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Abstract

Nowadays, some burgeoning issues occurring in green and sustainable supply chain face an increasing number of tackles,
including uncertain factors and unobserved data, which makes it even more complicated to assess supply chain efficiency.
To address this issue, this paper applies uncertainty theory to two-stage network DEA intending to deal with inaccurate
data. Moreover, the bi-echelon supply chain generally suffers asymmetric power among involved members. Therefore,
this paper proposes attrition rate (D) and fulfillment rate (G) in the first and second stages respectively so as to reveal
the bi-echelon supply chain within different leader-follower patterns. The first two models assume the upstream firm
is the leader while the last two models regard the downstream firm as the leader. We find out that the results of the
evaluation vary under divergent patterns accordingly by running a numerical example. Adopting proposed models can
help decision-makers of the multistage supply chain make decisions more effectively and avoid possible mistakes.
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1 Introduction

Data envelopment analysis (DEA) has developed and received considerable attention in various fields over the past
decades [6, 7, 8, 10, 13, 28]. After the appearance of the most classical DEA model generated by Charnes, Cooper and
Rhods [2], numerous DEA models have been put forward to evaluate whether the peer decision-making units (DMUs)
are efficient or not (Chang et al. [1]) without considering the internal structure inside it. According to Wei [38], if
and only if all the sub-processes attain efficiency, the entire system can reach efficiency. Therefore, it is essential to
investigate the inefficiency of subprocess, which can access the root cause of the inefficiency of the whole system. The
decision-makers can thereby modify the decisions on the basis of distinguishing the inefficient sub-processes in the
system so that the overall performance can be enhanced.

Applying network DEA, many researchers have made a huge number of efforts to obtain outstanding academic
achievements in order to transform the “black box” into “glass box” [5]. For example, Färe and Grosskopt [9] proposed
a network DEA model that discussed the concept of an intermediate product. Seiford and Zhu [33] originated two-stage
DEA models to evaluate sub-processes such as profitability and marketability of 55 top-class banks in the US. Cook et
al. [4] presented a general summary of new researches on network DEA models.

One of the most basic and prevailing structures of the network operation is two-stage DEA models because they can
be easily generalized into other structures with more than two processes. Generally speaking, most two-stage models
decompose the whole procedure process into two stages in which both inputs and outputs are frequently seen in other
“black-box” DEA models [38]. Moreover, two-stage DEA models often use intermediate measures that are the outputs
of the first sub-process and the inputs of the second sub-process to produce final outputs. Kao and Hwang [13] created
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two-stage models, which include intermediate products. They can connect the two sub-processes so that it is capable
of representing the mutual influence between the entire system and its components.

However, when illustrating into some more complex systems such as the supply chain, the previous models are not
reasonable enough because the power of members of a supply chain is asymmetric [18]. The unbalance strengthens those
who are more powerful in the whole supply chain and can be regarded as focal firms, and we can call them “leader”.
Otherwise, we call them “follower” [17]. This circumstance prevails in real life. For example, as an upstream firm,
Qualcomm is a chip supplier of smart-phone manufacturers. The capacity of many companies relies to a large extent
on the supply of the chips bought from it. In this context, Qualcomm has domain advantages, so it can be seen as the
core enterprise in the supply chain. On the other hand, as a downstream firm, large chain retailer Carrefour recently
becomes increasingly more important for its massive marketing channels, which indicates that Carrefour can be treated
as a focal company in the supply chain. For the virtue of the diversity of the two situations, it is infeasible to view the
focal firm and non-focal firm as same when evaluating the efficiency of the supply chain. If the sub-process, which is
more powerful in the whole system is not taken into consideration, then the improper result that is far away from the
real one, may occur. To avoid this kind of potential error, Liang et al. [19] develop two-stage models that have the
ability to characterize the efficiency of each and overall system, in a way that defines a leader-follower pattern for the
two sub-systems, and the results of overall efficiency under different scenarios quite differ.

Considering the supply chain of reality under various conditions, it is easy to find a vast number of differences
between the perspectives of assessing the efficiency in the past and at present. The later broadens the range of the
evaluation. Traditional supply chain attaches great importance to statistics on precise data such as cost and time. In
contrast, the emerging supply chain pays increasingly more attention to the environment, customer satisfaction, and
social benefits (e.g., emergency and poverty supply chain). For example, for the environment and social performance,
in 2011, Chen and Delmas [3] proposed a new way for corporate social performance evaluation using DEA. However,
when adopting DEA models to evaluate the efficiency of a new-type supply chain, inputs and outputs are uncertain
data because some of them do exist, but there are no exact figures available. For instance, the amount of carbon
dioxide engendered by the producing process cannot be measured in an accurate way. As for customer satisfaction, it
is a subjective experience that is impossible to access the precise number. Another reason for uncertainty in supply
chain evaluation is an unpredictable incident like an emergency (e.g., flood and C9 leakage). Thus, if it is necessary to
evaluate the inputs and outputs of DMUs in a supply chain while the data is imprecise, conventional DEA models are
not able to figure out the right conclusion.

To cope with uncertainty, many kinds of paradigms have been put forward, such as robust optimization, fuzzy set
theory, and probability theory. Robust optimization first occurred in 1973 [35]. Then it was improved and established by
Mulvey [30] in 1995. Since robust optimization has many merits, some scholars focusing on dealing with uncertainty are
backed by robust optimization, it is a popular method in a supply chain that mainly aims to prevent the negative impact
of uncertainty. After that, in 2007, Leung et al. [16] considered and minimized total costs consisting of production
cost, labor cost, inventory cost, and workforce changing cost under uncertainty and built a robust optimization model.
Then they analyzed both solution robustness and model robustness. Besides, Ouyang and Daganzo [31] brought
forward robust analytical conditions so as to diagnose the bullwhip effect and bound its degree in a single-stage supply
chain with arbitrary customer demands. In 2011, Mirzapour, Al-e-hashem et al. [29] developed a supply chain model
with multiple vendors, multiple suppliers, and multiple consumers, using a new robust multi-objective mixed integer
nonlinear programming. With the help of robust optimization, above works have made great contributions to the supply
chain management science. Nevertheless, none of them concentrated on efficiency evaluation. In 2008, Sadjadi and
Omrani [32] proposed the first robust DEA model. It considered uncertain parameters when assessed the performance
of electricity distribution companies. In 2010, Shokouhi et al. [34] came up with an adaptation of the standard DEA
under conditions of uncertainty, which was based on a robust optimization model. It surmounted the problem that it
was hard to model with fuzzy representations in an uncertain DEA model and made results less complicated.

