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Abstract

Acceptance sampling plans (ASPs) offer inspection of a small set of items from a lot within a predefined plan to procure
a certain output quality level with minimum cost in terms of time, effort, and damage to the inspected items. Although
traditional ASPs use crisp plan parameters, quality characteristics of the incoming items or human evaluations about
inspection process may contain uncertainties and may not always be defined as crisp values in real life problems. The
fuzzy set theory (FST) is one of the most popular techniques to model these uncertainties by defining plan parameters as
fuzzy numbers. Despite the advantages, traditional fuzzy sets are not flexible enough to model all kinds of uncertainties.
For example, it has some disadvantages because of defining the status of any item based on defectiveness or non-
defectiveness conditions and presuming the parts as non-defective whose defectiveness is not indeed determined. New
extensions of FST can improve the quality of uncertainty modeling of ASPs. Intuitionistic Fuzzy Sets (IFSs) allow
slackness for non-determination about the membership and give more sensitive modeling opportunity in human-related
evaluations by the help of this ability. Since the inspection procedure of the ASPs depends on human-related judgements,
IFSs have been used to define the defectiveness degree of the items in this study. ASPs based on interval-valued IFSs
(IVIFSs) have also been designed and some characteristic functions of ASPs, such as acceptance probability (Pa),
average sample number (ASN) and average total inspection (ATI) have been reformulated. Intuitionistic binomial and
Poisson distributions have been defined to be able to formulate the ASPs. Additionally, the defectiveness of the items
has been represented by using linguistic terms to overcome the difficulty of quantifying the verbal evaluation results
as numerical measures. The α-cut technique has been combined with the linguistic approach to allow defining with
multiple α values for different product segments. Finally, some numerical examples have been presented to analyze the
effectiveness of proposed ASPs and discuss the obtained results.

Keywords: Acceptance sampling plans, intuitionistic fuzzy sets, binomial distribution, fuzzy sets, interval intuitionistic
fuzzy sets, poisson distribution.

1 Introduction

Keeping the quality of the manufactured products at a certain level has vital importance in manufacturing process. In
that case, the quality of the produced items can be measured statistically by using Acceptance sampling plans (ASPs)
that are specific set of rules which offer to inspect a small set of items instead of all of the produced items to reach
a pre-determined producer’s risk (∝) and consumer’s risk (β). Statistically, ∝ refers to the probability of rejecting a
lot in which the defective ratio (p) of the lot is the same as the producer’s acceptable quality level, and β refers to the
probability of accepting a lot while p is over the allowed proportion defective [11]. The sample size (n) and acceptable
defective item count (c) are main ASP parameters, and they are adjusted to optimize the inspection cost while satisfying
the allowed risk margins. Sometimes, tighter risk margins are allowed for the items having high inspection costs or
effort. For such cases, one types of ASP named double acceptance sampling plans (DASPs) are used for reaching
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lower risks with relatively small sample sizes [26]. Especially in real case problems, the inspection process can include
many uncertainties as results of many factors, such as humans hesitancy and poorness of measurement methods.
Unfortunately, the defectiveness ratio of the lots and the plan parameters have to define as certain values in traditional
ASPs. Depending on this, they may not represent realistic, sensitive, and robust risk levels under uncertainties. The
fuzzy set theory (FST) is a popular approach to model these uncertainties of the real case problems. Easy to guess, the
uncertainty can be caused by multiple factors such as lack of information about the event, human error, inadequacy of
measurement method, lack of expertness about the event. FST has been extended recently to model such complicated
scenarios better, depending on the nature of the uncertainty. It is built on membership function using a continuous
variable between 0 and 1. This approach extends the deterministic statements by replacing the absolute binary variables
with uncertain ones [28]. FST has been successfully used in quality problems and acceptance sampling. However, it is
clear that traditional, namely type-1 FST is well-performing if the event itself causes the uncertainty.

Atanassov introduced one of the FST extensions called Intuitionistic Fuzzy Sets (IFSs), which offers better modeling
in the case of lack of information about fuzziness [9]. IFSs give the flexibility to take into account the non-determinacy
about the membership to the FS. In this paper, this advantage has been used for an extend analysis of ASPs. We also
know that the formulations of ASPs based on type-1 FSs have drawbacks about sensitive modeling if non-determinacy
is possible about the defectiveness of the inspected items. When ASPs are formulated based on IFSs, the inspected
items can be classified as defective, non-defective, or non-determinate based on their robustness or defectiveness levels.
In this way, more sensitive modeling is reached and it is a better way to represent humans hesitancy. There are some
studies in the literature about the design of ASPs based on type-1 FSs, but there is no study for the ASPs based on
IFSs. This paper aims to design single and double ASPs based on IFSs and deriving main characteristics of ASPs such
as acceptance probability (Pa), average sample number (ASN), average total inspection (ATI), and average outgoing
quality (AOQ) for Poisson and binomial distributions. Thus, it is aimed to fill an important gap in the literature.
To do this, the intuitionistic Poisson and binomial distributions have been defined first, then the ASP formulations
have been derived on these distributions. Even if the ASPs have been analyzed and reformulated based on IFSs, these
formulations still reveal a challenge on deciding defectiveness or non-determinacy of items. If operators are responsible
for deciding the defectiveness or robustness level of items, it can cause a human-factor-related error in the results of
the ASPs. For this reason, a linguistic term set (LTS) is also developed and integrated with these formulations to
standardize the definitions of defectiveness classes and minimize the human factor-related classification errors. Turning
FSs into interval-valued sets using α-cut approach offers more simple and useful practice in most real-life applications,
but working with numeric α-levels has a big drawback. Another contribution of this study to the literature is merging
the linguistic approach with α-cut approach, thereby giving the ability to work with multiple linguistic α-levels for
different product segments simultaneously.

The rest of this paper has been organized as follows: Section 2 includes brief information about IFSs and α-cut
approach. A literature analysis related to FST and ASPs is presented in Section 3. The obtained formulations for ASPs
based on IFSs, binomial and poisson distributions are presented, and these are analyzed with some numerical examples
in Sections 4 and 5, respectively. The obtained results and future research directions have been discussed into Section
6.

2 Intuitionistic fuzzy sets

Membership (µÃ(x)) and non-membership (ϑÃ(x)) functions complement each other, and their summation is equal
to 1 for type-1 FSs. This means comprehensive information about an event and it is named as complete information
case. However, it may not always be possible to decide whether membership and non-membership degrees or equivalent
adverse effects may not be observed between membership and non-membership degrees. For example, some factors such
as physical obstacles or instructional inabilities can cause hesitation while deciding the defectiveness of an inspected
item. As a result of this, it can block the complete information case. IFSs have been offered to model the uncertainties,
including such incomplete information cases. An IFS is stated as in Eq. (1) depending on a continuous variable x inside
[0, 1] interval [9] [27].

˜̈A = {(x, µ ˜̈A
(x), ϑ ˜̈A

(x)|x ∈ X)} and µ ˜̈A
(x) + ϑ ˜̈A

(x) ≤ 1. (1)

The accent ˜̈ has been preferred to distinguish the IFSs in equations. On the other hand, type-1 FSs have been
represented with the accent˜throughout the paper.

The uncertainty arising from incomplete information is named as degree of hesitancy or degree of non-determinacy.
It is dependent to membership and non-membership functions, and it is represented with the statement as shown in
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Eq. (2) [9] [27]. Accuracy degree of an IFS is calculated as 1− π ˜̈A
(x) so the accuracy degree is big when the accuracy

is small [27].

π ˜̈A
(x) = 1− (µ ˜̈A(x)

+ ϑ ˜̈A
(x)). (2)

Generally, membership and non-membership are represented with functions for IFSs. However, they can consist of
interval-valued numbers in some cases. These sets are named as interval-valued IFSs (IVIFSs) and represented with two
independent intervals in [0, 1]. IVIFSs are useful in engineering problems because working with interval-valued numbers
instead of continuous functions ensures ease of calculation and sense-making. Representation of IVIFSs is shown in Eq.
(3) [9] while supremum (sup) is referring to the least upper bound.

˜̈A = (µ ˜̈A
, ϑ ˜̈A

) = ⟨⌈µ ˜̈AL
, µ ˜̈AU

⌉,⌈ϑ ˜̈AL
, ϑ ˜̈AU

⌉⟩ and µ ˜̈A
, ϑ ˜̈A

∈ [0, 1].

