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Abstract

A new approach of fuzzy processes, the source of which are expert knowledge reflections on the states on Stationary
Discrete Extremal Fuzzy Dynamic System (SDEFDS) in extremal fuzzy time intervals, are considered. A fuzzy-integral
representation of a stationary discrete extremal fuzzy process is given. A method and an algorithm for identifying
the transition operator of SDEFDS are developed. The SDEFDS transition operator is restored by means of expert
knowledge reflections on the states of SDEFDS. The regularization condition for obtaining of the quasi-optimal estimator
of the transition operator is represented by the theorem. The corresponding calculating algorithm is provided. The
results obtained are illustrated by an example in the case of a finite set of SDEFDS states.

Keywords: Sugeno’s type extremal fuzzy measures and integrals, extremal fuzzy time intervals, SDEFDS, identification
of the SDEFDS integral model.

1 Introduction

Very often we have no objective, experimental data for parameters and behavioral dynamics of evolutionary phenomena.
In these cases, when studying processes’ analysis and synthesis problems, the only expert knowledge appears to be
applicable. With respect to time expert evaluations constitute expert knowledge streams (processes). The study of
these processes is connected with problems of fuzzy-modelling and simulation.

In alternative classical approaches to modeling and when working with complex systems the main accent is placed on
the assumption of fuzziness. As the complexity of systems increases, our ability to define exactly their behaviour drops to
a certain level, below which such characteristics of information as exactness and uncertainty become mutually excluding.
In such situations an exact quantitative analysis of real complex systems is apt to be not quite plausible. Hence, a
conclusion comes to mind that problems of this kind should be solved by means of analytic-fundamental methods of fuzzy
mathematics, while the system approach to constructing models of complex systems with fuzzy uncertainty guarantees
the creation of computer-aided systems forming the instrumental basis of the intelligent technology solutions of expert-
analytical problems. It is obvious that the source of fuzzy-statistical samples is the population of fuzzy characteristics
of expert knowledge. Fuzziness arises from observations of time moments as well as from other expert measurements.

Applications of the dynamics of fuzzy systems and of the modeling of dynamic systems by fuzzy systems range from
physics to biology, to economics, to pattern recognition and to time series prediction. Evidence exists that fuzzy models
can explain cooperative processes, occurring in biology, chemistry, material sciences and economics. Relationships
between dynamics of fuzzy systems and the performance of decision support systems were found, and chaotic processes
in various classes of fuzzy systems were shown as a powerful tool in analyzing complex, weakly structurable systems.

In recent years, investigations of complex dynamic systems with fuzzy uncertainty by means of the theory of fuzzy
sets have developed mainly in the following four directions:

I. Lower dynamic systems are described by composition equations in the metric or normed spaces of system states,
which can be formally written in terms of fuzzy integral equations or some minmax compositions if a monotone
measure is assumed to be a possibilistic one [5, 6, 22, 37, 49].
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II. Quite a number of studies have been devoted to the development of fuzzy differential calculus with an aim of
describing dynamic fuzzy systems and their numerical solutions, modeling identification, filtering, control, optimal
control, and so on. The main common feature of these approaches is the assumption that the compatibility function
is differentiable [8, 10, 15, 21] and others, which to a certain extent facilitates the investigation of a definite class
of dynamic fuzzy systems.

III. In some works, the first-order ordinary integral or integral-differential equations (or equation systems) have been
constructed, where the constant values are uncertain, and this uncertainty is modeled by substituting fuzzy
numbers. The problems of the existence and uniqueness of the solution with various derivatives of fuzzy functions
have been studies in the literature [2–4, 33, 46, 51] and others.

IV. In modeling, analyzing, and predicting behaviors of physical and natural phenomena, greater and greater emphasis
has been placed on fuzzy-stochastic equations. This is due to combinations of complexity, two kinds of uncer-
taintyrandomness and fuzziness, and ignorance that are present in the formulation of a great number of these
problems. A large class of physically important problems is described by fuzzy-stochastic differential systems
[13, 20, 31] and others.

The main difference between items I, II, III, IV (where in dynamic fuzzy systems, the dynamic structure is deter-
ministic and fuzzy uncertainty appears only in the coefficients or initial conditions) and the fuzzy dynamic systems
investigated in this work is that time structure and dynamics are fuzzy. However, our consideration is not limited to
this class of dynamic systems. So, we construct fuzzy dynamic systems (EFDS), but not dynamic fuzzy systems. This
is a new direction in studying and modeling weakly structured dynamic systems.

Fuzzy programming problems have been discussed widely in literature (see [7, 9, 11, 14, 19, 25, 28–30, 37, 41,
44, 47, 48, 50] and others) and applied in such various disciplines as operations research, economic management,
business administration, engineering and so on. B. Liu [28] presents a brief review on fuzzy programming models, and
classifies them into three broad classes: expected value models, chance-constrained programming and chance-dependent
programming. Our further study belongs to the first class, where we use the instrument of fuzzy measures and integrals
(see [42] and others) or, speaking more exactly, extremal fuzzy measures and Sugeno’s type integrals along with extremal
fuzzy expected value[34, 35].

Therefore, in the paper the new approach to the study of weakly structured dynamic systems optimization is
presented (here only Stationary Discrete Extremal Fuzzy Dynamic System, where discreteness of SDEFDS is presented
with respect to time). Different from other approaches where the source of fuzzy uncertainty in dynamic systems is
expert, this approach considers time as long as an expert to be the source of fuzzy uncertainty. This notably widens
the area of studied problems. All these is connected to the incomplete, imprecise, anomalous and extremal processes in
nature and society, where connections between the system’s objects are of subjective (expert) nature, which is caused
by lack of objective information about the evolution of studying system, and which often is encountered, for example,
in studies of such areas as: economics and business of developing countries, conflictology, sociology, medical diagnosis
management of evacuation processes in catastrophe areas, estimation of disease spreading in epidemical regions research
of complex systems of applied physics, etc. It is obvious, that in studies of abnormal and complex processes, when
objective, statistical data is not sufficient (due to the complexity of process), construction of new technologies for expert
knowledge streams engineering becomes highly important. Several researchers have been performed in this direction,
which mostly concern construction of mathematical basis.