Though robust optimization is classic, it is not ideally suited to our research. The reason is that in principle,
robust optimization always considers the worst-case, but the worst results might not happen at all. The general robust
optimization problem can be transformed into a min or max problem. It can be seen that the maximum is always
reduced to the minimum (which is often more expensive than the average to the minimum). However, the probability
that the actual situation is just the worst-case is very small, so we can say that robust optimization is conservative
(because the worst-case optimization is considered). In this paper we focus on discussing how to effectively evaluate
the efficiency of a supply chain and recognize the leader when the inputs and outputs are inaccurate. Therefore, using
robust optimization may lead to unreasonable results.

Many scholars employed the fuzzy set theory to resolve inaccurate inputs and outputs in DEA models. Kao and Liu
[14] came up with fuzzy observations which expressed efficiency measures by membership functions instead of a crisp
number. Wanke and Barros [37] assessed the productivity efficiency of some Mozambican banks, using integrated fuzzy
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DEA to assess underlying uncertainty. Tavana et al. [36] developed two-stage fuzzy DEA models that decomposed
and measured the efficiency of the system. Based on their unique experience, they have designed fuzzy rules and
membership functions in their paper. However, we can think in a different way. If we define customer satisfaction as
a fuzzy variable, and assign it a membership function. Then we would conclude the following three propositions: (1)
the customer satisfaction is “exactly 0.8” with possibility measure 1; (2) the customer satisfaction is “not 0.8” with
possibility measure 1; (3) “exactly 0.8” has the same possibility of “not 0.8”. This kind of indeterminate quantities
cannot be quantified by possibility measure and then they are not fuzzy concepts (Liu [21]).

According to Liu [21], probability theory can only be used when the distribution function is close enough to the real
frequency and if not, uncertainty theory should be adopted. However, most of the time the inputs and outputs in an
emerging supply chain are impossible to fit in with the condition above. For example, it is obvious that as a variable in
DEA models, customer satisfaction cannot be affirmed as a set of numbers whose distribution function is approximately
similar to the frequency. To help address this issue, we employ uncertain DEA theory.

Lots of uncertain DEA models have been established. Wen et al. [39] put forward the first uncertain DEA model
and then developed it. After that, Lio and Liu [20] constructed an uncertain DEA model that can evaluate the efficiency
of DMUs. To supplement it, Jiang et al. [11] presented an uncertain DEA model to identify the scale efficiencies which
are more relevant to the private sector in addition to splitting the technical and scale efficiency of decision-making units
with the imprecise data. Moreover, Jiang et al. [12] proposed two uncertain DEA models to identify the specific status
of each DMU. However, none of the previous researches is specialized in bi-echelon supply chain efficiency evaluation.

Therefore, this paper focuses on raising the research gap by means of applying uncertainty theory to two-stage DEA
models. For one thing, bi-echelon DEA models proposed in the current paper can recognize the leader; for another
thing, uncertainty theory can help deal with the inaccurate data that occurred in the models [23, 24, 25, 27, 40].
Combined the two convincing tools, the uncertain DEA models for bi-echelon supply chain efficiency evaluation will the
help assess the efficiency of the supply chain, especially emerging supply chain in a more effective way. Recognizing the
leader in a supply chain, we can propose some constructive suggestions for decision-makers to improve the efficiency
like how to integrate and coordinate the members to resist all kinds of crisis in an era of emerging supply chain playing
remarkable role under the background of current economic where uncertainty is everywhere.

The rest part of this article is formed as follows. Next section will import some preparatory instructions about
uncertainty theory while highlighting the uncertainty DEA models that have been proposed by former studies. After
that, the uncertain DEA models for bi-echelon supply chain efficiency evaluation will be presented in the third section.
Section 4 will offer a numerical example and discusses the results and explorations of the research. The last section will
give a summary of the article and the future study direction.

2 Preliminaries

Uncertainty theory, as a powerful mathematical tool for uncertain variable assessing, is a thriving research area. The
characteristic features of uncertainty theory were initially introduced and founded by Liu [21] in 2007. Over the past
decade, this theory has been deeply rooted in the study of uncertainty. This part will offer a brief but broad view of
its knowledge structure for the reason that the fundamental principles and axioms are helpful for the remainder of the
study. The uncertain measure Mwas defined as a set function on a σ-algebra L over a nonempty set Γ by the following
three axioms (Liu [21]):
Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ.
Axiom 2. (Duality Axiom) M{Λ}+M{Λc} = 1 for any event Λ.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1, Λ2, · · · , we have

M

{ ∞∪
i=1

Λi

}
≤

∞∑
i=1

M{Λi}.

The fourth axiom (product axiom) was proposed by Liu [22] in 2009 as follows:
Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k=1, 2, . . . The product uncertain measure M is
an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

Definition 2.1. [21] The uncertainty distribution Φ of an uncertain variable ξ is defined as Φ(x) = M{ξ ≤ x} for any
real number x.
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We will introduce some common uncertainty distributions based on the definitions mentioned above. First, we will
introduce the most common one called linear uncertainty distribution, which is

Φ(x) =

 0, if x ≤ a
(x− a)/(b− a), if a < x ≤ b

1, if x > b;

and the second common uncertainty distribution is called zigzag, which is

Φ(x) =


0, if x ≤ a

(x− a)/[2(b− a)], if a < x ≤ b
(x+ c− 2b)/[2(c− b)], if b < x ≤ c

1, if x > c.

If ξ is an uncertain variable with regular uncertainty distribution Φ(x), the inverse function Φ−1(α) is called the inverse
uncertainty distribution of ξ [24].

Liu [24] brought forward the theorem of calculation so as to build the inverse distribution of a strictly monotonous
function of independent uncertain variables with regular uncertainty distributions as follows:

Theorem 2.2. [24] Assume that Φ1,Φ2, · · · ,Φn represent regular uncertainty distributions of independent uncertain
variables ξ1, ξ2, · · · , ξn, respectively. If f is strictly increasing in respect of ξ1, ξ2, · · · , ξm (m ≤ n) and strictly decreas-
ing in respect of ξm+1, ξm+2, · · · , ξn, then ξ = f(ξ1, ξ2, · · · , ξn) is an uncertain variable with an inverse uncertainty
distribution

Φ−1(α) =f(Φ−1
1 (α), · · · ,Φ−1

m (α),Φ−1
m+1(1− α), · · · ,Φ−1

n (1− α)).