0 ≤ supµ ˜̈A
+ supϑ ˜̈A

≤ 1.
(3)

2.1 The α-cut approach for fuzzy sets

A threshold value on membership function is decided, and the fuzzy set (FS) is cut from this level horizontally in α-cut
approach. More considerable membership degrees are assumed as a full member while the lower membership degrees
are ignored [29]. In this way, an interval-valued set is obtained, and the membership value can be stated as a 0 − 1
crisp value. Triangular FSs (TFSs) are represented with three points as (a1, a2, a3) while a1 and a3 are supports and
a2 is core. If α-cut is applied to Ã, the interval Ãα = [a1α, a3α] is obtained as show in Figure 1 [15]. Similarly, α-cut
of a Trapezoidal FS (TrFS) Ã = (a1, a2, a3, a4) is the interval Ãα = [a1α, a4α] while a1, a4 are supports and [a2, a3] is
core as show in Figure 1.

Figure 1: α-cut for an example TFS and TrFS

Any shape of IFS such as triangular IFSs (TIFSs) and trapezoidal IFSs (TrIFSs) can be converted to IVIFSs by

using α-cut technique. For an IFS ˜̈A = {(x, µ ˜̈A
(x), ϑ ˜̈A

(x)|x ∈ X)}, α-cut is formed as shown in Eq. (4) for an α ∈ [0, 1]

[9]. α-cut for an example TrIFS is also shown in Figure 2.

˜̈Aα = {x : x ∈ X,µ ˜̈A
(x) ≥ α, ϑ ˜̈A

(x) ≤ 1− α} = ⟨µ̃α, ϑ̃1−α⟩ = ⟨[µL, µU ], [ϑL, ϑU ]⟩. (4)

Figure 2: α-cut for an example TrIFS
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For given two intervals D = [d1, d3] and E = [e1, e3] satisfying ∀d1, d3, e1, e3 ∈ R+, addition, subtraction, and
multiplication operations are given in Eqs. (5- 7), respectively [15]. These interval operations are applicable to the
intervals obtained by α-cut.

⊕[e1, e3] = [d1 + e1, d3 + e3], (5)

⊖[e1, e3] = [d1 − e3, d3 − e1], (6)

⊗[e1, e3] = [d1 × e1, d3 × e3]. (7)

The operations defined in Eqs. (5- 7) are also arithmetic operations, but they are defined with the help of the
ordinary ones. In the rest of this paper, the mathematical symbols of the addition, subtraction, and multiplication
operations related to FSs and interval-valued numbers have been differentiated from the ordinary ones to not bring any
confusion. The symbols ⊕,⊖ and ⊗ have been used for addition, subtraction, and multiplication operations, respectively
related to FSs during this study.

3 Acceptance sampling plans based on fuzzy sets

ASPs consist certain set of rules to reach a specified quality level by inspecting only a small sample instead of all items
in a lot. Despite ASPs can be classified into two groups such as variable and attribute, the APSs based on attribute
characteristics are more common. While variable ASPs focus on the quality characteristics such as length, weight,
etc., the attribute ASPs are interested in the inspected items’ defectiveness. They are formulated with Binomial or
Poisson distributions by considering the inspection operation as a probabilistic event. For binomial attribute ASPs, plan
parameters are sample size (n) and maximum allowed defect count (c), which are decided to reach a specified quality
level with minimum cost. The inspector or operator selects only one sample from a lot randomly from a population
with a known size (N) and having a known ratio of defective items (p). Then he accepts the lot if the observed defective
item count is less than or equal to c. On the other hand, frequency of defective item (λ) is used for Poisson distribution
instead of p. Binomial ASP formulation can be converted to Poisson ASP by using the transformation λ = n× p [26].
Sometimes it is needed to reach lower risks with relatively small sample sizes. For these cases, double ASPs (DASPs),
two-step ASPs having two sets of plan parameters, are used. For the DASPs, if the first limit for allowable defect count
(c1) is not exceeded in first sample size (n1) in the first step, the lot is accepted. Similarly, if the second threshold value
for defect count (c2) is exceeded in the first step, the lot is rejected without continuing the second step. In addition to
that, the second inspection step is applied with a new sample size (n2) if the defective item count is observed between
c1 and c2 [26]. Binomial DASPs can be converted to Poisson DASPs by the conversions λ1 = (n1×p) and λ2 = (n2×p)
[26]. ASPs should have lot acceptance probability (Pa) as near as ∝ to minimize the inspection cost [26].

Some characteristic functions are also available for ASPs. For example, the average outgoing quality (AOQ) rep-
resents the long-term average fraction defective that the consumer will encounter for a given value of p. Another
characteristic is average total inspection (ATI) which is the average number of inspections per lot if 100% inspection is
performed for rejected lots [26]. Lastly, the average sample number (ASN) to be inspected per lot to reach acceptance
or rejection decision is a characteristic for only DASPs [26].

Some studies have been carried out in the literature for attribute ASPs based on binomial and Poisson distributions
by using the type-1 FSs [13],[22],[23],[21]. They formulated and solved the sampling plan with the α-cut approach.
There are also limited studies based on Neutrosophic Sets (NSs), and there are no studies based on the other FS
extensions such as type-2, intuitionistic, hesitant, and Pythagorean FSs on ASPs. Some studies about variable ASPs
based on NSs have been performed to determine the neutrosophic plan parameters of n and c by using a non-linear
optimization model as a pre-step of sampling. [3] designed the optimization model for the populations whose quality
characteristics were introduced as an exponential distribution under the neutrosophic interval statistical method. [2]
redesigned this optimization model by using the neutrosophic approach for the process loss function. [7] introduced
neutrosophic regression estimator and used it in this optimization model. [6] performed a similar study by considering
the measurement error using neutrosophic statistics. [5] rebuilt the optimization model for the population having
quality characteristics as normal distribution and it obtained the operating characteristic as neutrosophic statistics. [8]
determined the sample size via a similar non-linear model by using Pareto distribution. There are also a few studies
about attribute ASPs based on NSs in the literature. [4] offered a single attribute ASP for binomial distribution for the
population whose defectiveness is formulated as NS with the help of the standard deviation. Single ASPs have been
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extended to NSs for Poisson distribution by [20] and double ASPs extended to Neutrosophic Sets (NSs) for binomial
distribution by [19].

In this study, ASPs have been extended based on IFSs and IVIFSs for Poisson and binomial distributions. Addi-
tionally, the main characteristic functions of ASPs such as Pa, ASN , ATI, and AOQ have been derived based on IFSs.
The main objective of this study is to minimize the effects of uncertainty on the inspection procedures and increase the
sensitiveness and the flexibility with the help of fuzzy linguistic terms. To reach this objective, a linguistic evaluation
procedure has also been suggested for inspection procedure.

3.1 Single acceptance sampling plans based on type-1 fuzzy sets

The single ASPs (SASPs) based on type-1 FSs have been analyzed in the literature. Acceptance probability functions
were derived, and ASPs were developed based on binomial and Poisson distributions with fuzzy parameters [23]. In
addition, these plans were extended for interval-valued FSs. These formulations are similar to traditional ASPs, but
the distributions were switched with the fuzzy ones [23]. When a single ASP was organized with the parameters fuzzy
sample size (ñ), and fuzzy maximum allowed defective count (c̃) for a population having fuzzy ratio of defective items
(p̃), fuzzy ratio of non-defective items (q̃ = 1− p̃), the fuzzy acceptance probability of a lot (P̃a) has been calculated as
shown in Eq. (8). The defective item frequency λ̃ is also an FS for Poisson distribution, which is equal to ñ⊗ p̃ [23].

P̃a = P{d 6 c̃ | p̃, q̃, ñ, c̃} =

c̃∑
d=0

λ̃d ⊗ e−λ̃

d!
=

c̃∑
d=0

(
ñ

d

)
⊗ p̃d ⊗ q̃ñ⊖d. (8)

If α-cut is applied to FSs, they turn into interval-valued FSs. Acceptance probability of a lot after α-cut ( P̃aα) is
calculated as shown in Eq. (9) [23]. P̃aα is obtained as an interval having lower limit Palα and upper limit Parα .

P̃aα = [Palα , Parα ] =

[
min{Pa | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α},
max{Pa | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α}

]
. (9)

When ñ, c̃ and p̃ are defined as FSs, the AOQ also becomes an FS (ÃOQ). ÃOQ and the α-cut of it (ÃOQα) can

be obtained as shown in Eqs. (10, 11), respectively [23]. (ÃOQα) is also an interval having lower limit AOQlα and
upper limit AOQrα .

ÃOQ = P̃a ⊗ p̃ = P̃a ⊗ (λ̃⊘ ñ). (10)

ÃOQα = [AOQlα , AOQrα ] =

[
min{AOQ | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α},
max{AOQ | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α}

]
. (11)

Similarly, ÃT I and α-cut (ÃT Iα) values are obtained as shown in Eqs. (12, 13) for a lot having fuzzy lot size (Ñ)

while ATIlα is representing lower limit and ATIlα is representing the upper limit for ÃT Iα [23].