The dualized aggregation of knowledge streams with respect to fuzzy time intervals in current and future processes
is a completely novel approach, since it has, as far as we know, no analogue. The dualized fuzzy models of Extremal
Fuzzy Dynamic System (EFDS) were developed by introducing an algebraic structure for fuzzy time intervals. This
is a natural way to introduce the expert knowledge of EFDS states into a fuzzy process, which activates an experts
intelligence and represents it in pessimistic/optimistic estimates. The proposed new approach is based on a strong
mechanism of expert knowledge activation, which makes it possible to evaluate the states of a complex dynamic system
and to establish the form of their representation. For this, a minmax aggregation instrument such as Sugeno-type
extremal integrals and extremal fuzzy measure theory are developed. For the creation of fuzzy processes with fuzzy
time parameter, compositions of a monotone fuzzy time structure and Sugeno-type extremal integrals are constructed.
This gives new possibilities for dualized integral representations of weakly structured processes. An important instance
is the simplified parametrization of new integrals, which makes the minmax calculation of extremal (low & upper)
Sugeno-type integrals much easier in considering process ergodicity, identification, optimization, filtration, and other
problems.

This work presents a new approach to the study of EFDSs identification. In contrast to other approaches in which it
is assumed that the source of fuzziness in dynamic systems is expert knowledge, in our approach both time and expert
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knowledge are considered to be factors that account for fuzzy uncertainty. The introduction of such a dualized (fuzzy
time + expert knowledge) factors of uncertainty in dynamic systems not only enables experts to use their intellectual
ability to the best advantage in the process of knowledge formalization, but also essentially widens the range of problems
to be investigated.

Our attention was focused on the rapidly developing theory of fuzzy measures and integrals (see [1, 12, 16–18, 23, 24,
27, 32, 34, 38–40, 42] and others). We employ the part of the theory of fuzzy measures which concerns extremal fuzzy
measures [34–36] and which, in our opinion, is rather seldom used. We have constructed a new instrument of a fuzzy
measure, the extension of which is based on Sugeno lower and upper integrals. The structure of time is represented by
monotone extremal classes of measurable sets. On such structures uncertainty is described by extremal fuzzy measures
and problems of fuzzy optimization of extremal fuzzy processes: 1. Fuzzy Identification, 2. Fuzzy Optimal Control,
3. Fuzzy Filtration and so on. We will deal with the fuzzy identification problems SDEFDS, where fuzzy uncertainty
arises with discrete time and time structures are monotone classes of measurable sets [34].

As known ([34]), in fuzzy dynamic processes where fuzziness participates as a time factor, an important role is

assigned to the structures of extremal fuzzy time intervals {F̃I∗(T ),≽ ⊗
∗
}⟩), (⟨{F̃I

∗
(T ),≼

∗
⊗}. As the fuzzy time flows,

the process of expert knowledge measurement on the system states with respect to time is affected by the incompleteness
of the obtained information. The polar characteristics of this information manifest themselves as imprecision and
uncertainty. A degree of information imprecision is defined by current fuzzy time moments (t̃ ∈ B̃∗

1) and future fuzzy

time moments (t̃ ∈ B̃1∗), while an uncertainty degree is defined by current fuzzy time intervals (r̃ ∈ B̃∗
2) and future

fuzzy time intervals (r̃ ∈ B̃2∗). We have constructed the corresponding fuzzy monotone structures [34]

{F̃I∗(T ),≽,⊕
∗
} and {F̃I

∗
(T ),≼,

∗
⊕},

in which sequential extremal fuzzy time intervals are calculated recurrently.
Here only note that when expert describes the dynamics of complex objects and “measures” system states in fuzzy

time intervals. It is necessary to carry out “extremal” “dual” measurements, namely, measurements in extended current
and compressed future fuzzy time intervals [34].

In the present paper, we represent the extremal fuzzy processes. The subject/matter of our investigation is the
existence of an optimal estimation of the transition operator for SDEFDS’s. In Section 2, basic definitions on the
extensions of Sugeno’s integral are presented. Section 3 contains some necessary preliminary concepts on general
model of an extremal fuzzy process [36]. Based on the fuzzy integral model, Sections 4–5 deals with problems of
fuzzy identification problem of SDEFDS. A method and an algorithm, as main results of the work, are developed for
identification of the transition operator of SDEFDS. The results obtained are illustrated by the example for the case of
a finite set of SDEFDS states.

2 Preliminary concepts: on the space of extended extremal fuzzy mea-
sures and extended Sugeno integral

All definitions and results see in [34].

Definition 2.1. Let X be some nonempty set.
a) We call some class B∗ ⊂ 2X of subsets of X an upper σ∗-monotone class if (i) ∅, X ∈ B∗; (ii) ∀A,B ∈ B∗ ⇒

A ∪B ∈ B∗; (iii) ∀{An} ∈ B∗, n = 1, 2, . . . , An ↑ A ⇒ A ∈ B∗.
b) We call some class B∗ ⊂ 2X of subsets of X a lower σ∗-monotone class if (i) ∅, X ∈ B∗; (ii) ∀A,B ∈ B∗ ⇒

A ∩B ∈ B∗; (iii) ∀{An} ∈ B∗, n = 1, 2, . . . , An ↓ A ⇒ A ∈ B∗.

Definition 2.2. We call the classes B∗ and B∗ extremal if and only if

∀A ∈ B∗ ⇔ A ∈ B∗.

Definition 2.3. 1) (X,B∗) is called an upper measurable space;
2) (X,B∗) is called a lower measurable space;
3) If B∗ and B∗ are extremal σ∗- and σ∗-monotone classes, then (X,B∗,B∗) is called an extremal measurable space.

