{X}}) \mid (D_s, \ \varphi_s) \in \mathfrak{D}, \ \ \forall s \in S \},$$

where $\pi(y_1, \ldots, y_m) = (y_1, \ldots, y_n)$ is the projection and an LG-fuzzy topology

$$\tilde{\mathfrak{T}}:L_{\tilde{X}}^{M_{2}}\rightarrow L,\quad \tilde{\mathfrak{T}}(H)=\mathfrak{T}(F^{-1}[H]).$$

Then $(\tilde{X}, \tilde{\mathfrak{T}})$ is an LG-fuzzy manifold of dimension n, called an LG-fuzzy immersed submanifold and $F \in LGRf(X, \tilde{X})$ is an L-gradation-preserving. Therefore F is an LGP-diffeomorphism.

In general, gradation of openness $\tilde{\mathfrak{T}}$ and the LG-fuzzy structure on \tilde{X} depend on F as well as X, i.e. $(\tilde{X}, \tilde{\mathfrak{T}})$ is not a submanifold of (Y, \mathfrak{R}) . So we add the condition of LG-continuity of F, F^{-1} in the following definition:

Definition 6.12. An LG-fuzzy imbedding is a one-to-one LG-fuzzy immersion $F \in LGRf(X,Y)$ with $F \in LGRf(X,\tilde{X})$ is an LG-homeomorphism from X to $\tilde{X} = F[X]$ as an LG-fuzzy subspace of Y. The image of an LG-fuzzy imbedding is called an LG-fuzzy imbedded submanifold.

Theorem 6.13. Let $F \in LGRf(X,Y)$ be an LG-fuzzy immersion. Then for each $p \in X$, exists an LG-neighborhood A of p such that $F|_{supp A}$ is an LG-fuzzy imbedding.

Proof. According to Theorem 6.8, we may choose (A, ψ) and (D, φ) , the LG-local coordinate neighborhoods of p and F(p), respectively, such that (4) holds. Since F[A] = D and D is an LG-open subset of Y, hence L-gradation of openness $\tilde{\mathfrak{T}}$ of F[A], is the same as its L-gradation of openness $\mathfrak{D}|_D$ as an L-gftss of Y, i.e. $\tilde{\mathfrak{T}}(H) = \mathfrak{T}(F^{-1}[H]) = \mathfrak{D}(H)$, for all LG-open subset H of D. On the other hand, ψ and φ are LGP-homeomorphisms, hence \hat{F} is an LGP-homeomorphism of $\psi[A]$ and $\varphi[D]$. Therefore $F|_{suppA}$ is a homeomorphism, and thus the theorem holds.

Example 6.14. Let $Z = \chi_{(1,+\infty)}$. Then Z is an LG-open subset of $1_{\mathbb{R}}$. If $\mathfrak{T}_Z = \mathfrak{T}_{I1}|_z$, then (Z, \mathfrak{T}_Z) is an LG-fuzzy submanifold of $(1_{\mathbb{R}}, \mathfrak{T}_{I1})$. Let W = B((0,0),1,1), then W is an LG-open subset of $1_{\mathbb{R}^2}$. Consider $F: \mathbb{R} \to \mathbb{R}^2$, $F(t) = (\frac{1}{t}\cos 2\pi t, \frac{1}{t}\sin 2\pi t)$. Then $F \in IGRf(Z, W)$ and rank F = 1 at every point of Z. We see $F^{-1}(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$, so

F is a one-to-one LG-fuzzy immersion. Since $F \in IGRf(Z,\tilde{Z})$ is an LG-homeomorphism, F is an LG-fuzzy imbedding.

7 LG-fuzzy submanifolds of LG-fuzzy manifolds

Definition 7.1. An LG-fuzzy subset N of an LG-fuzzy manifold (X,\mathfrak{T}) , is said to have the LG-fuzzy k-submanifold property if each $p \in N$ has an LG-local coordinate neighborhood (A, ψ) on X with LG-local coordinates x_1, x_2, \ldots, x_n such that $\psi(p) = (0, \ldots, 0) \in \mathbb{R}^n$, and

$$\psi(suppA \cap suppN) = \{(x_1, x_2, \dots, x_n) \in \psi(A) \mid x_{k+1} = \dots = x_n = 0\}.$$

If N has this property, LG-coordinate neighborhoods of this type are called preferred LG-local coordinates.