ÃT I = ñ⊕ (1⊖ P̃a)⊗ (Ñ ⊖ ñ). (12)

ÃT Iα = [ATIlα , ATIrα ] =

[
min{ATI | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α},
max{ATI | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α}

]
. (13)

3.2 Double acceptance sampling plans based on type-1 fuzzy sets

For a DASP having fuzzy parameters such as ñ1, c̃1, ñ2 and c̃2, respectively, the P̃a and P̃1α are obtained as shown in
Eqs. (14, 15) [23]. The defective item frequencies for the first and second steps are calculated as follows: λ̃1 = ñ1 ⊗ p̃ ,
λ̃2 = ñ2 ⊗ p̃

P̃a =P{d1 6 c̃1 | p̃, q̃, ñ1, ñ2, c̃1, c̃2}+ P{c̃1 < d1 6 c̃2 | d1 + d2 6 c̃2 and p̃, q̃, ñ1, ñ2, c̃1, c̃2}

=

c̃1∑
d1=0

λ̃d1
1 ⊗ e−λ̃1

d1!
⊕

c̃2∑
d1>c̃1

(
λ̃d1
1 ⊗ e−λ̃1

d1!
⊗

c̃2⊖d1∑
d2=0

λ̃d2
2 ⊗ e−λ̃2

d2!

)

=

c̃1∑
d1=0

(
ñ1

d1

)
⊗ p̃d1 ⊗ q̃(ñ1⊖d1) ⊕

c̃2∑
d1>c̃1

((
ñ1

d1

)
⊗ p̃d1 ⊗ q̃(ñ1⊖d1) ⊗

c̃2⊖d1∑
d2=0

(
ñ2

d2

)
⊗ p̃d2 ⊗ q̃(ñ2⊖d2)

)
.

(14)
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P̃aα = [Palα , Parα ] =

[
min{Pa | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α},
max{Pa | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α}

]
. (15)

ÃOQ is also calculated as shown in Eq. (10) for DASPs then the ÃOQα is obtained as shown in Eq. (16) [23].

ÃOQα = [AOQlα , AOQrα ] =

[
min{AOQ | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α},
max{AOQ | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α}

]
. (16)

Additionally, ÃSN , ÃSNα, ÃT I and ÃT Iα are also calculated as shown in Eqs. (17, 20) while P I represents the
probability of terminating the sampling in the first step and P II represents the probability of terminating the sampling
in the second step as either acceptance or rejection [23].

ÃSN = ñ1 ⊕ ñ2 ⊗ (1⊖ P̃ I)

= ñ1 ⊕ ñ2 ⊗ (1⊖ (P{d1 6 c̃1 | p̃, q̃, ñ1, ñ2, c̃1, c̃2} ⊕ P{d1 > c̃2 | p̃, q̃, ñ1, ñ2, c̃1, c̃2})) .
(17)

ÃSNα = [ASNlα , ASNrα ] =

[
min{ASN | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α},
max{ASN | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α}

]
. (18)

ÃT I = ÃSN⊕(Ñ ⊖ ñ1)⊗ P{d1 > c̃2 | p̃, q̃, ñ1, ñ2, c̃1, c̃2}
⊕(Ñ ⊖ ñ1 ⊖ ñ2)⊗ P{d1 + d2 > c̃2 | p̃, q̃, ñ1, ñ2, c̃1, c̃2}.

(19)

ÃT Iα = [ATIlα , ATIrα ] =

[
min{ATI | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α},
max{ATI | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α}

]
. (20)

Eq. (19) can be mathematically rewritten as seen in Eq. (21) where P̃ I
a represents the probability of terminating the

sampling in the first step as acceptance and P̃ II
a represents the probability of terminating the sampling in the second

step as acceptance.

ÃT I = ñ1 ⊗ P̃ I
a ⊕ (ñ1 ⊕ ñ2)⊗ P̃ II

a ⊕ Ñ ⊗ (1− P̃a). (21)

4 Design of acceptance sampling plans based on intuitionistic fuzzy lin-
guistic terms

In this section, fuzzy single and double ASPs have been extended based on IFSs. For this aim, two well-known statistical
distributions of ASPs named binomial and Poisson distributions have been reformulated by using IFSs. The derived
formulations are applicable for any shape of IFSs, such as TFSs and TrFSs. Since IFSs permit slackness for non-
determination, more precision and flexibility have been provided in formulations. The defectiveness of items has been
represented with linguistic terms to overcome the hardship of quantifying the verbal inspection results. By this way,
it has become possible to express the product defection status more clearly by the help of these linguistic terms and a
great convenience can be obtained for the inspectors evaluations.

4.1 Fuzzy linguistic terms

Since the inspection process of ASPs is generally operated by humans, there is difficulty in converting the product
quality-related verbal inspection results into numerical expressions. In such circumstances, the linguistic approach is
practical. It would be appropriate to use linguistic variables to describe the quality level of the products more accurately.
Defectiveness of the items can include fuzziness, so it is more correct to represent it as fuzzy linguistic variable (FLV).

The FLV concept has been offered by [29]. Values of the FLVs are words or sentences in a language. A linguistic
variable is represented with a quintuple (℘,T (℘),U ,G,M) in which ℘ is the name of the variable, T (℘) is the term set
of ℘ which is the collection of linguistic names, U is universe, G is a syntactic rule which generates the terms in T (℘)
and M is a semantic rule to associate the linguistic values and their meanings. M(X) denotes a fuzzy subset of U . The
meaning of a linguistic value X is characterized by a compatibility function. The function of the semantic rule is used
to relate the compatibilities of the terms with a linguistic value [29]. Deciding a term set means deciding T (℘), U , G
and M , respectively. Fuzzy subsets M(X) can be in any shape, such as triangular and trapezoidal. In addition to that,
M(X) can be any FS extension such as hesitant, intuitionistic, and so forth. An example term set with size seven and
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its triangular type-1 FS semantic rule is given in Eq. (22) [17]. While deciding M(X), superposing the core of the FS
of a linguistic term with the support points of the FSs of the previous and the successive linguistic terms are generally
preferred as in Eq. (22).

S = {s0 : Nothing(N), s1 : V ery low(V L), s2 : Low(L), s3 : Medium(M),

s4 : High(H), s5 : V ery high(V H), s6 : Perfect(P )}.
M(X) = {N = (0, 0, 0.167), V L = (0, 0.167, 0.333), L = (0.167, 0.333, 0.5),M = (0.333, 0.5, 0.667),

H = (0.5, 0.667, 0.833), V H = (0.667, 0.833, 1), P = (0.833, 1, 1)}.

(22)

Performance of fuzzy modeling is measured with interoperability and accuracy of the characteristics [10]. Linguistic
fuzzy modeling (LFM) is good at interoperability, but it has drawback about accuracy as a result of the term set size
that is decided at the beginning. If a small-term set is decided, the set may become restrictive and an approximation
process is needed for the information does not exactly match any of the initial linguistic terms. This causes loss of
information and lack of precision. On the other hand, if the term set is determined as too big, the linguistic statements
begin to lose their meanings that cause confusion or become to make no sense.

Several studies have been conducted to increase LFM accuracy in the literature such as tuning the term set size by
using data analysis and soft computing techniques [10], have also preferred to change linguistic model structure. For
example, double hierarchy LTSs consisting of two independent term sets used as hierarchically have been offered to
reach more accurate and comprehensive results [16]. The most popular approach, the 2-tuple linguistic fuzzy approach,
has been offered by [17] to minimize the loss of information by making interpolated assessments. In this approach, fuzzy
information is represented with a linguistic term and a companion numerical value named ”difference of information”
in the interval [−0.5, 0.5). For example, the 2-tuple statement M ′ = (M,−0.3) for the set given in Eq. (24) means that,
the information is between L and M but it is closer to M . The graphical representation of M ′ is seen in Figure 3.