Let we have the following denotation: R+
0 ≡ [0,+∞].
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Example 2.4.

B∗
1

∆
=

{
A ⊂ R+

0 | A=(α; +∞), α ∈ R+
0

}
∪ {∅} ∪ {R+

0 } is a σ∗-monotone class,

B1∗
∆
=

{
A ⊂ R+

0 | A = [0;α], α ∈ R+
0

}
∪ {∅} ∪ {R+

0 } is a σ∗-monotone class.

B∗
1 and B1∗ are called a Borel σ∗-monotone class and a Borel σ∗-monotone class of first kind, respectively. Clearly, B∗

1

and B1∗ are extremal.

Example 2.5.

B∗
2

∆
=

{
A ⊂ R+

0 | A = [0;α), α ∈ R+
0

}
∪ {∅} ∪ {R+

0 } is a σ∗-monotone class,

B2∗
∆
=

{
A ⊂ R+

0 | A=[α; +∞), α ∈ R+
0

}
∪ {∅} ∪ {R+

0 } is a σ∗-monotone class.

B∗
2 and B2∗ are called a Borel σ∗- and a Borel σ∗-monotone class of second kind, respectively. It is obvious that B∗

2 and
B2∗ are extremal.

Definition 2.6. Let (X,B∗) be some upper measurable space. A function g∗ : B∗ → [0; 1] is called an upper fuzzy
measure if: (i) g∗(∅) = 0, g∗(X) = 1; (ii) ∀A,B ∈ B∗, A ⊂ B ⇒ g∗(A) ≤ g∗(B); (iii) ∀{An} ∈ B∗, n = 1, 2, . . . ,
An ↑ A ⇒ g∗(A) = lim

n→∞
g∗(An).

Definition 2.7. Let (X,B∗) be some lower measurable space. A function g∗ : B∗ → [0; 1] is called a lower fuzzy
measure if: (i) g∗(∅) = 0, g∗(X) = 1; (ii) ∀A,B ∈ B∗, A ⊂ B ⇒ g∗(A) ≤ g∗(B); (iii) ∀{An} ∈ B∗, n = 1, 2, . . . ,
An ↓ A ⇒ g∗(A) = lim

n→∞
g∗(An).

Definition 2.8. Let (X,B∗,B∗) be some extremal measurable space, g∗ be a lower and g∗ an upper fuzzy measure.
Then:
a) g∗ : B∗ → [0; 1] and g∗ : B∗ → [0; 1] is called extremal if and only if

∀A ∈ B∗ : g∗(A) = 1− g∗(A).

b) (X,B∗,B∗, g∗, g
∗) is called a space of extremal fuzzy measures.

Definition 2.9. Let (X,B∗,B∗) be some extremal measurable space. Then:
a) The function h : X → R∗

0 is called upper measurable if and only if h is measurable with respect to the spaces
(X,B∗,B∗) and (R+

0 ,B1∗,B∗
1). Then

∀α ≥ 0 h−1 ((α; +∞)) ∈ B∗, h−1 ([0;α]) ∈ B∗.

b) The function h : X → R+
0 is called lower measurable if and only if h is measurable with respect to the spaces

(X,B∗,B∗) and (R+
0 ,B2∗,B∗

2). Then

∀α ≥ 0 h−1 ([0;α)) ∈ B∗, h−1 ([α; +∞)) ∈ B∗.

Definition 2.10. Let (X,B∗,B∗) be some extremal measurable space.

a) The class of fuzzy subsets Ã ⊂ X with lower measurable compatibility functions

B̃∗ =
{
Ã ⊂ X | µÃ is lower measurable

}
=

{
Ã ∈ X | ∀ 0 ≤ α ≤ 1, µ−1

Ã
([0;α)) ∈ B∗, µ−1

Ã
([α; +∞)) ∈ B∗

}
,

is called an extension of the σ∗-monotone class B∗.
b) The class of fuzzy subsets Ã ⊂ X with upper measurable compatibility functions

B̃∗ =
{
Ã ⊂ X | µÃ is upper measurable

}
=

{
Ã ∈ X | ∀ 0 ≤ α ≤ 1, µ−1

Ã
([0;α]) ∈ B∗, µ

−1

Ã
((α; +∞)) ∈ B∗

}
,

is called an extension of the σ∗-monotone class B∗.

Definition 2.11. An extremal measurable space (X, B̃∗, B̃∗) is called an extension of an extremal measurable space
(X,B∗,B∗).

Using the Sugeno integral [42], we next introduce the notion of extension of fuzzy extremal measures.
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Definition 2.12. Let (X,B∗,B∗, g∗, g
∗) be some space of extremal fuzzy measures, and (X, B̃∗, B̃∗) be an extension of

the extremal measurable space (X,B∗,B∗). Then:
a) the function

g̃∗(Ã) ≡ �
∫
∗

X

µÃ(x) ◦ g∗(·)
∆
= ∨

0<α≤1

[
α ∧ g∗([Ã]ᾱ)

]
, ∀Ã ∈ B̃∗; (1)

is called an extension of the fuzzy measure g∗ on B̃∗;
b) the function

g̃∗(Ã) ≡ �
∫ ∗

X

µÃ(x) ◦ g
∗(·) ∆

= ∧
0<α≤1

[
α ∨ g∗([Ã]α)

]
, ∀Ã ∈ B̃∗, (2)

is called an extension of the fuzzy measure g∗ on B̃∗.
Here [Ã]α = {x ∈ X | µÃ(x) > α}, [Ã]ᾱ = {x ∈ X | µÃ(x) ≥ α}, 0 < α ≤ 1.

Definition 2.13. A space of extremal fuzzy measures (X, B̃∗, B̃∗, g̃∗, g̃
∗) is called an extension of the space (X,B∗,B∗, g∗, g

∗).