Denote by $\pi: \mathbb{R}^n \to \mathbb{R}^k$, $k \leq n$, the projection to the first k coordinates. Using the notation above, we may state the following proposition:

Theorem 7.2. Let $N \leq X$ have the LG-fuzzy k-submanifold property. Then each preferred LG-local coordinate system (A, ψ) of X defines an LG-local coordinate neighborhood (A', ψ') on N where $A' = A \cap N$, $\psi' = \pi \circ \psi|_{A'}$. Therefore the inclusion $i \in LGRf(N, X)$ is an LG-fuzzy imbedding.

Proof. Since N is an LG-open subset of X, thus (N, \mathfrak{T}_N) is an LG-fuzzy topological subspace of X. Then (A', ψ') are LG-coordinate neighborhoods covering N, where $A' = A \cap N$ is an LG-open subset of N and $\psi' = \pi \circ \psi|_{A'}$ is an LGP-homeomorphism. Suppose that for two preferred neighborhoods (A'_1, ψ'_1) and (A'_2, ψ'_2) , A'_1, A'_2 have a nonempty intersection. We know that the change of LG-local coordinates is given by LGP-homeomorphisms $\psi'_1 \circ \psi'_2^{-1}$ and $\psi'_2 \circ \psi'_1^{-1}$ which we must show to be C^{∞} . Let

$$\gamma(x_1, \ldots, x_k) = (x_1, \ldots, x_k, 0, \ldots, 0) \in \mathbb{R}^n$$

so that $\pi \circ \gamma$ is the identity on \mathbb{R}^k . This map γ is C^{∞} . Hence its restriction to $\psi'(A')$, an LG-open subset of \mathbb{R}^k , is C^{∞} ; thus $\psi'^{-1} = \psi \circ \gamma$ is C^{∞} , since it is a composition of C^{∞} maps. On the other hand, $\psi' = \pi \circ \psi$ so ψ' is a C^{∞} map on A'. Hence $\psi'_1 \circ \psi'_2^{-1}$ is C^{∞} . If $y_i = f_i(x_1, \ldots, x_k), i = 1, \ldots, k$, are the functions giving $\psi'_1 \circ \psi'_2^{-1}$, which we know to be C^{∞} , then it can easily be checked that $\psi_1 \circ \psi_2^{-1}$ is given by $y_i = f_i(x_1, \ldots, x_k, 0, \ldots, 0), i = 1, \ldots, k$. Therefore $\psi'_1 \circ \psi'_2^{-1}$ is C^{∞} by Definition 3.2. Thus the totality of these LG-neighborhoods define a unique differentiable structure on N. In preferred LG-local coordinates $(A', \psi'), \in LGRf(N, X)$ is given on V by

$$\psi \circ i \circ \psi'^{-1}(x_1, \ldots, x_k) = (x_1, \ldots, x_k, 0, \ldots, 0).$$

So the map i is clearly an LG-fuzzy immersion. Because we have taken the relative LG-fuzzy topology on N, the fuzzy map i is by Definition 2.13 (iii) an LG-homeomorphism to its image i(N), with the LG-fuzzy subspace topology, that is, i is an LG-fuzzy imbedding.

Definition 7.3. A regular LG-fuzzy submanifold of an LG-fuzzy manifold (X, \mathfrak{T}) is any LG-fuzzy topological subspace N with the LG-fuzzy submanifold property and with the structure that the corresponding preferred LG-local coordinate neighborhoods determine on it.