Figure 3: Graphical representation of a 2-tuple linguistic statement (M,−0.3)

In this paper, the ordered structure linguistic fuzzy approach with 2-tuple approach is employed to decide the
defectiveness information of the population. The formulations of ASPs offered in this study are based on IFSs, so the
defectiveness of the population should be represented as IFS to be able to use these formulations. For this reason,
an intuitionistic term set has been designed by using the similar term set for both defectiveness and non-defectiveness
separately. After deciding the linguistic statements for both, this information is merged to build IFS. For example, the
inspector can present an opinion for the defective item ratio as ϑ ˜̈A

(x) = (L,−0.5) and for non-defective item ratio as

µ ˜̈A
(x) = (H, 0.3) by using the term set given in Eq. (22). In this example, triangular intuitionistic defect information is

reached because µ ˜̈A
(x)⊕ϑ ˜̈A

(x) 6 1 is satisfied for all x depending on the values ϑ ˜̈A
(x) = (L,−0.5) = (0.084, 0.250, 0.417)

and µ ˜̈A
(x) = (H, 0.3) = (0.550, 0.717, 0.883). The non-determinacy degree is calculated as π ˜̈A

= 1 ⊖ µ ˜̈A
(x) ⊖ ϑ ˜̈A

(x) =

(0.033, 0.033, 0.033) = 0.033. In the scope of this study, the α-cut technique has also been utilized to obtain IVIFSs.
The biggest problem about α-cut technique is working with numerical α values that have no tangible meaning for
humans in real case applications. The linguistic approach gives good results when it is combined with α-cut technique
to solve this problem. Thus, α level has been decided by using linguistic statements in this study. The produced items
may have different types of defects such as color defects, shape defects, and so forth, but some may not be important.
In this case, a bigger α value can be acceptable in ASP. Figure. 4 shows an example TrIFS membership function
for item defectiveness ratio having non-determinacy level 3%. Assume that, the instruction given to the operator is
”At most slightly defective is acceptable for a standard quality product. In this case, the numerical equivalent of α
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is determined as 0.015×0.97
0.025 = 0.582. Another operator can be instructed as At most insensibly defective is acceptable

for luxury product” and so the new α is determined as 0.01×0.97
0.025 = 0.388. As seen in these examples, this linguistic

approach gives the ability to work with multiple α values for different product quality levels in a human-friendly way.

Figure 4: An example membership function for α-cut with linguistic statements

The defectiveness ratio of the items has been considered as IFSs and expressed with linguistic statements. This
brings us to the concept of Linguistic IFSs (LIFSs), combination of the concepts of IFSs and LTSs. For a given reference
set X, positive integer τ , and LTS S = {Sα | α ∈ [0, τ ]}, a LIFS is defined as in Eq. (23) while sa(x) is membership
function and sb(x) is non-membership function [25].

I = {x, sa(x), sb(x) | x ∈ X}. (23)

Each LIFS satisfies the conditions 0 6 a 6 τ and 0 6 b 6 τ . Correspondingly, the non-determinacy degree is
obtained as sπ(x) = sτ−a−b for LIFSs. LIFSs and linguistic Pythagorean FSs (LPFSs) are two special cases of this
generalized definition for q = 1 and q = 2 [25]. Even though, there are studies in the literature such as [18] that develop
methods to calculate score function and distance measurement for PFSs to use in decision making (DM) problems, ASP
has dissimilar nature to traditional DM problems. For this reason, ASPs based on IFS and PFS must be formulated
separately. In this paper, PFSs have not been taken into consideration.

4.2 Intuitionistic binomial and poisson distributions

In the formulation given by [23], µ(x) = p̃ is defined as the membership and ϑ(x) = q̃ is defined as non-membership
to the defectiveness set. If this formulation is extended for IFSs, p̃⊕ q̃ 6 1 should be satisfied and the hesitancy/non-
determinacy degree (1⊖ p̃⊖ q̃) should be considered. For an ASP based on IFSs, a random sample selection event should
include three states and their concurrencies: defectiveness, non-defectiveness, and non-determination. Depending on
this, ASP will have three outcomes: Acceptance, Rejection, and Non-Determinacy. In fuzzy ASPs, the lot is rejected
if the observed defective item count exceeds the maximum allowed defective item count threshold (c̃). Even if some
defective items are observed but c̃ is not exceeded, the lot is accepted despite the defective items. A similar approach
can be applied for non-determinate items by deciding a maximum allowed non-determinacy item count threshold (τ̃).
If τ̃ is exceeded, then the lot is regarded as non-determinate, and the sampling is repeated. On the other hand, if τ̃
is not exceeded, the non-determinate items are regarded as belonging to the determinate part. Here, the determinate
part statement refers to the defective and non-defective items.

The offered threshold approach is required to be able to consider non-determinacy in the formulation. There are two
main reasons for this. Firstly, if there is no τ̃ , it is impossible to achieve the non-determinacy plan outcome. Secondly,
if there is no τ̃ formulations such as P̃a will be the same as the one offered by [23]. Let us prove it mathematically.
If d items are observed as defective, some of the (ñ ⊖ d) items will be non-defective, and rest of the items will be
non-determinate. This means that the ratio of non-defective to non-determinate items is also a binomial event. New
variables can be defined for mathematical simplicity as follows: ñr = ñ⊖d is the sum of the observed non-defective and
non-determinate items, q̃1 is the non-defectiveness probability, q̃2 is the non-determinacy probability. Depending on
these definitions, the main condition of traditional FSs (p̃⊕ q̃ = 1) is updated as p̃⊕ (q̃1 ⊕ q̃2) = 1. Hence, P̃a without
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τ̃ is determined as follows:

P̃a =

c̃∑
d=0

(
ñ

d

)
⊗ p̃d ⊗

[
ñr∑
i=0

(
ñr

i

)
⊗ q̃i1 ⊗ q̃

(ñr⊖i)
2

]

=
c̃∑

d=0

(
ñ

d

)
⊗ p̃d ⊗ (q̃1 ⊕ q̃2)

ñr (q̃1⊕q̃2)=(1⊖p̃)
=⇒

c̃∑
d=0

(
ñ

d

)
⊗ p̃d ⊗ (1⊖ p̃)

ñr =
c̃∑

d=0

(
ñ

d

)
⊗ p̃d ⊗ (1⊖ p̃)

(ñ⊖d)
.

It is obvious from the above proof, τ̃ is required to differentiate the formulation of ASPs based on IFSs from the
formulation of ASPs based on type-1 FSs. This proof can be generalized to obtain intuitionistic binomial distribution
(IBD). It can be assumed that the determinate part (defectiveness and non-defectiveness) is primarily interested, and
non-determinate part can be ignored until a certain level, namely, the non-determinacy threshold (τ). For a given
success probability (p) and failure probability (q) such that p+ q 6 1, probability facing with exactly x successes in n
trials can be calculated as in Eq. (24).

PIBD{x | p, n, τ} =

(
n

x

)
× px ×

[
τ∑

i=0

(
n− x

i

)
× (1− p− q)i × qn−x−i

]
. (24)

If the number of trials (n) is big enough, the binomial distribution converges to Poisson distribution. Similarly, IBD
converges to intuitionistic Poisson distribution (IPD) for big trial numbers. For Poisson distribution, frequency values
are needed for success and non-determinacy. Success frequency (λp) and non-determinacy frequency (λ(1−p−q)) values
are found by using Eq. (25).

λp = n× p, λ(1−p−q) = n× (1− p− q). (25)

For IPD, the probability of facing with exactly x successes inside n trials is calculated as shown in Eq. (28) with
the help of the conversions given in Eqs. (26, 27).

lim
n→∞

((
n

x

)
× px

)
= lim

n→∞

((
n

x

)
×
(
λp

n

)x)
=

n

n
× n− 1

n
× · · · × n− x− 1

n
×

λx
p

x!
=

λx
p

x!
. (26)

lim
n→∞

((
n− x

i

)
× (1− p− q)i × qn−x−i

)
= lim

n→∞

((
n− x

i

)
×
(
λ(1−p−q)

n

)i

×
(
1−

λp + λ(1−p−q)

n

)n−x−i
)

=
n

n
× n− 1

n
× · · · × n− x− i− 1

n
×

(λ(1−p−q))
i

i!
×
(
1−

λp + λ(1−p−q)

n

)n−x−i

=
(λ(1−p−q))

i

i!
× e−(λp+λ(1−p−q)).

(27)

PIPD{x | p, n, τ} =
λx
p

x!
×

[
τ∑

i=0

(
λ(1−p−q)

)i
i!

× e−(λp+λ(1−p−q))

]
. (28)

4.3 Design of single ASPs based on intuitionistic fuzzy linguistic terms

In this sub-section, the main formulations of SASPs have been analyzed and re-obtained based on IFSs. For an ASP

based on IFSs ˜̈ASP , the main condition p̃ ⊕ q̃ 6 1 should be satisfied while p̃ = µ(x) is the membership degree and
q̃ = ϑ(x) is the non-membership degree to the defectiveness set. Accordingly, hesitancy/non-determinacy degree is also
determined by the statement (1⊖ p̃⊖ q̃). P̃a is calculated as shown in Eq. (29) with the help of IBD and IPD while τ̃
is the non-determinacy threshold and the condition (c̃+ τ̃ < ñ) is satisfied. Note that the plan parameters ñ, c̃ and τ̃
can be deterministic values, type-1 FSs or IFSs. In the scope of this study, these have been considered as type-1 FSs.