The expected value is the mean value of the uncertain variable in the sense of the uncertain measure. Under various
circumstances, there is an obligation to consider the expected value of ξ.

Definition 2.3. [21] The expected value of uncertain variable ξ is defined by

E[ξ] =

∫ +∞

0

M{ξ ≥ x}dx−
∫ 0

−∞
M{ξ ≤ x}dx,

provided that at least one of the two integrals is finite.

Suppose that ξ is an uncertain variable which accords with uncertainty distribution Φ. Then Liu [21] gave the
formulas about the expected values of ξ as follows:

E[ξ] =

∫ +∞

0

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx.

Theorem 2.4. [26] Assume that Φ1,Φ2, · · · ,Φn represent regular uncertainty distributions of independent uncertain
variables ξ1, ξ2, · · · , ξn, respectively. If f is strictly increasing in respect of ξ1, ξ2, · · · , ξm (m ≤ n) and strictly decreasing
in respect of ξm+1, ξm+2, · · · , ξn, then the expected value of ξ = f(ξ1, ξ2, · · · , ξn) is as follows:

E[ξ]=

∫ 1

0

f(Φ−1
1 (α),· · ·,Φ−1

m (α),Φ−1
m+1(1− α),· · ·,Φ−1

n (1− α))dα.

3 Uncertain DEA models for Bi-echelon supply chain efficiency evalua-
tion

In this section, assumption, as well as model formulation, will be presented. The bi-echelon supply chain consists of two
members of a supply chain. This model is represented in a supply-chain context and can be easily stretched to match
the realistic scene by means of a distinct analysis of the primary two members. Knowing the outcomes of the models,
we would evaluate the supply chain more effectively and find the leader in the supply chain. According to the different
statuses, both upstream members and the downstream participants can be regarded as the core firm depending on the
real condition. Therefore, this study will discuss the models from two aspects. In the first part of this section, we
discuss the overall efficiency and efficiency for the members of the two-stage supply chain when the upstream firm is the
leader (e.g., Qualcomm.) and the downstream firm is the follower. Subsequently, in the second part, we will transform
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the perspective to the scenario when the downstream firm is the leader (e.g., Carrefour.) and the upstream firm is the
follower. The basic symbols of uncertain DEA models are given as follows:

DMUi: the ith DMU, i = 1, 2, . . . , n
DMUo: the target DMU
X̃Ai = (X̃Ai1, X̃Ai2, . . . , X̃Air): The uncertain inputs vector of DMUi in the first stage.
X̃Ao = (X̃Ao1, X̃Ao2, . . . , X̃Aor): The uncertain inputs vector of DMUo in the first stage.
Ỹ Ai = (ỸAi1, ỸAi2, . . . , ỸAis): The uncertain outputs vector of DMUi in the first stage.
Ỹ Ao = (ỸAo1, ỸAo2, . . . , ỸAos): The uncertain outputs vector of DMUo in the first stage.
X̃Bi = (X̃B1, X̃B2, . . . , X̃Br): The uncertain inputs vector of DMUi in the second stage.
Ỹ Bi = (ỸBi1, ỸBi2, . . . , ỸBis): The uncertain outputs vector of DMUi in the second stage.
Ỹ Bo = (ỸBo1, ỸBo2, . . . , ỸBos): The uncertain outputs vector of DMUo in the second stage.
U ∈ ℜr: The vector of output weights.
V ∈ ℜs: The vector of input weights.

3.1 Upstream firm is the leader and downstream firm is the follower

In this section, the following four models represent upstream-downstream firm interaction as a two-stage system with
the upstream firm as the leader and the downstream participator as the follower. Figure 1 represents the scenario where
the upstream firm leads the supply chain.

Figure 1: upstream-leader supply chain

We first use model (1) to evaluate the efficiency of the upstream company and then adopt the optimal value of it
into model (3) to estimate the efficiency of the downstream member. Using the average number of the two models, we
calculate the overall efficiency at the end of this part. Model (1) evaluates the efficiency of the upstream firm as the
leader, 

max
U ,V

φ = E

[
UT

AỸ Ao

V T
AX̃Ao

]
= EAA

s.t. E

[
UT

AỸ Aj

V T
AX̃Aj

]
≤ 1, j = 1, 2, . . . , n

UT
A ≥ 0

V T
A ≥ 0.

(1)

Definition 3.1. (Uncertain DEA Efficiency) DMUo is said to be efficient if the optimal value φ of model (1) can be 1.

The uncertain DEA model above can be applied to assess the efficiency of the core firm. The equivalent form of
model (1) is proved as follow:

Theorem 3.2. Set regular uncertainty distributions Ψi1,Ψi2, · · · ,Ψir and Φi1, Φi2, · · · ,Φkq for independent uncer-

tain input variables X̃A1, X̃A2, · · · , X̃Ar and output variables ỸA1, ỸA2, · · · , ỸAs, respectively. Then model (1) can be
transformed into the following model:



max
U ,V

φ =

∫ 1

0

s∑
k=1

UAkΦ
−1
Aok(α)

r∑
l=1

VAlΨ
−1
Aol(1− α)

dα

s.t.

∫ 1

0

s∑
k=1

UAkΦ
−1
Ajk(α)

r∑
l=1

VAlΨ
−1
Ajl(1− α)

dα ≤ 1, j = 1, 2,. . .,n

UAk = (UA1, UA2, · · · , UAs) ≥ 0
V Al = (VA1, VA2, · · · , VAr) ≥ 0

(2)
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where ΨAo1,ΨAo2, · · · ,ΨAor and ΦAo1,ΦAo2, · · · ,ΦAos are the regular uncertainty distributions of X̃A1, X̃A2, · · · , X̃Ar

and ỸA1, ỸA2, · · · , ỸAs, respectively.

Proof. As the function UT
A Ỹ Aj/ V T

A X̃Aj is strictly increasing in respect of Ỹ Aj and strictly decreasing in respect of

X̃Aj and Ỹ Aj for each j, on the basis of Theorem 2.1, we can infer the inverse uncertainty distribution of UT
A Ỹ Aj /

V T
A X̃Aj is

L−1
Aj (α) =

s∑
k=1

UAkΦ
−1
Ajk(α)

r∑
l=1

VAlΨ
−1
Ajl(1− α)

.