Let (X,B∗,B∗, g∗, g
∗) be some space of extremal fuzzy measures and (X, B̃∗, B̃∗, g̃∗, g̃

∗) be its extension.

Definition 2.14. a) Let Ã, B̃ ∈ B̃∗ be any fuzzy sets. Then the lower fuzzy Sugeno integral of the compatibility function

µB̃ on the fuzzy set Ã is defined with respect to a lower fuzzy measure g̃∗ by the formula

�
∫
∗

Ã

µB̃(x) ◦ g̃∗(·)
∆≡ ∨

0<α≤1

[
α ∧ g̃∗(Ã ∩ [B̃]ᾱ)

]
. (3)

b) Let Ã, B̃ ∈ B̃∗ be any fuzzy sets. Then the upper fuzzy Sugeno integral of the compatibility function µB̃ on the

fuzzy set Ã is defined with respect to an upper fuzzy measure g̃∗ by the formula

�
∫ ∗

Ã

µB̃(x) ◦ g̃
∗(·) ∆≡ ∧

0<α≤1

[
α ∨ g̃∗(Ã ∪ [B̃]α)

]
. (4)

3 A general model of an extremal fuzzy dynamic system (EFDS)

As readers may note, the approach represented in this work describes complex evolutionary phenomena which are
connected with process development in past, and not only in past (it may concern future time also), when an expert
makes evaluations on system state within approximate time moments. These may be extremal and abnormal processes,
catastrophes and, generally speaking, emergency situations environment. The expert makes evaluations on system
state within approximate time moments which constitute expert knowledge stream. Following [36], in this section, for
describing and modelling knowledge streams we construct fuzzy-dynamic system.

We propose the following: the time structure of fuzzy dynamic systems is represented by some space of extended
extremal fuzzy measures

⟨T, F̃I∗(T ), F̃I
∗
(T ), g̃T∗, g̃

∗
T ⟩, T = R∗

0, (5)

where F̃I∗(T ) and F̃I
∗
(T ) denote monotone classes current and future fuzzy time intervals, respectively; g̃T∗ and g̃∗T

are some extremal fuzzy measures on monotone structure (F̃I∗(T ), F̃I
∗
(T )), respectively [34].

Let us start describing objects of a fuzzy dynamic system. Let X (X ̸= ∅) be the set of states of some dynamic
system to be investigated. Let (X,B, g) be the space of a fuzzy measure on the measurable space (X,B), as an initial
uncertainty measure on the states of EFDS, where B is a σ-algebra in X.

Let X also be the set of output states of the system under consideration.
Now, let us consider the Cartesian product X × T and the space of extended composition extremal fuzzy measures

[35] (
X × T, ˜B ⊗ BT∗, B̃ ⊗ B∗

T , ˜g ⊗ gT∗, g̃ ⊗ g∗T

)
,

which is induced by the spaces (X,B,B, g, g) and (T,BT∗,B∗
T , gT∗, g

∗
T ) [35], where

B∗
T = {[0, t) | t ∈ T} and BT∗ = {(t,+∞) | t ∈ T},

are monotone classes of time intervals [34].
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Definition 3.1. [36] a) A lower measurable binary fuzzy relation Q̃∗∈ ˜B ⊗ BT∗ is called a future fuzzy process on the
measurable states of the system (i.e., µQ̃∗

(x, t) is a lower measurable function).

b) An upper measurable binary fuzzy relation Q̃∗ ∈ B̃ ⊗ B∗
T is called a current fuzzy process on the measurable states

of the system (i.e., µQ̃∗(x, t) is an upper measurable function).

c) A pair (Q̃∗, Q̃
∗) of lower and upper measurable binary fuzzy relations is called an extremal fuzzy process on the

measurable states of the system (i.e., Q∗ ∈ B̃ ⊗ B∗
T and Q∗ ∈ ˜B ⊗ BT∗).

d) An extremal fuzzy process (EFP) is said to be ergodic if there exist the limits ∀x ∈ X, lim
t→∞

µQ̃∗(x, t) ≡ µÃ∗(x),

lim
t→∞

µQ̃∗
(x, t) ≡ µÃ∗

(x), and the limit fuzzy sets Ã∗ and Ã∗ are measurable Ã∗, Ã∗∈ B̃.

Note that (see [34]) ∀τ ∈ T , ∀x ∈ X EQ̃∗
(x, ·) ∈ B̃T∗ is a future fuzzy time interval; EQ̃∗(x, ·) ∈ B̃∗

T is a current

fuzzy time interval; EQ̃∗
(·, τ) ∈ B̃ is a fuzzy state of the system, which is “measurable” in the future fuzzy time interval

˜[τ,+∞); EQ̃∗(·, τ) ∈ B̃ is a fuzzy state of the system, which is “measurable” in the current fuzzy time interval [̃0, τ).
It is obvious that model “measurements” of the states of the system at a real time moment τ > 0 are understood

as defining pairs of measurable fuzzy sets EQ̃∗
(·, τ), EQ̃∗(·, τ) ∈ B̃.

For all x ∈ X, EQ̃∗(x, ·) and EQ̃∗
(x, ·) are a current fuzzy and a future fuzzy time intervals, respectively, in which

the state x ∈ X of the system is “measured” by the expert.
The family of fuzzy sets {EQ̃∗

(·, τ)}τ≥0 from B̃ is called the trajectory of a future fuzzy process, and the family of

fuzzy sets {EQ̃∗(·, τ)}τ≥0 from B̃ is called the trajectory of a current fuzzy process. The family of pairs of fuzzy sets

{EQ̃∗
(·, τ), EQ̃∗(·, τ)}τ≥0 is called the trajectory of an extremal fuzzy process (Q̃∗, Q̃

∗).