P̃a = P̃{d 6 c̃,6 τ̃ | p̃, q̃, ñ, c̃, τ̃}

= P̃aBinomial
=

c̃∑
d=0

((
ñ

d

)
⊗ p̃d ⊗

[
τ̃∑

i=0

((
ñ⊖ d

i

)
⊗ (1⊖ p̃⊖ q̃)i ⊗ q̃(ñ⊖i⊖d)

)])

u P̃aPoisson
=

c̃∑
d=0

(
λ̃d
p

d!
⊗

[
τ̃∑

i=0

(
(λ̃(1−p−q))

i

i!
⊗ e−(λ̃p⊕λ̃(1−p−q))

)])
.

(29)
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As seen in Eq. (3), the IFS defectiveness information ˜̈A = {x, µ ˜̈A
(x) = p̃, ϑ ˜̈A

(x) = q̃ | x ∈ X} turns into IVIFS
˜̈Aα = ⟨p̃α, q̃1−α⟩ = ⟨[pL, pU ], [qL, qU ]⟩ via α-cut while the indices L and U are stating the lower and upper bounds of
the intervals, respectively. Similarly, the parameters of ñ, c̃ and τ̃ turns into interval-valued numbers as ñα = [nL, nU ],
c̃α = [cL, cU ] and τ̃α = [τL, τU ] based on α-cuts, respectively. Depending on this, the lot acceptance probability after
α-cut (P̃aα) is obtained as shown in Eq.(30). It should be noted that, q̃ is complement of p̃, so it should be cut by 1−α.

P̃aα = [PaL , PaU ] =

[
min{Pa | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α, τ ∈ τ̃α},
max{Pa | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α, τ ∈ τ̃α}

]
. (30)

Based on IFS, the ASP has three outcomes: acceptance, rejection, and non-determinacy. The non-determinacy
outcome is occurred depending on τ̃ and the rejection outcome is occurred depending on c̃ but both thresholds can
be exceeded in some cases. The non-determinacy is a side fact caused by the uncertainty. Hence, it can be assumed
that the defectiveness should be dominant to the non-determinacy in calculations such that if c̃ is exceeded, the lot
is rejected independently of the non-determinate item count. The rejection probability of a lot (P̃r) and the rejection
probability after α-cut (P̃rα) are calculated with the help of IBD and IPD, respectively, as seen in Eqs. (31, 32).

P̃r = P̃{d > c̃ | p̃, q̃, ñ, c̃, τ̃}

= P̃rBinomial
=

ñ∑
d=c̃⊕1

((
ñ

d

)
⊗ p̃d ⊗

[
ñ⊖d∑
i=0

((
ñ⊖ d

i

)
⊗ (1⊖ p̃⊖ q̃)i ⊗ q̃(ñ⊖i⊖d)

)])

u P̃rPoisson
=

ñ∑
d=c̃⊕1

(
λ̃d
p

d!
⊗

[
ñ⊖d∑
i=0

(
(λ̃(1−p−q))

i

i!
⊗ e−(λ̃p⊕λ̃(1−p−q))

)])
.

(31)

P̃rα = [PrL , PrU ] =

[
min{Pr | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α, τ ∈ τ̃α},
max{Pr | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α, τ ∈ τ̃α}

]
. (32)

ÃOQ and ÃOQα are also calculated as in Eqs. (33, 34), respectively:

ÃOQ = P̃a ⊗ p̃ = P̃a ⊗ λ̃p ⊘ ñ. (33)

ÃOQα = [AOQL, AOQU ] =

[
min{AOQ | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α, τ ∈ τ̃α},
max{AOQ | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α, τ ∈ τ̃α}

]
. (34)

If τ̃ is exceeded, the lot is regarded as non-determinate, and sampling is repeated. In other words, sampling is
repeated with the probability of (1⊖ P̃a ⊖ P̃r). However, if it has a minimal probability, the sampling can theoretically
continue until all the items in the population are inspected. It is not a desirable approach in terms of cost and time. For
this reason, a limitation is required for the sampling at a certain point, such as two repetitions, three repetitions, and so
forth. While certain repetitions (such as 1, 2, and 3) are allowed for some organizations, repetition may not be preferred

and non-determinate lots may be rejected (non-repetitive) in some other organizations. ÃT I for non-repetitive ASPs

(ÃT I(0)) is shown in Eq. (35) and ÃT I for repetitive ASPs (ÃT I(r)) is obtained as in Eq. (36) while r is allowed

repetition number. Then ÃT Iα is determined by using Eq. (37).

ÃT I(0) = ñ⊕ (1⊖ P̃a)⊗ (Ñ ⊖ ñ). (35)

ÃT I(r) = ñ⊕ P̃r ⊗ (Ñ ⊖ ñ)⊕ (1⊖ P̃a ⊖ P̃r)⊗ ÃT I(r−1). (36)

ÃT Iα = [ATIL, ATIU ] =

[
min{ATI | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α, τ ∈ τ̃α},
max{ATI | p ∈ p̃α, q ∈ q̃1−α, n ∈ ñα, c ∈ c̃α, τ ∈ τ̃α}

]
. (37)

4.4 Design of double ASPs based on intuitionistic fuzzy linguistic terms

For a DASP having fuzzy parameters (ñ1, c̃1, τ̃1, ñ2, c̃2, τ̃2) and lot characteristics (Ñ , p̃), P̃a and P̃r are obtained as
shown in Eqs. (38, 41). Where λ̃p1 = ñ1⊗ p̃, λ̃p2 = ñ2⊗ p̃, λ̃(1−p−q)1 = ñ1⊗ (1⊖ p̃⊖ q̃) and λ̃(1−p−q)2 = ñ2⊗ (1⊖ p̃⊖ q̃)
are the defective and non-determinate item frequencies for the first and second step, respectively.
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P̃a =P̃{d1 6 c̃1, i1 6 τ̃1 | p̃, q̃, ñ1, ñ2, c̃1, c̃2, τ̃1, τ̃2}
⊕ P̃{d1 + d2 6 c̃2, i1 + i2 6 τ̃2 | c̃1 < d1 6 c̃2, i1 6 τ̃2 and p̃, q̃, ñ1, ñ2, c̃1, c̃2, τ̃1, τ̃2}
⊕ P̃{d1 + d2 6 c̃2, i1 + i2 6 τ̃2 | d1 6 c̃1, τ̃1 < i1 6 τ̃2 and p̃, q̃, ñ1, ñ2, c̃1, c̃2, τ̃1, τ̃2}.

P̃aBinomial
=

c̃1∑
d1=0

((
ñ1

d1

)
⊗ p̃d1 ⊗

[
τ̃1∑

i1=0

(
ñ1 ⊖ d1

i1

)
⊗ (1⊖ p̃⊖ q̃)i1 ⊗ q̃(ñ1⊖i1⊖d1)

])

⊕
c̃2∑

d1=c̃1⊕1

((
ñ1

d1

)
⊗ p̃d1 ⊗

[
τ̃2∑

i1=0

((
ñ1 ⊖ d1

i1

)
⊗ (1⊖ p̃⊖ q̃)i1 ⊗ q̃(ñ1⊖i1⊖d1)⊗

[
c̃2⊖d1∑
d2=0

((
ñ2

d2

)
⊗ p̃d2 ⊗

[
τ̃2⊖i1∑
i2=0

(
ñ2 ⊖ d2

i2

)
⊗ (1⊖ p̃⊖ q̃)i2 ⊗ q̃(ñ2⊖i2⊖d2)

])])])

⊕
c̃1∑

d1=0

((
ñ1

d1

)
⊗ p̃d1 ⊗

[
τ̃2∑

i1=τ̃1⊕1

((
ñ1 ⊖ d1

i1

)
⊗ (1⊖ p̃⊖ q̃)i1 ⊗ q̃(ñ1⊖i1⊖d1)⊗

[
c̃2⊖d1∑
d2=0

((
ñ2

d2

)
⊗ p̃d2 ⊗

[
τ̃2⊖i1∑
i2=0

(
ñ2 ⊖ d2

i2

)
⊗ (1⊖ p̃⊖ q̃)i2 ⊗ q̃(ñ2⊖i2⊖d2)

])])])
.