And according to Theorem 2.2, we can get

E

[
UT

A Ỹ Aj

V T
AX̃Aj

]
=

∫ 1

0

s∑
k=1

UAkΦ
−1
Ajk(α)

r∑
l=1

VAlΨ
−1
Ajl(1− α)

dα≤ 1, j = 1, 2,. . ., n.

After gaining the optimal value of the first echelon, we will measure the efficiency of the second stage. It should be
noticed that due to the properties of the supply chain such as the dynamics and complexity, the intermediate measures
between the two stages vary according to the adjustment that the leader or follower makes in order to increase their own
performance of the process. In other words, assume that the upstream enterprise is the leader who obtains its optimal
efficiency without thinking the efficiency of the downstream member and has a certain output, yet the follower who is
passive in the supply chain will not fully accept the leader’s output on account of its own efficiency. Thus, we propose
a parameter D called attrition rate to depict this phenomenon. Another exploring spot is that in the second stage of
the supply chain, the inputs denoted by a variable XB include not only intermediate products from the first stage but
also other inputs which is the same kind of stuff as the first stage such as labor, capacity, etc. We have to consider XB

because the fixed cost in the operation of a company is indispensable. The model (3) evaluates the efficiency of the
downstream firm as the follower, using the optimal value of the first stage into the model (3) to estimate the efficiency
of the downstream member, 

max
U ,V ,D,µ

ς = E

[
UT

BỸ Bo

V T
BX̃Bo +D × µT

AỸ Ao

]
=EAB

s.t. E

[
UT

BỸ Bj

V T
BX̃Bj +D × µT

AỸ Aj

]
≤ 1

E

[
µT

AỸ Aj

ωT
AX̃Aj

]
≤ 1, j = 1, 2, . . . ,n

E

[
µT

AỸ Ao

ωT
AX̃Ao

]
= E∗

AA

UT
B ≥ 0

V T
B ≥ 0

µT
A ≥ 0

ωT
A ≥ 0

D ≥ 0.

(3)

Definition 3.3. (Uncertain DEA Efficiency) DMUo is said to be efficient if the optimal value ς of model (3) can be 1.

The uncertain DEA model above can be applied to assess the efficiency of the non-core firm. The equivalent form
of model (3) is proved as follow:

Theorem 3.4. Set regular uncertainty distributions Ψi1,Ψi2, · · · ,Ψir and Φi1, Φi2, · · · , Φkq for independent uncertain

input variables X̃B1, X̃B2, · · · , X̃Bp, ỸA1, ỸA2, · · · , ỸAs, and output variables ỸB1, ỸB2, · · · , ỸBn, respectively. Then
model (3) can be transformed into its equivalent model:
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

max
U ,V ,D,µ

ς=

∫ 1

0

n∑
k=1

UBkΦ
−1
Bok(α)

p∑
l=1

VBlΨ
−1
Bol(1−α)+D×

s∑
k=1

µT
AΦ

−1
Aok(1−α)

dα

s.t.

∫ 1

0

n∑
k=1

UBkΦ
−1
Bjk(α)

p∑
l=1

VBlΨ
−1
Bjl(1−α)+D×

s∑
k=1

µT
AΦ

−1
Ajk(1−α)

dα ≤ 1

∫ 1

0

s∑
k=1

µT
AΦ

−1
Aj (α)

r∑
l=1

ωT
AΨ

−1
Al (1− α)

dα ≤ 1, j =1, 2,. . .,n

∫ 1

0

s∑
k=1

µT
AΦ

−1
Ao(α)

r∑
l=1

ωT
AΨ

−1
Ao(1− α)

dα = E∗
AA

0 ≤ D ≤ 1
UBk = (UB1, UB2, · · · , UBn) ≥ 0
V Bl = (VB1, VB2, · · · , VBp) ≥ 0

µT
A ≥ 0

ωT
A ≥ 0

(4)

where ΨBo1,ΨBo2, · · · ,ΨBor, ΦAo1,ΦAo2, · · · ,ΦAos and ΦBo1,ΦBo2, · · · ,ΦBos are the regular uncertainty distributions
of X̃B1, X̃B2, · · · , X̃Bp, ỸA1, ỸA2, · · · , ỸAs and ỸB1, ỸB2, · · · , ỸBn, respectively.

Proof. As the function UT
B Ỹ Bj/( V

T
B X̃Bj +D × µT

A Ỹ Aj) is strictly increasing in respect of Ỹ Bj and strictly de-

creasing in respect of X̃Bj and Ỹ Aj for each j, they comply with Theorem 2.1 and then the inverse uncertainty

distribution of UT
B Ỹ Bj/( V

T
B X̃Bj +D × µT

A Ỹ Aj) is

L−1
Bj(α) =

n∑
k=1

UBkΦ
−1
Bjk(α)

p∑
l=1

VBlΨ
−1
Bjl(1−α)+D×

s∑
k=1

µT
AΦ

−1
Ajk(1−α)

.

On the basis of Theorem 2.2, we have

E

[
UT

B Ỹ Bj

V T
B X̃Bj +D × µT

A Ỹ Aj

]
=

∫ 1

0

n∑
k=1

UBkΦ
−1
Bjk(α)

p∑
l=1

VBlΨ
−1
Bjl(1−α)+D×

s∑
k=1

µT
AΦ

−1
Ajk(1−α)

dα≤ 1, j =1, 2,. . .,n.

Taking all the above mention into account, we can delineate the overall efficiency of the bi-echelon supply chain as
the mean value of the two optimal values considering the upstream firm as the leader which enjoys the priority in the
supply chain,

eAB =
1

2
(E∗

AA + E∗
AB). (5)

3.2 Downstream firm is the leader and upstream firm is the follower

Similarly, it is also feasible to invent a procedure for the scenario when the downstream firm is operating as the leader
and the upstream is the follower. This circumstance is also quite usual in reality because of the overwhelming resources
of capital, information and goods of the downstream company like some big chain retailers. Then we can get another
four models. Figure 2 represents the scenario where the downstream firm leads the supply chain.