Let R̃∗ ⊂ X × T ×X be some lower measurable fuzzy relation (R̃∗ ∈ ˜B ⊗ BT∗ ⊗ B̃X) describing expert knowledge

reflections of fuzzy states of the system on the output values of the system in future fuzzy time intervals, and R̃∗ ⊂
X × T ×X be some upper measurable fuzzy relation (R̃∗ ∈ B̃ ⊗ B∗

T ⊗ B̃X) describing expert knowledge reflections of
fuzzy states of the system on the output values of the system in current fuzzy time intervals.

Definition 3.2. [36] a) A lower measurable relation R̃∗ ∈ ˜B ⊗ BT∗ ⊗ B̃X is called a future fuzzy process of expert
knowledge reflection of states of the system in future fuzzy time intervals.

b) An upper measurable relation (R̃∗ ∈ B̃ ⊗ B∗
T ⊗ B̃X) is called a current fuzzy process of expert knowledge reflection

of states of the system in current fuzzy time intervals.
c) A pair (R̃∗, R̃∗) is called an extremal fuzzy process of expert knowledge reflection of states of the system in extremal

fuzzy time intervals.

Let ρ̃∗ ∈ ˜(B ⊗ BT∗)⊗ ˜(B ⊗ BT∗) be some lower measurable fuzzy relation in the Cartesian product (X×T )×(X×T ).
This relation is a future fuzzy transition operator describing the dynamics of the system or, in other words, system
state transformations in future fuzzy time intervals.

Let ρ̃∗ ∈ ˜(B ⊗ B∗
T )⊗ ˜(B ⊗ BT∗) be some upper measurable fuzzy relation in the Cartesian product (X×T )×(X×T ).

This relation is a current fuzzy transition operator describing the dynamics of the system or, in other words, system
state transformations in current fuzzy time intervals.

We call ρ̃∗ the fuzzy lower transition operator describing the system state dynamics, and ρ̃∗ the fuzzy upper transition
operator describing the system state dynamics. The pair (ρ̃∗, ρ̃

∗) is called the transition operator describing the system
state dynamics in extremal fuzzy time intervals.

Definition 3.3. [36] a) The train {
X,T, ρ̃∗, Q̃∗, R̃∗

}
, (6)

is called the future fuzzy dynamic system describing the dynamics of the system state in future fuzzy time intervals.
b) The train {

X,T, ρ̃∗, Q̃∗, R̃∗
}
, (7)

is called the current fuzzy dynamic system describing the state dynamics of the system in current fuzzy time intervals.
c) The train {

X,T, (ρ̃∗, ρ̃
∗), (Q̃∗, Q̃

∗), (R̃∗, R̃∗)
}
, (8)

is called the extremal fuzzy dynamic system (EFDS) describing the state dynamics of the system in extremal fuzzy time
intervals.
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It is obvious that the EFDS (8) describes the state dynamics of the system undergoing transformation with fuzzy
uncertainty produced by observations at fuzzy time, while the extremality is due to the “measurement” of fuzzy states
of the system in current and future fuzzy time intervals.

Definition 3.4. [36] The system of composition equations{
R̃∗ = ρ̃∗ •∗ Q̃∗,

R̃∗ = ρ̃∗
∗• Q̃∗

(9)

is called the system describing the state dynamics of the extremal dynamic system, where •
∗
and

∗• are some composition

operations over fuzzy relations.

Given (R̃∗, R̃∗), (ρ̃∗, ρ̃
∗) and the initial fuzzy states of the system Ã0∗, Ã

∗
0 ∈ B (µÃ0∗

(x) = µQ̃∗
(x, 0), µÃ∗

0
(x) =

µQ̃∗(x, 0), ∀x ∈ X), it is important to find a solution (Q̃∗, Q̃
∗) of (9), which we call an extremal fuzzy process of system

state transformation on measurable states of the system.
Below we consider concrete fuzzy systems of form (9) for the discrete case with respect to time. The finding of

a system state modeling process (Q̃∗, Q̃
∗) or a transition operator (ρ̃∗, ρ̃

∗) is important when we deal with problems
pertaining to optimization problem (here the problems of identifications).

4 Discrete extremal fuzzy process

Let an extremal fuzzy time process of “observation” of system changes be discrete., i.e., the sequence of extremal fuzzy

time intervals be given recurrently. This means that from the monotone structures {F̃I∗(T ),≽,⊕
∗
} and {F̃I

∗
(T ),≼,

∗
⊕}

[35] we choose a monotonically decreasing sequence of future fuzzy time intervals

r̃τi+1∗ = r̃τi∗ ⊕∗
∆̃rτi∗, i = 0, 1, . . . , (10a)

and a monotonically increasing sequence of current fuzzy time intervals

r̃∗τi+1
= r̃∗τi

∗
⊕ ∆̃r∗τi , i = 0, 1, . . . . (10b)

This can be interpreted as follows: while carrying out observation of the system, at the time moment τi+1 the extremal

fuzzy time intervals r̃τi+1∗ and r̃∗τi+1
are defined recurrently, where ∆̃rτi∗ is the future fuzzy time interval describing the

discreteness of observation of the system at the time moment τi, and ∆̃rτ∗
i
is the current fuzzy time interval describing

the discreteness of observation of the system at the time moment τi. It can be assumed that

TD
∆
= {τ0, τ1, . . . } (11)

is a monotone sequence of time moments (τ0 = 0), at which the observation of the system takes place in the course of
extremal fuzzy time intervals. It is obvious that {r̃τi∗} ↓, {r̃∗τi} ↑.