(38)

P̃aBinomial
u P̃aPoisson

=

c̃1∑
d1=0

(
λ̃d1
p1

d1!
⊗

[
τ̃1∑

i1=0

λ̃i1
(1−p−q)1

i1!
⊗ e−(λ̃(1−p−q)1

⊕λ̃p1 )

])

⊕
c̃2∑

d1=c̃1⊕1

(
λ̃d1
p1

d1!
⊗

[
τ̃2∑

i1=0

(
λ̃i1
(1−p−q)1

i1!
⊗ e−(λ̃(1−p−q)1

⊕λ̃p1 )⊗

[
c̃2⊖d1∑
d2=0

(
λ̃d2
p2

d2!
⊗

[
τ̃2⊖i1∑
i2=0

λ̃i2
(1−p−q)2

i2!
⊗ e−(λ̃(1−p−q)2

⊕λ̃p2 )

])])])

⊕
c̃1∑

d1=0

(
λ̃d1
p1

d1!
⊗

[
τ̃2∑

i1=τ̃1⊕1

(
λ̃i1
(1−p−q)1

i1!
⊗ e−(λ̃(1−p−q)1

⊕λ̃p1 )⊗

[
c̃2⊖d1∑
d2=0

(
λ̃d2
p2

d2!
⊗

[
τ̃2⊖i1∑
i2=0

λ̃i2
(1−p−q)2

i2!
⊗ e−(λ̃(1−p−q)2

⊕λ̃p2 )

])])])
.

(39)

P̃r =P̃{d1 > c̃2, i1 6 τ̃1 | p̃, q̃, ñ1, ñ2, c̃1, c̃2, τ̃1, τ̃2}
⊕ P̃{d1 + d2 > c̃2 | c̃1 < d1 6 c̃2, i1 6 τ̃2 and p̃, q̃, ñ1, ñ2, c̃1, c̃2, τ̃1, τ̃2}
⊕ P̃{d1 + d2 > c̃2 | d1 6 c̃1, τ̃1 < i1 6 τ̃2 and p̃, q̃, ñ1, ñ2, c̃1, c̃2, τ̃1, τ̃2}

P̃rBinomial
=

ñ1∑
d1=c̃2⊕1

((
ñ1

d1

)
⊗ p̃d1 ⊗

[
ñ1⊖d1∑
i1=0

(
ñ1 ⊖ d1

i1

)
⊗ (1⊖ p̃⊖ q̃)i1 ⊗ q̃(ñ1⊖i1⊖d1)

])

⊕
c̃2∑

d1=c̃1⊕1

((
ñ1

d1

)
⊗ p̃d1 ⊗

[
τ̃2∑

i1=0

((
ñ1 ⊖ d1

i1

)
⊗ (1⊖ p̃⊖ q̃)i1 ⊗ q̃(ñ1⊖i1⊖d1)⊗

[
ñ2∑

d2=c̃2⊖d1⊕1

((
ñ2

d2

)
⊗ p̃d2 ⊗

[
ñ2⊖d2∑
i2=0

(
ñ2 ⊖ d2

i2

)
⊗ (1⊖ p̃⊖ q̃)i2 ⊗ q̃(ñ2⊖i2⊖d2)

])])])

⊕
c̃1∑

d1=0

((
ñ1

d1

)
⊗ p̃d1 ⊗

[
τ̃2∑

i1=τ̃1⊕1

((
ñ1 ⊖ d1

i1

)
⊗ (1⊖ p̃⊖ q̃)i1 ⊗ q̃(ñ1⊖i1⊖d1)⊗

[
ñ2∑

d2=c̃2⊖d1⊕1

((
ñ2

d2

)
⊗ p̃d2 ⊗

[
ñ2⊖d2∑
i2=0

(
ñ2 ⊖ d2

i2

)
⊗ (1⊖ p̃⊖ q̃)i2 ⊗ q̃(ñ2⊖i2⊖d2)

])])])
.

(40)
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P̃rBinomial
u P̃rPoisson =

ñ1∑
d1=c̃2⊕1

(
λ̃d1
p1

d1!
⊗

[
ñ1⊖d1∑
i1=0

λ̃i1
(1−p−q)1

i1!
⊗ e−(λ̃(1−p−q)1

⊕λ̃p1 )

])

⊕
c̃2∑

d1=c̃1⊕1

(
λ̃d1
p1

d1!
⊗

[
τ̃2∑

i1=0

(
λ̃i1
(1−p−q)1

i1!
⊗ e−(λ̃(1−p−q)1

⊕λ̃p1 )⊗

[
ñ2∑

d2=c̃2⊖d1⊕1

(
λ̃d2
p2

d2!
⊗

[
ñ2⊖d2∑
i2=0

λ̃i2
(1−p−q)2

i2!
⊗ e−(λ̃(1−p−q)2

⊕λ̃p2 )

])])])

⊕
c̃1∑

d1=0

(
λ̃d1
p1

d1!
⊗

[
τ̃2∑

i1=τ̃1⊕1

(
λ̃i1
(1−p−q)1

i1!
⊗ e−(λ̃(1−p−q)1

⊕λ̃p1 )⊗

[
ñ2∑

d2=c̃2⊖d1⊕1

(
λ̃d2
p2

d2!
⊗

[
ñ2⊖d2∑
i2=0

λ̃i2
(1−p−q)2

i2!
⊗ e−(λ̃(1−p−q)2

⊕λ̃p2 )

])])])
.

(41)

P̃aα
and P̃rα are obtained as shown in Eqs. (42, 43).

P̃aα =

[
min{Pa | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α , τ1 ∈ τ̃1α , τ2 ∈ τ̃2α},
max{Pa | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α , τ1 ∈ τ̃1α , τ2 ∈ τ̃2α}

]
. (42)

P̃rα =

[
min{Pr | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α , τ1 ∈ τ̃1α , τ2 ∈ τ̃2α},
max{Pr | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α , τ1 ∈ τ̃1α , τ2 ∈ τ̃2α}

]
. (43)

ÃOQ and ÃOQα are calculated as in Eqs. (44, 45).

ÃOQ = P̃a ⊗ p̃ = P̃a ⊗ λ̃p1 ⊘ ñ1 = P̃a ⊗ λ̃p2 ⊘ ñ2. (44)

ÃOQα =

[
min{AOQ | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α , τ1 ∈ τ̃1α , τ2 ∈ τ̃2α},
max{AOQ | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α , τ1 ∈ τ̃1α , τ2 ∈ τ̃2α}

]
. (45)

ÃT I for non-repetitive and repetitive ASPs are obtained as shown in Eqs. (46, 47), and ÃT Iα is determined by
using Eq. (48). Where d1, d2, i1 and i2 are the observed defective and non-determinate item count in the first and
steps, respectively.

ÃT I(0) = (ñ1 ⊗ P̃ I
a )⊕

(
(ñ1 ⊕ ñ2)⊗ P̃ II

a )
)
⊕
(
Ñ ⊗ (1⊖ P̃a)

)
. (46)

ÃT I(r) = (ñ1 ⊗ P̃ I
a )⊕

(
(ñ1 ⊕ ñ2)⊗ P̃ II

a )
)
⊕
(
Ñ ⊗ P̃r

)
⊕
(
(1⊖ P̃a ⊖ P̃r)⊗ ÃT I(r−1)

)
. (47)

ÃT Iα =

[
min{ATI | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α , τ1 ∈ τ̃1α , τ2 ∈ τ̃2α},
max{ATI | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α , τ1 ∈ τ̃1α , τ2 ∈ τ̃2α}

]
. (48)

ÃSN and ÃSNα are calculated as shown in Eqs. (49, 50). Where d1 and i1 are the observed defective and
non-determinate item count in the first step, respectively.

ÃSN = ñ1 ⊕
(
ñ2 ⊗ (1⊖ P̃ I)

)
= ñ1 ⊕ ñ2 ⊗

1⊖

 P̃{d1 6 c̃1 | p̃, q̃, ñ1, ñ2, c̃1, c̃2, τ̃1, τ̃2}
⊕P̃{d1 > c̃2 | p̃, q̃, ñ1, ñ2, c̃1, c̃2, τ̃1, τ̃2}
⊕P̃{i1 > τ̃2, d1 6 c̃1 | p̃, q̃, ñ1, ñ2, c̃1, c̃2, τ̃1, τ̃2}

 .
(49)

ÃSNα =

[
min{ASN | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α , τ1 ∈ τ̃1α , τ2 ∈ τ̃2α},
max{ASN | p ∈ p̃α, q ∈ q̃1−α, n1 ∈ ñ1α , n2 ∈ ñ2α , c1 ∈ c̃1α , c2 ∈ c̃2α , τ1 ∈ τ̃1α , τ2 ∈ τ̃2α}

]
. (50)
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5 An illustrative example from a manufacturing process

Since the defectiveness of items can have different types or levels in real cases, the traditional ASPs do not give the
ability to model this variability of item defectiveness. Three defect types and relevant three AQL levels are defined in
practice as a workaround solution to overcome this issue. The companies use the following classification and AQL levels:
4% for minor defects, 2.5% for major defects, and 0% for critical defects [1]. The proposed plans have a high potential
in terms of efficiency for this kind of real-world applications. This section aims to verify the validity of the proposed
formulations by a demonstration based on a numerical example from a pen manufacturer company. The company
produces pens in three segments: standard, luxury, and premium. Body of plastic pens are purchased from a supplier,
and the acceptance sampling procedure is performed for these pen bodies. Pen bodies might have different types of
defects having different significances. For example, screw area defects are considered totally defective. The same pen
bodies are used for all segments of products, but acceptable defect types are not the same for all segments. Major color
defects and minor form defects (such as micro-cracks) are acceptable for standard pens. In contrast, only minor color
defects are acceptable for luxury pens, and none of the defects are accepted for premium pens. The defectiveness levels
also vary inside the defect classes. Depending on this, it is sometimes impossible to decide the defectiveness class of
the items because of indetermination. The proposed IFS formulation fits well with this scenario.