In the following part, we will estimate the downstream company and use it to evaluate the efficiency of the upstream
player. After that we can get the overall efficiency which is the average number of the two optimal values. The model



94 B. Jiang, L. Peng, J. Li, W. Lio

Figure 2: downstream-leader supply chain

(6) evaluates the efficiency of the downstream firm as the leader,

max
U ,V

φ = E

[
UT

BỸ Bo

V T
BX̃Bo + V T Ỹ Ao

]
= EBB

s.t. E

[
UT

BỸ Bj

V T
BX̃Bj + V T Ỹ Aj

]
≤ 1, j = 1, 2, . . . , n

UT
B ≥ 0

V T
B ≥ 0

V T ≥ 0.

(6)

Definition 3.5. (Uncertain DEA Efficiency) DMUo is said to be efficient if the optimal value φ of model (6) can be 1.

The uncertain DEA model above can be applied to assess the efficiency of the core firm. The equivalent form of
model (6) is proved as follow:

Theorem 3.6. Set regular uncertainty distributions Ψi1,Ψi2, · · · ,Ψir and Φi1, Φi2, · · · , Φkq for independent input

variables X̃B1, X̃B2, · · · , X̃Bp, ỸA1, ỸA2, · · · , ỸAs and output variables ỸB1, ỸB2, · · · , ỸBn, respectively. Then model (6)
has an equivalent form as follow:



max
U ,V

φ =

∫ 1

0

s∑
k=1

UBkΦ
−1
Bok(α)

r∑
k=1

VBkΨ
−1
Bok(1− α) +

r∑
k=1

VkΦ
−1
Aok(1− α)

dα

s.t.

∫ 1

0

s∑
k=1

UBkΦ
−1
Bjk(α)

r∑
k=1

VBkΨ
−1
Bjk(1−α)+

s∑
k=1

VkΦ
−1
Ajk(1−α)

dα ≤ 1, j=1, 2, . . . , n

UBk = (UB1, UB2, · · · , UBs) ≥ 0
V Bk = (VB1, VB2, · · · , VBr) ≥ 0
V k = (V1, V2, · · · , Vr) ≥ 0

(7)

where ΨBo1,ΨBo2, · · · ,ΨBor, ΦAo1,ΦAo2, · · · ,ΦAos, and ΦBo1,ΦBo2, · · · ,ΦBos are the regular uncertainty distributions
of X̃B1, X̃B2, · · · , X̃Bp, ỸA1, ỸA2, · · · , ỸAs, ỸB1, ỸB2, · · · , ỸBn, respectively.

Proof. As the function UT
B Ỹ Bj/(V

T
B X̃Bj + V T Ỹ Aj) is strictly increasing in respect of Ỹ Bj and strictly decreas-

ing in respect of X̃Bj , Ỹ Aj for each j, in accordance with Theorem 2.1, the inverse uncertainty distribution of

UT
B Ỹ Bj/(V

T
B X̃Bj + V T Ỹ Aj) is

L−1
Bj(α) =

s∑
k=1

UBkΦ
−1
Bjk(α)

r∑
k=1

VBkΨ
−1
Bjk(1−α)+

s∑
k=1

VkΦ
−1
Ajk(1−α)

.

Complying with Theorem 2.2, we can get

E

[
UT

B Ỹ Bj

V T
B X̃Bj + V T Ỹ Aj

]
=

∫ 1

0

s∑
k=1

UBkΦ
−1
Bjk(α)

r∑
k=1

VBkΨ
−1
Bjk(1−α)+

s∑
k=1

VkΦ
−1
Ajk(1−α)

dα ≤ 1, j = 1, 2, . . . , n.

On the other hand, the upstream participant has to fulfill the downstream member’s needs. Here we use parameter
G to reveal this phenomenon and call it fulfillment rate. Model (8) assesses the efficiency of the downstream player as
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the follower, 

max
G,µ,V

ς = E

[
GµT Ỹ Ao

V T
AX̃Ao

]
= EBA

s.t. E

[
GµT Ỹ Aj

V T
AX̃Aj

]
≤ 1, j = 1, 2, . . . , n

E

[
µT

BỸ Bj

ωT
BX̃Bj + µT Ỹ Aj

]
≤ 1

E

[
µT

BỸ Bo

ωT
BX̃Bo + µT Ỹ Ao

]
= E∗

BB

V T
A ≥ 0

µT ≥ 0

µT
B ≥ 0

ωT
B ≥ 0

G ≥ 0.

(8)

Definition 3.7. (Uncertain DEA Efficiency) DMUo is said to be efficient if the optimal value ς of model (8) can be 1.

The uncertain DEA model above can be applied to assess the efficiency of the non-core firm. The equivalent form
of model (8) is proved as follow:

Theorem 3.8. Set regular uncertainty distributions Ψi1,Ψi2, · · · ,Ψir and Φi1, Φi2, · · · , Φkq for independent input

variables X̃A1, X̃A2, · · · , X̃Ar and output variables ỸA1, ỸA2, · · · , ỸAs, respectively. Then the equivalent form of model
(8) is as follow:



max
G,µ,V

ς =

∫ 1

0

G
n∑

k=1

µTΦ−1
Aok(α)

p∑
k=1

VAkΨ
−1
Aok(1− α)

dα

s.t.

∫ 1

0

G
n∑

k=1

µTΦ−1
Ajk(α)

p∑
k=1

VAkΨ
−1
Ajl(1− α)

dα ≤ 1, j = 1, 2, . . . , n

∫ 1

0

s∑
k=1

µT
BΦ

−1
Bjk(α)

r∑
k=1

ωT
AΨ

−1
Bjk(1−α)+

n∑
k=1

µTΨAjk(1−α)
dα≤1

∫ 1

0

s∑
k=1

µT
BΦ

−1
Bok(α)

r∑
k=1

ωT
AΨ

−1
Bok(1−α)+

n∑
k=1

µTΨAok(1−α)
dα=E∗

BB

G ≥ 0

µT ≥ 0
V Ak = (VA1, VA2, · · · , VAp) ≥ 0

(9)

where ΨAo1,ΨAo2, · · · ,ΨAor and ΦAo1,ΦAo2, · · · ,ΦAos are the regular uncertainty distributions of X̃A1, X̃A2, · · · , X̃Ar

and ỸA1, ỸA2, · · · , ỸAs, respectively.