Example 7.4. Let $M = \mathbb{R}^3$, $X : \mathbb{R}^3 \to I$, $X(x) = \left\{ \begin{array}{l} 1 \\ 0 \end{array} \right. \begin{array}{l} \|x\| = 1, \\ \|x\| \neq 1. \end{array}$. Then $supp X = S^2$, the unit sphere. Let $\mathfrak{T} : I_X^M \to I$, $\mathfrak{T}(A) = \left\{ \begin{array}{l} 1 \\ 0 \end{array} \right. \begin{array}{l} A \in \tau_{I3}, \ A \leq X \\ elsewhere. \end{array}$. We shall see that X is an LG-fuzzy submanifold of $(1_{\mathbb{R}^3}, \ \mathfrak{T}_{I3})$. If

 $q=(x_1,x_2,x_3)$ is an arbitrary point in supp X, it cannot lie on more than one coordinate axis. For convenience, we assume that it does not lie on the x_3 -axis. We introduce the spherical LG-local coordinates (ρ,θ,φ) ; they are defined on $1_{\mathbb{R}^3-\{x_3-axis\}}$ and if $(1,\theta_0,\varphi_0)$ are the LG-coordinates of q, we may change them a little so that it is replaced by $\tilde{\rho}=\rho-1$, $\tilde{\theta}=\theta-\theta_0$, and $\tilde{\varphi}=\varphi-\varphi_0$. Then it defines an LG-coordinate neighborhood of q, with q having LG-coordinates (0,0,0) and with the LG-open subset V of X.

Remark 7.5. So far, we have defined three classes of LG-fuzzy submanifolds of an LG-fuzzy n-manifold (X,\mathfrak{T}) . The first of these, which we usually simply call an LG-fuzzy submanifold, was defined (in 6.11) as the image N=F[N'] of an LG-fuzzy immersion F of N' into X. Since $F:N'\to N\le X$ is one-to-one and onto, we coduct (as part of the definition) carry over to N the LG-fuzzy topology and LG-fuzzy structure of N'; LG-open subsets of N are the images of LG-open sets of N' and LG-coordinate neighborhoods (A,ψ) of N are of the form A=F[A'], $\psi=\psi'\circ F^{-1}$, where (A',ψ') is an LG-local coordinate neighborhood of N'. The fact that F is LG-continuous shows that the LG-fuzzy topology of N gained in this way is in general finer than its relative LG-fuzzy topology as an LG-fuzzy subspace of X, that is, if D is LG-open subset of X, then $D\cap N$ is LG-open subset of X, but there may be LG-open subsets of X which are not of this form.

An LG-fuzzy imbedding is a particular type of LG-fuzzy immersion, one in which A is LG-open subset of N if and only if $A = F[U'] = D \cap N$ for some LG-open subset D of X so that the LG-fuzzy topology of the submanifold N = F[N'] is exactly its relative LG-fuzzy topology as an LG-fuzzy topological subspace of X. An LG-fuzzy imbedded submanifold is so a special type of (immersed) LG-fuzzy submanifold.

Ultimately, if $N \leq X$ is an LG-fuzzy regular submanifold, then it is also an LG-fuzzy imbedded submanifold since the inclusion $i: N \to M$ is an LG-fuzzy imbedding as we proved in 7.2.

Theorem 7.6. Let $F \in LGRf(N',X)$ be an LG-fuzzy imbedding of an LG-fuzzy manifold N' of dimension k in an LG-fuzzy manifold of dimension n. Then N = F[N'] has the LG-fuzzy k-submanifold property and thus N is an LG-fuzzy regular submanifold. As such, it is LG-diffeomorphic to N' with respect to the LG-fuzzy mapping $F \in LGRf(N',N)$.

Proof. Let q = F(p) be any point of N. According to Theorem 7.2 (and its proof), there are (A, ψ) and (B, φ) , LG-local coordinate neighborhoods of p and F(p), respectively, such that (4) holds. If $F[A] = V \leq N$, then the LG-neighborhood V would be a preferred LG-local coordinate neighborhood relative to N. To deduce this result, we should use the fact that F is an LG-imbedding. This denotes at least that F[A] is a relatively LG-open subset of N, that is, $F[A] = W \cap N$, where W is LG-open subset of X. Since $F[A] \leq V$, we can suppose $W \leq V$. Thus $\varphi[W]$ is an LG-open subset of $\varphi[B]$ containing the origin in \mathbb{R}^n and $\varphi[F[A]] \leq \varphi[W]$, which is a slice S of $\varphi[V]$, $S = \{x \in \varphi[V] \mid x_{k+l} = \ldots = x_m = 0\}$. Hence we may select an (smaller) LG-open subset $\varphi[V'] \leq \varphi[W]$ and $\varphi' = \varphi|_{suppV'}$. This is an LG-local coordinate neighborhood of Q for which Q is an Q in Q in