Deciding on the right FS shape is very important to reach reasonable results. As an exemplary study, [14] has
adopted z-shaped FSs for defectiveness of items while deciding fuzzy sample size for control charts. Since z-shaped FSs
are suitable for the nature of the defectiveness concept in inspection procedures, we have modified the term set shown
in Eq. (22) and Figure 3 by using z-shaped FSs. Z-shaped fuzzy membership functions have been represented with
three points as in the format (x, y, z), where two of them are core and support points, and the remaining is the limiting
value of the definition space. The employed LTS is shown in Figure 5. Assume that the quality inspector have decided
the defectiveness of the pen body population as p̃ = (V ery low,−0.4) and non-defectiveness as q̃ = (V ery high, 0.1).
Remaining part has been regarded as indeterminate. Additionally, approximate defectiveness ratios of the subsets of
defectiveness have been determined as seen in Table 1.

Table 1: Defectiveness ratio of the defect types
Defectiveness Class Most Significant Defect Defectiveness Ratio
Insensibly Defective Minor Color Defect 35%
Slightly Defective Major Color Defect 55%
Partially Defective Minor Form Defects 80%

Almost Totally Defective Major Form Defects 90%
Totally Defective Screw Area Defects 100%

The company wants to compare the results of single and double ASPs for the lots having 480 items. Acceptance
Quality Limit (AQL) has been determined as 2.5% by considering defective items. However, 4% is allowed when
indeterminate and defective items are considered together. The company has decided to use similar plan parameters
with the MIL-STD-105E normal inspection plan. For this reason, the company has adopted the H − 2.5% plan for
defectiveness and the difference between H − 2.5% and H − 4.0% for indeterminacy. Depending on this approach, ASP
parameters are obtained as n = 50, c = 3 and τ = 2 for single ASP, n1 = 32, n2 = 32, c1 = 1, c2 = 4, τ1 = 1 and τ2 = 2
for DASP according to MIL-STD-105E tables II-A and III-A. Then the defectiveness information is calculated as a

z-shaped IFS such that ˜̈A = {p̃ = (0, 0.100, 0.267), q̃ = (0.683, 0.850, 1) | x ∈ X} by interpolating the FSs of linguistic
terms depending on the second part of the 2-tuple statements made by the inspectors. In this case, the non-determinacy
degree is obtained as π ˜̈A

(x) = 1⊖ µ ˜̈A
(x)⊖ ϑ ˜̈A

(x) = 0.05. Membership and non-membership functions are symbolically
demonstrated as shown in Fig. 6. Due to the defectiveness information is formed as an IFS, ASP results should be

obtained as an IFS such that ˜̈B = {P̃r, P̃a | x ∈ X}.
Results for defectiveness information based on IFS have been determined for the core and support points of p̃ and

q̃ as shown in Table 2. To compare the performance of the suggested formulations, the table also shows the results
for the scenario in that the non-determinacy is ignored, non-determinate parts are regarded as non-defective. For this
benchmark scenario, the formulations offered by [23] have been used. As seen in Table 2, there is a notable difference
between the acceptance probabilities of the FS and IFS formulations. It is an expected result because non-determinate
items are regarded as non-defective in case of FS. In this example, the non-determinacy is not quite small, so the IFS
formulation gives more precautionary results. Acceptance probabilities for SASP are also demonstrated in Figure 6.
Rejection probabilities reached by the formulations are similar to each other for SASPs, but not similar to each other
for DASPs. The root cause of this finding is that the sampling procedure can continue to the second step when the
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Figure 5: Linguistic defectiveness information for the example

Table 2: Obtained results for FSs and IFSs
SASP DASP

FS IFS FS IFS

{P̃a, P̃r}
{(0, 0.250, 1), {(0, 0.126, 1), {(0.001, 0.277, 1), {(0, 0.120, 1),
(0, 0.750, 1)} (0, 0.750, 1)} (0, 0.723, 1)} (0, 0.629, 0.986)}

{ÃOQmin, {0, 0.039} {0, 0.021} {0, 0.042} {0, 0.020}
ÃOQmax}
ÃT I/ÃTI(0) (50, 372.374, 479.913) (50, 425.887, 479.968) (32, 359.959, 479.718) (32, 427.511, 479.898)

ÃT I(1) − (50, 372.374, 479.967) − (32, 307.081, 479.160)

ÃSN − − (32, 33.449, 52.227) (32, 33.012, 49.207)

indeterminate item count is between τ1 and τ2 in the first step. Accordingly, the total rejection probability has a
dependency with the non-determinacy degree. It can be deduced that the results of IFS and FS formulations converge
to each other more when π ˜̈A

(x) is small and τ̃ is relatively big. This is because, it decreases the indetermination
probability. The acceptance and the rejection probabilities for SASP and DASP formulations converge to each other,

Figure 6: Comparison of SASP results for IFS and type-1 FS formulations

but DASP results are a little bit smaller than SASP results. Since DASPs are used for reaching lower risks with fewer
inspections, similar P̃a values have been reached with SASPs despite the smaller ÃT I. ÃT I(1) has provided smaller

values than ÃT I(0). The core of ÃT I(0) and ÃT I(1) has observed as quite different because the indeterminacy is not

too small in the example. It should be noticed that P̃a values have been obtained as FSs having too wide range.
The reason of this outcome is related to the used LTS. This term set has only seven terms and the adopted linguistic
approach divides the 0-1 interval into seven pieces. As a result, p̃ is clarified as a wide fuzzy number. To overcome
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this problem, linguistic modifiers analyzed by [12], [24] can be applied in the assessment procedure. Calculation of the

ÃOQ is different from P̃a and P̃r and it is not sufficient to calculate values for only edge points (core, support, and
the limiting value of the definition space) of p̃. According to Eq. (33) and (44), it is calculated by multiplication of P̃a

and p̃. While the membership function of p̃ is left to right as seen in Figure 5, the membership function of P̃a is right

to left, as seen in Figure 6. ÃOQ gets its biggest value in an intermediate value in the scale. For this reason, only the
maximum and minimum values have been presented in Table 2. The maximum value has been reached for p̃ = 0.058.

Similar to the acceptance probabilities, maximum ÃOQ values have been converged to each other for SASP and DASP

formulations. IFS formulations have provided smaller ÃOQ values.
Interval-valued FSs (IVFSs) are more useful in real-case applications because of their ease of calculation, percep-

tion, and interpretation of the results. To use IVIFS formulations, IFSs should be converted to IVIFSs by using a
defuzzification technique such as α-cut. However, α-cut has a significant drawback in real-case problems due to the
numerical α values. To avoid this problem, linguistic α values have been used. The linguistic α values have been
determined and transformed into numerical values to use in formulations with respect to Table 1. These α levels have
been demonstrated on the membership function in Figure 7. For example, the biggest defectiveness ratio of Insensible
Defective, Slightly Defective and Partially Defective items is 0.8 (Partially defective) so, αstandard is determined as 0.8.
As described in Section 2.1, the non-membership function is cut from (1 − α) level while the membership function is
cut from α level. Using these values, IVIFS results have been reached as seen in Table 3 for all segment pens having
the similar lot sizes.

Figure 7: Defectiveness and non-defectiveness α-cuts for the product segments

Due to the high comprehensiveness of p̃ and q̃, too wide results have been reached. Core points are obtained as
smaller values in IVIFS formulations. As an interesting finding, while the acceptance probabilities of IVIFS formulations
converge to each other for SASP and DASP, the rejection probabilities have been obtained pretty much different. This
outcome is also caused by the fact that the sampling can continue to the second step when the indeterminate item
count is observed between τ1 and τ1 or the defective item count is observed between c1 and c2 in the first step. This
is not the case for IVFS formulations because the sampling can continue to the second step if and only if the defective
item count is observed between c1 and c2 in the first step. As a side effect of this situation, rejection probabilities for
IVFS and IVIFS formulations have been determined as similar for SASP.