Definition 4.1. [36] a) A sequence (r̃τi∗, r̃
∗
τi)i∈Z0 of extremal fuzzy time intervals, which is defined recurrently by

formulas (10)–(11), is called a discrete process of extremal fuzzy time intervals.
b) A sequence

(R̃∗, R̃∗)D
∆
= (Ãτi∗ , Ã

∗
τi)i∈Z0 ,

is called a discrete process of reflection of the process of extremal fuzzy time intervals (r̃τi∗, r̃
∗
τi)i∈Z+

0
on the measurable

space (X, B̃) of states of the system.
c) A sequence

(Q̃∗, Q̃
∗)D

∆
= ⟨EQ̃∗

(·, τi), EQ̃∗(·, τi)⟩i∈Z+
0
,

where ∀x ∈ X 
µEQ̃∗

(·,τi)(x)=�
∫
∗

T

µρ̃′
∗
(x, t) ◦ g̃Ãτi∗

(·)=�
∫
∗

T

µρ̃′
∗
(x, t) ◦ g̃ER̃∗

(·,τi)(·),

µEQ̃∗ (·,τi)(x)=�
∫ ∗

T

µρ̃′∗(x, t) ◦ g̃Ã∗
τi

(·)=�
∫ ∗

T

µρ̃′∗(x, t) ◦ g̃ER̃∗ (·,τi)(·)
(12)
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is called a discrete fuzzy process describing the system state dynamics in the process of extremal fuzzy time intervals

(r̃τi∗, r̃
∗
τi)i∈Z+

0
, where �

∫
∗

T

and �
∫ ∗

T

denotes Sugeno’s extended lower and upper integrals, respectively [34]; g̃Ãτi∗
(·) and

g̃Ã∗
τi

(·) are extended fuzzy measures induced by Ãτi∗ and Ã∗
τi ; (µρ̃′

∗
, µρ̃′∗) is a pair of operators describing the change

dynamics of system states at the extremal fuzzy time intervals.

Here Z+
0 denotes the set of nonnegative integer numbers.

Theorem 4.2. [36] The discrete process (Q̃∗, Q̃
∗)D describing the system state change dynamics within TD is defined

by the following system of fuzzy integral equations: ∀x ∈ X
µEQ̃∗

(·,τi+1)(x) = �
∫
X

µρ̃i∗(x, x
′) ◦ g̃EQ̃∗

(·,τi)(·),

µEQ̃∗ (·,τi+1)(x) = �
∫
X

µρ̃∗
i
(x, x′) ◦ g̃EQ̃∗ (·,τi)(·), i = 0, 1, 2, . . . ,

(13)

where EQ̃∗
(·, τ0) ≡ Ãτ0∗ ∈ B̃ and EQ̃∗(·, τ0) ≡ Ã∗

τ0 ∈ B̃ are the initial extremal fuzzy states of the system; (ρ̃i∗, ρ̃
∗
i ) is

the operator describing the change dynamics of system states at the time moment τi, while the extended extremal fuzzy
measures in (13) are induced by extremal fuzzy states ⟨EQ̃∗

(·, τi), EQ̃∗(·, τi)⟩ of the system.

Definition 4.3. [36] A discrete extremal fuzzy process ⟨EQ̃∗
(·, τi), EQ̃∗(·, τi)⟩i∈Z+

0
of describing the system state dy-

namics is called stationary if ∀i ∈ Z+
0

ρ̃i∗ ≡ ρ̃∗ ∈ B̃ ⊗ B, ρ̃∗i ≡ ρ̃∗ ∈ B̃ ⊗ B;

i.e., an operator describing the system state dynamics does not influence the transformation step.

Now (13) takes the following form: ∀x ∈ X
µEQ̃∗

(·,τi+1)(x) = �
∫
X

µρ̃∗(x, x
′) ◦ g̃EQ̃∗

(·,τi)(·),

µEQ̃∗ (·,τi+1)(x) = �
∫
X

µρ̃∗(x, x′) ◦ g̃EQ̃∗ (·,τi)(·),
(14)

with initial extremal fuzzy states EQ̃∗
(·, τ0) ∈ B̃, EQ̃∗(·, τ0) ∈ B̃.

The problems of ergodicity of SDEFDS are studied and omitted here.

5 Problem of identification of SDEFDS

5.1 Introduction

In this paper we consider some problems of the identification of the model of stationary discrete extremal fuzzy dynamic
system (SDEFDS) that we have constructed in Section 4. Such choice is caused by concrete, application purposes, to
enable the reader to use constructed model in his theoretical or applied problems for dealing with time series with fuzzy
uncertainty.

The basic approaches to the identification of fuzzy process models that have been developed to this day (see
[9, 11, 19, 26, 43, 47, 50] and other works) can be divided into two groups – analytical and algorithmic – both of
which are oriented to a fuzzy process model written in terms of fuzzy compositional or integro-differential equations
or their modifications. Various analytical methods and algorithms were used in order to identify such models, i.e., the
corresponding relation of spaces of inputs and outputs of fuzzy dynamic systems. These methods mainly imply the
construction of some set-theoretic operation that is inverse to the composition operation and requires a subsequent
smoothing of the results [9, 11, 26, 50] and others. In some works [43, 45] and so on, fuzzy models of regression type
were identified by means of analytical regularization methods that allowed one to obtain numerical estimators of model
coefficients. In this paper, a new approach is proposed to the identification of SDEFDS models.
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In Section 4, we have developed a new approach of SDEFDS modeling. The identification of a fuzzy-integral
model of stationary discrete extremal fuzzy process is an important task from the standpoint of practical application of
the SDEFDS in studying complex dynamic systems. The practice of using fuzzy-integral equations describing complex
dynamic systems still lacks methods of the identification of such models. Hence in this paper we develop a new approach
to the identification of a model of SDEFDS (formula (14)).

The identification of a fuzzy-integral model of SDEFDS in the form of the system (14) implies the estimation of the
transition operator (ρ̃∗, ρ̃

∗) by means of data on the realized transition N pairs so as to obtain “an expert reflection”
for which some regularization condition is fulfilled; for example:

N
∨
i=1

{
d
(
EQ̃∗

(·, τi+1),E ̂̃
Q∗

(·, τi+1)
)
∧d

(
EQ̃∗(·, τi+1),E ̂̃

Q
∗(·, τi+1)

)}
⇒min, (15)

where d is some distance in the space of fuzzy sets B̃; ( ̂̃Q∗,
̂̃
Q∗) is the true process of extremal fuzzy output states

knowledge (expert reflections on the state) of the SDEFDS in extremal fuzzy time intervals (r̃τi∗, r̃
∗
τi), i = 1, . . . , N .