Proof. As the function G µT Ỹ Aj/ V T X̃Aj is strictly increasing in respect of Ỹ Aj and strictly decreasing in respect of

X̃Aj for each j, it complies with Theorem 2.1 that we can get the inverse uncertainty distribution of GµT Ỹ Aj/ V T X̃Aj

is

L−1
Aj (α) =

G
n∑

k=1

µTΦ−1
Ajk(α)

p∑
k=1

VAkΨ
−1
Ajl(1− α)

.



96 B. Jiang, L. Peng, J. Li, W. Lio

According to Theorem 2.2, we can get

E

[
GµT Ỹ Aj

V T X̃Aj

]
=

∫ 1

0

G
n∑

k=1

µTΦ−1
Ajk(α)

p∑
k=1

VAkΨ
−1
Ajl(1− α)

dα ≤ 1, j = 1, 2, . . . , n.

Now we can use model (10) to calculate the overall efficiency of the bi-echelon supply chain where the downstream
participant is the leader:

eBA =
1

2
(E∗

BB + E∗
BA). (10)

4 A numerical example

In this section, goals of evaluating uncertain DEA models for the bi-echelon supply chain we are looking forward to
achieving are as follows. To begin with, we will exam the present uncertain DEA models for supply chain efficiency with
numerical examples to illustrate the uncertain models mentioned above with 38 original supply chain decision-making
units shown in Table 1 and Table 2. The upstream firm has 3 inputs and 3 outputs: XA1, XA2, XA3, and YA1, YA2,

Table 1: DMUs with three inputs and three outputs in
the first stage where L(a, b) represent linear uncertain
variables and Z(a, b, c) represent zigzag uncertain vari-
ables

DMUi XA1 XA2 XA3 YA1 YA2 YA3
1 L(4, 7) L(5, 8) L(4, 8) Z(18, 20, 22) Z(22, 24, 26) Z(30, 35, 38)

2 L(2, 5) L(3, 6) L(1, 3) Z(5, 7, 9) Z(8, 11, 12) Z(8, 9, 10)

3 L(8, 10) L(9, 11) L(9, 10) Z(32, 35, 38) Z(25, 28, 32) Z(25, 28, 32)

4 L(6, 7) L(4, 6) L(5, 6) Z(12, 14, 18) Z(15, 17, 18) Z(20, 22, 23)

5 L(1, 6) L(1, 3) L(1, 3) Z(10, 12, 14) Z(5, 6, 7) Z(8, 9, 10)

6 L(5, 7) L(6, 8) L(6, 7) Z(19, 22, 25) Z(22, 24, 26) Z(20, 23, 29)

7 L(8, 9) L(7, 11) L(10, 11) Z(25, 28, 30) Z(30, 31, 33) Z(20, 22, 24)

8 L(10, 12) L(12, 13) L(11, 13) Z(44, 46, 50) Z(30, 32, 35) Z(41, 43, 44)

9 L(12, 14) L(13, 14) L(7, 11) Z(33, 35, 38) Z(28, 29, 31) Z(40, 51, 58)

10 L(6, 9) L(12, 14) L(16, 18) Z(22, 25, 28) Z(26, 28, 30) Z(36, 38, 40)

11 L(11, 13) L(14, 16) L(15, 18) Z(24, 28, 30) Z(30, 36, 40) Z(40, 50, 60)

12 L(15, 17) L(16, 18) L(11, 13) Z(50, 63, 68) Z(50, 53, 61) Z(76, 82, 85)

13 L(12, 13) L(15, 17) L(16, 18) Z(28, 32, 35) Z(32, 36, 38) Z(36, 39, 42)

14 L(15, 18) L(20, 25) L(17, 20) Z(40, 42, 44) Z(50, 52, 55) Z(60, 65, 68)

15 L(16, 18) L(20, 24) L(15, 18) Z(60, 70, 80) Z(55, 58, 62) Z(70, 72, 76)

16 L(16, 18) L(20, 22) L(15, 17) Z(55, 58, 60) Z(66, 72, 80) Z(77, 82, 91)

17 L(1, 6) L(1, 3) L(1, 4) Z(10, 12, 14) Z(5, 6, 7) Z(8, 9, 19)

18 L(1, 5) L(2, 4) L(2, 4) Z(12, 14, 16) Z(10, 11, 12) Z(15, 17, 19)

19 L(5, 6) L(7, 8) L(5, 6) Z(28, 30, 32) Z(36, 38, 40) Z(26, 28, 30)

20 L(11, 13) L(13, 16) L(7, 9) Z(36, 38, 39) Z(26, 28, 30) Z(30, 32, 36)

21 L(10, 12) L(13, 15) L(9, 11) Z(36, 38, 40) Z(42, 46, 50) Z(52, 56, 58)

22 L(7, 9) L(11, 13) L(13, 15) Z(22, 25, 28) Z(26, 30, 32) Z(32, 36, 38)

23 L(10, 12) L(11, 13) L(5, 8) Z(30, 32, 36) Z(24, 28, 30) Z(32, 36, 38)

24 L(13, 15) L(12, 16) L(9, 13) Z(44, 50, 53) Z(56, 58, 60) Z(62, 66, 68)

25 L(13, 15) L(11, 13) L(12, 15) Z(28, 30, 36) Z(32, 38, 40) Z(42, 46, 50)

26 L(12, 14) L(11, 15) L(13, 15) Z(32, 36, 40) Z(36, 38, 46) Z(52, 56, 60)

27 L(13, 15) L(15, 17) L(16, 18) Z(30, 36, 38) Z(38, 40, 42) Z(50, 52, 56)

28 L(11, 12) L(12, 14) L(6, 9) Z(32, 34, 35) Z(22, 29, 32) Z(34, 38, 42)

29 L(12, 15) L(13, 16) L(9, 10) Z(35, 37, 39) Z(29, 32, 35) Z(42, 53, 59)

30 L(8, 9) L(12, 14) L(12, 16) Z(20, 23, 25) Z(28, 30, 33) Z(33, 38, 41)

31 L(7, 10) L(13, 16) L(18, 20) Z(24, 26, 30) Z(27, 30, 34) Z(36, 38, 40)

32 L(9, 11) L(10, 12) L(8, 12) Z(26, 29, 32) Z(28, 32, 34) Z(32, 34, 36)

33 L(14, 16) L(12, 13) L(13, 16) Z(26, 32, 38) Z(34, 40, 42) Z(44, 46, 52)

34 L(12, 16) L(14, 18) L(14, 16) Z(33, 34, 36) Z(36, 40, 44) Z(50, 54, 58)

35 L(14, 16) L(12, 15) L(11, 13) Z(30, 34, 38) Z(30, 36, 42) Z(38, 44, 52)

36 L(6, 8) L(5, 7) L(5, 8) Z(14, 18, 20) Z(16, 18, 19) Z(22, 24, 25)

37 L(12, 14) L(13, 15) L(16, 17) Z(26, 30, 32) Z(32, 38, 42) Z(42, 52, 64)

38 L(13, 14) L(16, 18) L(17, 19) Z(34, 38, 42) Z(38, 39, 43) Z(52, 56, 58)

YA3. And the downstream firm has 4 inputs and 3 outputs: XB, YA1, YA2, YA3 and YB1, YB2, YB3.
Table 3 is quite revealing in several ways. First of all, as can be seen clearly from DMU17, in the first stage, the