Remark 7.7. Suppose that $N \leq X$ is an LG-fuzzy immersed submanifold and that $q \in N$. Then there is an LG-neighborhood (V, ψ) of q, with $\psi(p) = (0, ..., 0)$ such that the slice $S' \subseteq suppV$, consisting of all points of V whose last n-k coordinates vanish, is an LG-open set and an LG-local coordinate neighborhood of the LG-fuzzy submanifold structure of N is given by LG-local coordinate map

$$\psi'(q) = \pi \circ \psi(q) = (x_1(q), \ldots, x_k(q)).$$

Theorem 7.8. If $F \in LGRf(N,X)$ is a one-to-one LG-fuzzy immersion and N is a compact L-gfts, then F is an LG-fuzzy imbedding and $\tilde{N} = F[N]$ an LG-fuzzy regular submanifold.

Proof. Since F is LG-continuous and both N and \tilde{N} are Hausdorff L-gfts's, we have an LG-continuous (one-to-one) mapping from a compact L-gfts to a Hausdorff L-gfts. Since an LG-closed subset K of N is compact, so F(K) is compact and therefore LG-closed. Thus F takes LG-closed subsets of N to LG-closed subsets of X, and since F is one-to-one and onto, it takes LG-open subsets to LG-open subsets as well. It follows that F^{-1} is LG-continuous, so $F \in LGRf(N, \tilde{N})$ is an LG-homeomorphism and therefore an LG-imbedding.

Theorem 7.9. Let $F \in LGRf(X,Y)$ be a C^{∞} LG-fuzzy mapping. Suppose that F has constant rank k on X and that $q \in F(X)$. Let D denotes $F^{-1}(q)$; then χ_D is an LG-closed, LG-fuzzy regular submanifold of X of dimension n-k.

Proof. Let $p \in D$; since F has constant rank k on an LG-neighborhood of p, we may find LG-local coordinate neighborhoods (A, ψ) , (B, φ) such that (4) holds. By Example 2.9, the fuzzy point 0_1 is an IG-closed subset of \mathbb{R}^n , then $\chi_{\{q\}}$, is an LG-closed subset of Y. Hence χ_D is an LG-closed subset since the inverse image of $\chi_{\{q\}}$, under a continuous map, is LG-closed. We shall show that χ_D has the LG-fuzzy n-k submanifold property. This means that the only points of D mapped onto q are those whose first k coordinates are zero, that is,

$$supp A \cap D = \psi^{-1}(\psi \circ F^{-1} \circ \varphi^{-1}(0)) = \psi^{-1}(\hat{F}^{-1}(0)) = \psi^{-1}\{x \in \psi(A) \mid x_1 = \dots = x_k = 0\}.$$

Hence χ_D is a regular LG-fuzzy (n-k)-submanifold since it has the LG-fuzzy submanifold property.

Corollary 7.10. If $F \in LGRf(X,Y)$ is a C^{∞} LG-fuzzy mapping of LG-fuzzy manifolds, $\dim X = n \leq m = \dim Y$, and $\operatorname{rank} F = n$ at every point of $D = F^{-1}(q)$, then χ_D is an LG-closed, regular LG-fuzzy submanifold of X. The corollary holds because at $p \in A$, F has the maximum rank possible, namely m. It follows from the independence of rank on LG-local coordinates that, in some LG-neighborhood of p in N, F also has this rank; thus the rank of F is m on an LG-open subset of N containing A. But such an LG-fuzzy subset is itself an LG-fuzzy n-manifold (an LG-open submanifold) to which we may apply the theorem.