The restoration of the transition operator of the system (14) by means of expert data on transition pairs

⟨E ̂̃
Q∗

(·, τi),E ̂̃
Q∗

(·, τi)⟩, i = 1, 2, . . . , N,

is a nonregular problem for the SDEFDS model (14), since we may obtain a solution which is not unique. Hence we
need to introduce solution regularization conditions (like, for example, (15)). Otherwise, one would be unable to obtain
a quasi-optimal (in a certain sense) solution of the identification problem.

5.2 An identification method and algorithm for the integral model of stationary discrete
extremal fuzzy process

Let a model of a stationary discrete EFP be described by the system of fuzzy-integral equations (14) with unknown
pair of fuzzy relations (ρ̃∗, ρ̃

∗) consisting of the transition operator of a SDEFDS at one transformation step with
input data ⟨E ̂̃

Q∗
(·, τj),E ̂̃

Q∗
(·, τj)⟩ and output data ⟨E ̂̃

Q∗
)·, τj+1),E ̂̃

Q∗
(·, τj+1)⟩. At the j-th step of the EFP modeling

(j = 1, 2, . . . , i) any pair is the SDEFDS input, while at the next modeling step the same pair is the SDEFDS output.
Our approach to the identification of the transition operator of a discrete SDEFDS by a priori measurents of fuzzy

states
⟨E ̂̃

Q∗
(·, τj),E ̂̃

Q∗
(·, τj)⟩, τ1 < τ2 < · · · < τi, (16)

in the extremal fuzzy time intervals
(r̃τj∗ , r̃τ∗

j
), j = 1, 2, . . . , i,

is based on the following arguments. Using the definition of an extended extremal Sugeno fuzzy-integral [34], where
B∗ = B∗ = B and (g)∗ = g∗ (or dual measure is extremal measure) and assuming that x ∈ X is fixed, the fuzzy-integral
model (14) of a stationary discrete EFP can be written in the form

µEQ̃∗
(·,τi+1)(x) = ∨

0<α≤1

{
α ∧ gEQ̃∗

(·,τi)
(
[Eρ̃∗(x, ·)]α

)}
≡ αix,

µEQ̃∗ (·,τi+1)(x) = ∧
0≤α<1

{
α ∨ gEQ̃∗ (·,τi)

(
[Eρ̃∗(x, ·)]α

)}
≡ α∗

ix.
(17)

Then {
gEQ̃∗

(·,τi)
(
[Eρ̃∗(x, ·)]αix

)
≥ αix,

gEQ̃∗ (·,τi)
(
[Eρ̃∗(x, ·)]α∗

ix

)
≤ α∗

ix

or {
g
(
[Eρ̃∗(x, ·)]αix ∩ [EQ̃∗

(·, τi)]αix

)
≥ αix,

g∗
(
[Eρ̃∗(x, ·)]α∗

ix
∪ [EQ̃∗(·, τi)]α∗

ix

)
≤ α∗

ix.
(18)

Remark 5.1. Equalities in (18) are reached when the fuzzy measure functions

gEQ̃∗
(·,τi)([Eρ̃∗(x, ·)]α) ≡ f∗(α) and g∗EQ̃∗ (·,τi)([Eρ̃∗(x, ·)]α) ≡ f∗(α)

are continuous. The main problem is in the fail to reach equalities in (18) in discrete case.
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This remark shows that the identification of the transition operator (ρ̃∗, ρ̃
∗) in the fuzzy-integral system (14) of

SDEFDS with input-output data (16) is a nonregular problem that must be first regularized in order to find some
quasi-optimal solution. We propose a variant of the solution of the identification problem that will be obtained by
the aggregation of α-level solutions for each input-output pair constructed by the extremalization of the initial fuzzy
measure functions from (18), i.e., for fixed x ∈ X we have

g
([
Ễρ∗

(x, ·) ∩ E ̂̃
Q∗

(·, τi)
]
αix

) min−→̂
ρ̃∗

,

g∗
([
Ễρ∗(x, ·) ∪ E ̂̃

Q∗
(·, τi)

]
α∗

ix

) max−→̂
ρ̃∗

.
(19)

Let us introduce some notations. For fixed x ∈ X, we transform the a priori true transition data (16) on fuzzy state
of an SDEFDS into the variational series:(

µ1∗ > µ2∗ > · · · > µl∗
n∗1 n∗2 · · · n∗l∗

)
, (20a)

where

µ∗l ≡ µE ̂̃
Q∗

(·,τkl
)(x), l = 1, . . . , l∗,

l∗∑
l=1

n∗l = i,

and (
µ∗
1 < µ∗

2 < · · · < µ∗
l

n∗
1 n∗

2 · · · n∗
l

)
, (20b)

where

µ∗
l ≡ µE ̂̃

Q∗ (·,τml
)(x), l = 1, . . . , l∗,

l∗∑
l=1

n∗
l = i.

We construct the following measurable sets of levels µ∗l and µ∗
l from B for input fuzzy states:

M i
∗lis

∆
=

{
x′ ∈ X | µE ̂̃

Q∗
(·,τis )(x

′) ≥ µ∗l
}
∈ B (21a)

if µE ̂̃
Q∗

(·,τis+1)(x) = µ∗l and s = 1, . . . , n∗l∗ , l = 1, . . . , l∗;

M∗i
liq

∆
=

{
x′ ∈ X | µE ̂̃

Q∗ (·,τiq )(x
′) ≤ µ∗

l

}
∈ B (21b)

if µE ̂̃
Q∗ (·,τiq+1)(x) = µ∗

l and q = 1, . . . , n∗
l∗
, l = 1, . . . , l∗;

Πi
∗lis

∆
=

{
M ′

∗lis ∈ B | M ′
∗lis ⊂ M i

∗lis
}
,

Π∗i
liq

∆
=

{
M∗′

liq ∈ B | M∗′
liq ⊃ M∗i

liq .
}
.