overall efficiency is 1.0000, and in the second stage, the overall efficiency is 1.0000, too. That indicates that only all
the components of a DMU achieve 1.0000 in both stages, and the whole system can be regarded as an efficient system.
Then we can conclude that the DMU is efficient if and only if all the subsystems of it are efficient. This reflects Wei’s



Uncertain network DEA models for evaluating efficiencies of Bi-echelon supply chain with asymmetric power 97

definition for efficient DMUs in network DEA. We name it as efficient type. Besides, there are some other intriguing
findings lying in the rest of the results.

The efficient type is not as common as the second one which is called regular type. It depicts that only one member
of the whole system is efficient in a single pattern. This type can be reflected by DMU5, the efficiency of the upstream
firm is 1.0000, and it is considered to be efficient when its role is leader. Then the overall efficiency is 0.7774. However,
when its role converts to follower, its efficiency is 0.7813, which means that overall efficiency declines with its own
efficiency reducing. As the result, the leader is upstream firm. The same goes for DMU2, DMU13, DMU22, DMU27,
DMU30, DMU32, DMU34, DMU35, and DMU38. Compare these conditions, it is concluded that identifying the leader
is significant to improve the efficiency of the whole system. A supply chain is a system that focuses more on the overall
efficiency, which makes it become even more critical to identify the different power.

Table 2: DMUs with a new input and three outputs in
the second stage where L(a, b) represent linear uncer-
tain variables and Z(a, b, c) represent zigzag uncertain
variables

DMUi XB YB1 YB2 YB3
1 L(10, 12) L(12, 13) L(9, 12) Z(26, 30, 32)

2 L(7, 9) L(9, 11) L(7, 8) Z(6, 9, 10)

3 L(12, 14) L(8, 11) L(10, 11) Z(37, 39, 41)

4 L(7, 9) L(4, 5) L(7, 9) Z(23, 24, 27)

5 L(9, 12) L(7, 9) L(12, 14) Z(12, 15, 17)

6 L(8, 9) L(7, 10) L(10, 11) Z(35, 39, 41)

7 L(9, 11) L(9, 10) L(12, 14) Z(41, 43, 44)

8 L(9, 12) L(10, 13) L(11, 14) Z(44, 50, 53)

9 L(11, 13) L(12, 15) L(12, 15) Z(52, 56, 58)

10 L(12, 15) L(13, 16) L(18, 20) Z(42, 52, 60)

11 L(16, 17) L(12, 15) L(16, 18) Z(55, 58, 60)

12 L(14, 16) L(13, 17) L(17, 19) Z(82, 85, 89)

13 L(13, 16) L(14, 16) L(13, 14) Z(55, 58, 63)

14 L(12, 16) L(18, 20) L(14, 16) Z(62, 66, 68)

15 L(17, 19) L(12, 18) L(15, 18) Z(82, 85, 89)

16 L(16, 18) L(13, 17) L(16, 19) Z(88, 92, 95)

17 L(9, 12) L(15, 20) L(22, 26) Z(18, 19, 20)

18 L(10, 12) L(16, 18) L(18, 20) Z(23, 24, 25)

19 L(11, 13) L(18, 20) L(20, 24) Z(44, 50, 58)

20 L(14, 17) L(13, 15) L(12, 15) Z(60, 62, 63)

21 L(12, 15) L(11, 13) L(13, 14) Z(59, 62, 65)

22 L(13, 16) L(14, 16) L(11, 15) Z(67, 71, 75)

23 L(7, 9) L(13, 15) L(13, 17) Z(63, 69, 72)

24 L(11, 12) L(12, 13) L(16, 19) Z(71, 75, 80)

25 L(17, 19) L(12, 15) L(15, 17) Z(55, 63, 70)

26 L(15, 16) L(14, 18) L(16, 19) Z(61, 67, 69)

27 L(12, 16) L(16, 20) L(18, 22) Z(61, 65, 68)

28 L(8, 11) L(12, 16) L(13, 17) Z(65, 70, 73)

29 L(12, 13) L(13, 15) L(13, 16) Z(53, 58, 62)

30 L(14, 16) L(15, 16) L(12, 17) Z(68, 73, 77)

31 L(12, 16) L(14, 17) L(18, 12) Z(44, 52, 62)

32 L(11, 14) L(18, 19) L(18, 20) Z(32, 34, 36)

33 L(18, 20) L(13, 16) L(16, 19) Z(58, 65, 72)

34 L(12, 14) L(18, 20) L(16, 20) Z(63, 66, 70)

35 L(15, 17) L(13, 14) L(16, 17) Z(58, 68, 72)

36 L(8, 10) L(10, 12) L(9, 11) Z(24, 26, 27)

37 L(17, 18) L(13, 15) L(13, 17) Z(41, 43, 44)

38 L(14, 16) L(18, 22) L(20, 24) Z(60, 66, 68)

The third conclusion hides in DMU18, which shows the fact that the upstream firm keeps efficient regardless that it
is the leader or follower. We define it as invariant type. In DMU18, the efficiency of the upstream firm is always 1.0000.
Moreover, when the upstream firm is the leader, the overall efficiency is 0.9552, which is lower than the other situation
where the downstream firm is the leader. In this case, to make the whole system efficient, we can make a decision on
the basis of who is the leader. Therefore, the firm that can make the whole system get higher efficiency should be the
dominant player in this kind of case because it can make the whole system get a higher overall efficiency.