If it is desired to define a stricter control procedure during the inspection phase, it will be necessary to define lower α
values. However, the acceptance probability of standard segment product for IVIFS formulation draws a contradictory
table with this statement. Because the core point of the acceptance probability for standard segment product has been
reached smaller than the luxury segment product, it is not a surprising output. As explained in Section 2.1, both
membership and non-membership functions are narrowed by α-cut. Narrowing them increases indeterminacy degree
because Eqs. (1) and (2) are satisfied for all IFSs and IVIFSs. If excessively big α values are used in ASPs, the
non-determinacy probability can be big enough to decrease the acceptance probability.

Based on the above example, plan parameters n, c, and τ have been determined as real numbers. However, they
can also be fuzzy numbers if it is not possible to decide the lot size certainly or AQL is approximately determined.
These kinds of issues can be possible for small piece products. If IVFS formulation is used in such circumstances, the
fuzzy plan parameters should also be cut from a certain level. When type-1 FSs are used for plan parameters and only
a single product segment is available, cutting the defectiveness information and plan parameters from the same α-level
gives useful results. However, using the same α values for both defectiveness information and plan parameters in the
current scenario brings hardness to compare the results seen in Table 3 for different segment products. A common
β-cut can be applied to plan parameters for all segments while the defectiveness’s are cut from different α-levels for
each product segment. In this way, more comparable results can be reached. Assume that the plan parameters are
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Table 3: Results for different quality products based on α-cuts
SASP DASP

IVFS IVIFS IVFS IVIFS

S
ta
n
d
a
rd

(α
=

0
.8
)

{P̃a, P̃r} {[0.086, 1], [0, 0.914]} {[0.001, 1], [0, 0.914]} {[0.097, 1], [0, 0.903]} {[0.001, 1], [0, 0.475]}
{ÃOQmin, {0, 0.039} {0, 0.021} {0, 0.042} {0, 0.020}
ÃOQmax}
ÃT I/ÃTI(0) [50, 442.944] [50, 479.745] [32, 437.635] [32, 479.449]

ÃT I(1) − [50, 479.393] − [32, 451.949]

ÃSN − − [32, 48.455] [32, 33.761]

L
u
x
u
ry

(α
=

0
.3
5)

{P̃a, P̃r} {[0.004, 1], [0, 0.996]} {[0.004, 1], [0, 0.996]} {[0.006, 1], [0, 0.994]} {[0.006, 1], [0, 0.994]}
{ÃOQmin, {0, 0.039} {0, 0.021} {0, 0.042} {0, 0.020}
ÃOQmax}
ÃT I/ÃTI(0) [50, 478.392] [50, 478.392] [32, 477.338] [32, 477.340]

ÃT I(1) − [50, 478.392] − [32, 477.340]

ÃSN − − [32, 37.320] [32, 37.320]

P
re
m
iu
m

(α
=

0.
0)

{P̃a, P̃r} {[0, 1], [0, 1]} {[0, 1], [0, 1]} {[0.001, 1], [0, 0.999]} {[0, 1], [0, 0.986]}
{ÃOQmin, {0, 0.039} {0, 0.021} {0, 0.042} {0, 0.020}
ÃOQmax}
ÃT I/ÃTI(0) [50, 479.913] [50, 479.968] [32, 479.718] [32, 479.898]

ÃT I(1) − [50, 479.967] − [32, 479.160]

ÃSN − − [32, 33.449] [32, 33.012]

replaced with triangular type-1 FSs as Ñ = (460, 480, 500),ñ = (45, 50, 55), c̃ = (2, 3, 4) and τ̃ = (1, 2, 3) for single
ASP, ñ1 = (30, 32, 34), ñ2 = (30, 32, 34), c̃1 = (0, 1, 2), c̃2 = (3, 4, 5), τ̃1 = (0, 1, 2) and τ̃2 = (1, 2, 3) for DASP in the
above example. The results in Table 4 have been reached for β = 0.35 by using these plan parameters. Depending on
this approach, more narrowed results have been reached than the results seen in Table 3. Nevertheless, no significant
differences have been observed between the product segments. This is caused by using a small β-level. Using a small
β value means the variability of the plan parameters is high. While this variability is high, variability of P̃a increases
dramatically, and as a result, the range of [0, 1] is obtained for P̃a. When the lot size and the plan parameters are
getting bigger, the relative effect of the variability (increasing/decreasing c one unit) of the plan parameters over the
acceptance probability reduces, the rounding operations in β-cut caused by working small numbers are minimized. In
this way, more narrowed intervals can be achieved.

Table 4: Results for premium quality product while plan Parameters Ñ , ñ, c̃ and τ̃ are cut by β=0.35
SASP DASP

IVFS IVIFS IVFS IVIFS

S
ta
n
d
a
rd

(α
=

0.
8)

{P̃a, P̃r} {[0.022, 1], [0, 0.978]} {[0, 1], [0, 0.978]} {[0.024, 1], [0, 0.976]} {[0, 1], [0, 0.720]}
ÃT I/ÃTI(0) [47, 483.513] [47, 492.994] [31, 482.321] [31, 492.992]

ÃT I(1) − [47, 503.545] − [31, 492.970]

ÃSN − − [31, 56.78] [31, 38.298]

L
u
x
u
ry

(α
=

0.
35
) {P̃a, P̃r} {[0, 1], [0, 1]} {[0, 1], [0, 1]} {[0.001, 1], [0, 0.999]} {[0.001, 1], [0, 0.999]}

ÃT I/ÃTI(0) [47, 492.80] [47, 492.804] [31, 492.729] [31, 492.729]

ÃT I(1) − [47, 492.804] − [31, 492.729]

ÃSN − − [31, 42.409] [31, 42.409]

P
re
m
iu
m

(α
=

0
.0
) {P̃a, P̃r} {[0, 1], [0, 1]} {[0, 1], [0, 1]} {[0, 1], [0, 1]} {[0, 1], [0, 0.998]}

ÃT I/ÃTI(0) [47, 492.994] [47, 492.999] [31, 492.983] [31, 492.998]

ÃT I(1) − [47, 493] − [31, 492.998]

ÃSN − − [31, 36.019] [31, 35.636]
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6 Conclusions

ASPs are prevalent quality control techniques based upon accepting and rejecting the lots by inspecting only a small set
to reach a specified consumer’s risk and a specified producer’s risk. Traditional ASPs use certain parameters, such as
the defectiveness ratio of the incoming lot. Nevertheless, they may not always be known certainly in real case problems.
FST is used to reformulate the ASPs in the literature to manage the uncertainty of real-case applications. However,
sometimes it is more effective to use fuzzy set extensions to model these uncertainties. It is clear that one of the
fuzzy extensions named IFS is an efficient approach to model the ASPs having non-determinacy on human evaluation
about the defectiveness of the inspected items. Modeling the inspector’s hesitancy in deciding the quality class of the
product at the inspection stage allows more sensitive results to be revealed. To do this, single and double ASPs having
IFSs defection statuses have been designed in this study. The item defectiveness of the lots has been represented as
FLVs to improve interoperability of the fuzzy modeling. Additionally, the binomial and poisson distributions have been
re-consider for these cases.

As discussed in the literature, the IVIFSs have advantages in engineering problems due to the simplicity in problem
formulation and calculations. For this reason, the main parameters of ASPs have been formulated based on IFS and
then extended for IVIFSs. The α-cut technique is presented to make the IVIFS formulation usable for the populations
having IFS defectiveness. The most crucial criticism about the α-cut technique is that it uses numerical α-levels
that do not have tangible counterparts in real life. Combining the linguistic approach with the α-cut technique is
another contribution of this paper to the literature. Using linguistic α-values, the inspector can easily decide that
the defects of the inspected items are acceptable or not for the given α-level. Moreover, the human error in the
transformation of the verbal inspection results into numerical measures is minimized. To compare the performance
of the proposed methodologies with the available type-1 FSs for both single and double ASPs, a numerical example
from the manufacturing industry has been presented. The obtained results show that the IFSs successfully model the
uncertainties and hesitancy on the sampling approach. It is clearly seen that suggested ASPs contain more information
than both traditional and type-1 fuzzy ASPs. As a future study, the other types of fuzzy set extensions such as Hesitant
and Pythagorean FSs can be used to model the uncertainty of the sampling procedure for ASPs. The formulations can
be combined with more sophisticated linguistic fuzzy modeling approaches having high accuracy and interoperability
at the same time. Then the obtained results can be compared.
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