8 Conclusion

In this paper, we generalize all of the fuzzy structures which we have discussed in [14] to L-fuzzy set theory, where $L = \langle L, \leq, \bigwedge, \bigvee, \rangle$ denotes a complete distributive lattice with at least two elements. We define the concept of an LG-fuzzy topological space (X,\mathfrak{T}) which X is itself an L-fuzzy subset of a crisp set M and \mathfrak{T} is an L-gradation of openness of L-fuzzy subsets of M which are less than or equal to X. Then we define C^{∞} L-fuzzy manifolds with L-gradation of openness and LG-fuzzy impeddings. We fuzzify the concept of the product manifolds with L-gradation of openness and define LG-fuzzy quotient manifolds when we have an equivalence relation on M and investigate the conditions of the existence of the quotient manifolds. We also introduce LG-fuzzy immersed, imbedded and regular submanifolds.

References

- [1] E. L. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 24 (1968), 182-190.
- [2] K. C. Chattopadhyay, R. N. Hazra, S. K. Samanta, Gradation of openness: Fuzzy topology, Fuzzy Sets and Systems, 49(2) (1992), 237-242.
- [3] K. C. Chattopadhyay, S. K. Samanta, Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems, **54**(2) (1993), 207-212.
- [4] M. K. EL-Gayyar, E. E. Kerre, A. A. Ramadan, On smooth topological spaces II: Separation axioms, Fuzzy Sets and Systems, 119(3) (2001), 495-504.
- [5] M. Ferraro, D. H. Foster, C^1 fuzzy manifolds, Fuzzy Sets and Systems, 54(1) (1993), 99-106.
- [6] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18 (1967), 145-174.
- [7] V. Gregori, A. Vidal, Fuzziness in Chang's fuzzy topological spaces, Journal Rendiconti dell'Istituto di Matematica dell'Universit di Trieste, XXX (1999), 111-121.
- [8] B. Hutton, Products of fuzzy topological spaces, Topology and its Application, 11 (1980), 59-67.
- [9] I. Ibedou, Graded fuzzy topological spaces, Cogent Mathematics and Statistics, 3(1) (2016), 1-13.
- [10] R. Lowen, Fuzzy topological spaces and fuzzy compactness, Journal of Mathematical Analysis and Applications, 56 (1979), 621-633.
- [11] R. Lowen, Mathematics and fuzziness, some personal reflections, Information Sciences, 36(1-2) (1985), 17-27.
- [12] E. Lowen, R. Lowen, On measures of compactness in fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 131(2) (1988), 329-340.

174 M. Mostafavi

- [13] M. Macho Stadler, M. A. de Prada Vicente, On fuzzy subspaces, Fuzzy Sets and Systems, 58 (1993), 365-373.
- [14] M. Mostafavi, An approach to some properties of fuzzy topological spaces, Cankaya University Journal of Science and Engineering, 14(1) (2017), 1-9.
- [15] A. P. Šostak, On a fuzzy topological structure, Rendiconti del Circolo Matematico di Palermo Serie II, 11 (1985), 89-103.
- [16] A. P. Šostak, On compactness and connectedness degrees of fuzzy sets in fuzzy topological spaces, General Topology and its Relations to Modern Analysis and Algebra, VI, 16 (1988), 519-532.
- [17] A. P. Šostak, D. Dzhajanbajev, On completeness and precompactness spectra of fuzzy sets in fuzzy uniform spaces, Commentationes Mathematicae Universitatis Carolinae, **31**(1) (1990), 149-157.
- [18] W. B. Vasantha Kandasamy, F. Smarandache, I. Kandasamy, Set linear algebra and set fuzzy linear algebra, Infinite Study, (2008), 344 pages.
- [19] C. K. Wong, Fuzzy topology, product and quotient theorems, Journal of Mathematical Analysis and Applications, 45(2) (1974), 512-521.
- [20] P. Wuyts, R. Lowen, On local and global measures of separation in fuzzy topological spaces, Fuzzy Sets and Systems, 19(1) (1986), 51-80.
- [21] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.