The fourth one is balance type. In DMU23, when the upstream firm is the leader, the efficiency of each subsystem is
0.8786 and 1.0000, respectively, and the overall efficiency is 0.9393. Moreover, when the downstream firm is the leader,
the subsystem’s efficiency is still 1.0000 and 0.8786, which do not change. Thus the overall efficiency does not change
either. As a result, it is apparent from DMU23 that no matter who is the leader, the overall and individual efficiency
do not change. It indicates that they have the same power. Thus, they are balanced in the supply chain. To ameliorate
the overall efficiency, decision-makers need to perfect both upstream and down firm’s performance to obtain advantages
in competition with other supply chain players.
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Table 3: Results of efficiency evaluation for DMUs where
eAB shows the efficiency when the upstream firm is the
leader and eBA shows the efficiency when the downstream
firm is the leader

DMUi EAA(seller) EAB(buyer) eAB EBB(buyer) EBA(seller) eBA
1 0.9976 0.6680 0.8328 0.7164 0.6802 0.6983

2 0.8864 0.7151 0.8008 1.0000 0.5954 0.7977

3 0.7168 0.5061 0.6115 0.6897 0.4892 0.5895

4 0.6945 0.5181 0.6063 0.6768 0.4733 0.5751

5 1.0000 0.5548 0.7774 0.7813 0.7357 0.7585

6 0.7154 0.6643 0.6899 0.8336 0.6101 0.7219

7 0.6815 0.7192 0.7004 0.9717 0.4121 0.6919

8 0.7667 0.6765 0.7216 0.6321 0.5929 0.6125

9 0.8305 0.6950 0.7628 0.7484 0.5074 0.6279

10 0.7681 0.8358 0.8020 0.8675 0.5832 0.7254

11 0.6177 0.8316 0.7247 0.7700 0.3948 0.5824

12 0.9860 0.8135 0.8998 0.6666 0.8082 0.7374

13 0.5083 1.0000 0.7542 0.7655 0.4415 0.6035

14 0.6150 0.7319 0.6735 0.7883 0.4514 0.6199

15 0.7903 0.9524 0.8714 0.6066 0.7006 0.6536

16 0.8451 0.9733 0.9092 0.7101 0.6424 0.6763

17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

18 1.0000 0.9103 0.9552 0.9364 1.0000 0.9682

19 1.0000 0.9464 0.9732 0.9239 0.7417 0.8328

20 0.7577 0.7290 0.7434 0.9446 0.5948 0.7697

21 0.8742 0.6658 0.7700 0.6851 0.6668 0.6760

22 0.6987 0.9060 0.8024 1.0000 0.6917 0.8459

23 0.8786 1.0000 0.9393 1.0000 0.8786 0.9393

24 0.8788 0.8857 0.8832 0.7548 0.8788 0.8186

25 0.6081 0.8664 0.7373 0.7230 0.4507 0.5869

26 0.7116 0.8325 0.7721 0.7567 0.5280 0.6424

27 0.5886 1.0000 0.7943 0.8401 0.4450 0.6426

28 0.7960 0.9611 0.8786 0.9992 0.5518 0.7755

29 0.7932 0.7059 0.7496 0.7199 0.5127 0.6163

30 0.6824 0.9395 0.8110 1.0000 0.6485 0.8243

31 0.6963 0.9026 0.7995 0.8551 0.5432 0.6992

32 0.5937 1.0000 0.7969 0.8657 0.5487 0.7072

33 0.5909 0.9412 0.7661 0.7319 0.4969 0.6144

34 0.6062 1.0000 0.8031 0.9057 0.4473 0.6765

35 0.5501 1.0000 0.7751 0.7726 0.5457 0.6592

36 0.6327 0.7459 0.6893 0.7471 0.5408 0.6440

37 0.6324 0.6903 0.6614 0.5855 0.4160 0.5008

38 0.6074 1.0000 0.8037 0.8177 0.4830 0.6504

5 Conclusions

It has always been vital to evaluate the efficiency of a supply chain for decision-makers [15]. This paper measures
the efficiency of the overall system and members by developing four models in a bi-echelon DEA supply chain using
uncertainty theory because the two-stage structure is a fundamental structure that can be easily stretched to other
multiple structures and imprecise data can be coped with uncertainty theory effectively. We construct a leader-follower
pattern in a bi-echelon supply chain context where the leading firm is evaluated firstly. After that, the evaluation of the
following firm is based on the optimal value that the leader gained. A simple numerical example has been established
to illustrate these models.

The aims of this paper are as follows. To begin with, the proposed models can be applied to many circumstances
with inaccurate statistics so that they can be adapted for a wider range in efficiency evaluation. With the help of this
paper, decision-makers can monitor the operations of their companies’ supply chain in a more powerful and reasonable
way because this paper provides a new horizon of correctly characterizing the power of members in a bi-echelon supply
chain. What’s more, this paper proposes four kinds of types to reveal some special cases when at least one member of
the supply chain is efficient. In addition, this paper can help recognize the inefficient or weak parts of the whole system.
Last but not least, uncertain DEA models for bi-echelon supply chain can be applied to the various supply chain with
more than two echelons.

This paper discusses the efficiency under the leader-follower pattern where members do not cooperate. The results
might be different if the members operate in a cooperative pattern. Furthermore, this paper uses the mean value of
substage to evaluate the overall efficiency. It is feasible to assign a weight to each member of the supply chain, and
then the outcome may change. In our future study, we will develop current models so that we can provide more advice
on improvement techniques.

Acknowledgement

This work was supported by the National Natural Science Foundation of China of No.61873329.



Uncertain network DEA models for evaluating efficiencies of Bi-echelon supply chain with asymmetric power 99

References

[1] Y. T. Chang, N. Zhang, D. Danao, N. Zhang, Environmental efficiency analysis of transportation system in China:
A non-radial dea approach, Energy Policy, 58(9) (2013), 277-283.

[2] A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, European Journal of
Operational Research, 2 (1978), 429-444.

[3] C. M. Chen, M. Delmas, Measuring corporate social performance: An efficiency perspective, Production and
Operations Management, 20(6) (2011), 789-804.

[4] W. D. Cook, K. Tone, J. Zhu, Data envelopment analysis: Prior to choosing a model, Omega, 44(2) (2014), 1-4.

[5] W. D. Cook, F. Yang, Network DEA: Additive efficiency decomposition, European Journal of Operational Research,
207(2) (2010), 1122-1129.
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