(22)

Next, we construct the Cartesian products

Πi
∗l =

n∗l∏
s=1

×
(
Πi

∗lis
)
, Π∗i

l′ =

n∗
l∏

q=1

×
(
Π∗i

l′iq

)
, (23)

where l = 1, . . . , l∗, l
′ = 1, . . . , l∗.

To find a quasi-optimal solution of the problem of identification of model (14), (16) with the regularization conditions
(19), we use the following theorem.

Theorem 5.2. A quasi-optimal solution of the problem of identification of model (14), (16) of SDEFDS with the
regularization conditions (19) at the (i+ 1)-th modeling step is defined by the recurrent equations: for fixed x ∈ X and
∀x′ ∈ X we have µρ̃∗i+1

(x, x′) =
[
µρ̃∗i(x, x

′) ∨ µE ̂̃
Q∗

(·,τi+1)(x)
]
∧ β∗i(x

′),

µρ̃∗
i+1

(x, x′) =
[
µρ̃∗

i
(x, x′) ∧ µE ̂̃

Q∗ (·,τi+1)(x)
]
∨ β∗

i (x
′),

(24)
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where expert data ⟨E ̂̃
Q∗

(·, τi+1),E ̂̃
Q∗

(·, τi+1)⟩ is some possible extremal fuzzy state of the SDEFDS at the (i + 1)-th

modeling step and β∗i(x
′) ≡ αi

∗l∗(x
′), β∗

i (x
′) ≡ α∗i

l∗ (x
′); αi

∗l and α∗i
l are B-measurable functions which are defined by

recursion up to i: ∀x′ ∈ Xαi
∗l+1(x

′) = αi
∗l(x

′) ∨
[
µE ̂̃

Q∗
(·,τl+1)(x

′) ∧ IAi
∗l+1

(x′)
]
, l = 0, . . . , l∗ − 1,

α∗i
l+1(x

′) = α∗i
l (x′) ∧

[
µE ̂̃

Q∗ (·,τl+1)(x
′) ∨ IA∗i

l+1
(x′)

]
, l = 0, . . . , l∗ − 1,

(25)

where α∗0(x
′) ≡ 0, α∗

0(x
′) ≡ 0. The measurable sets Ai

∗l ∈ B and A∗i
l ∈ B are defined as follows:

Ai
∗l+1 = Ai

∗l ∪
[ n∗l∗∪

s=1

◦
M ′

∗lis

]
⟨

◦
M ′

∗lis
∈Πi

∗lis
⟩

,

A∗i
l+1 = A∗i

l ∩
[ n∗

l∗∩
q=1

◦
M∗′

l′is

]
⟨

◦
M∗′

l′is
∈Π∗i

l′is
⟩

,

(26)

where for each l l = 0, 1, . . . , l∗−1, l′ = 0, 1, . . . , l∗−1; Ai
∗0 = A∗i

0 = ∅ and ⟨
◦
M ′

∗li1 , . . . ,
◦
M ′

∗lil∗
⟩ ∈ Πi

∗l, ⟨
◦
M∗′

li1
, . . . ,

◦
M∗′

lil∗
⟩ ∈

Π∗i
l are solutions of the conditional discrete bicriterial optimization problem:

∧
⟨M ′

∗li1
,...,M ′

∗lil∗
⟩∈Πi

∗l

g

(
[Eρ̃∗i(x, ·)]µ∗l∩

[
Ai

∗l∪
( n∗l∗∪

s=1

M ′
∗lis

)])
⇒min,

∨
⟨M∗′

li1
,...,M∗′

lil∗
⟩∈Π∗i

l

g∗
(
[Eρ̃∗

i
(x, ·)]µ∗

l
∪
[
A∗i

l ∩
( n∗

l∗∩
q=1

M∗′
liq

)])
⇒max,

g(M ′
∗lis) ≥ µ∗l, s = 1, . . . , n∗l∗ ,

g∗(M∗′
liq ) ≤ µ∗

l , q = 1, . . . , n∗
l∗ .

(27)

Proof. The proof consists of two identical parts for the upper and the lower extremal process. We will prove the latter
case.

Using the lower measurable “input-output” operator µρ̃∗i(x, x
′) ≡ µEρ̃i∗ (x,·)(x

′), x, x′ ∈ X, at the i-th step we define

the fuzzy-integral model of the SDEFDS for the fixed cutting of the compatibility function. If at the (i + 1)-th step
we realize some possible measurable fuzzy state E ̂̃

Q∗(·,τi+1)
(x) at the output, then, according to (19), the change of

the estimate µρ̃∗i(x, x
′) can define only those α-cuttings for which α ≤ µEQ̃∗

(·,τi+1)(x). Therefore, the problem consists

in finding a B-measurable function β∗i : X → [0, 1] which changes the estimate µρ̃∗i(x, x
′) for such x′ ∈ X that

µρ̃∗i(x, x
′) ≤ µE ̂̃

Q∗
(·,τi+1)(x). The estimate change condition can be written in the following form: ∀x′ ∈ X

µEρ̃∗i+1
(x,·)(x

′) =
{
µEρ̃∗i (x,·)(x

′) ∧ I[Eρ̃∗i (x,·)]αix
(x′)

}
∨ β′

∗i(x
′). (28)

Since all x′ ∈ X, for which
µEρ̃∗i (x,·)(x

′) ≤ µE ̂̃
Q∗

(·,τi+1)(x)

are subject to changing, the function β′
∗i can be represented as follows: ∀x′ ∈ X

β′
∗i(x

′) =
[
µE ̂̃

Q∗
(·,τi+1)(x) ∨ µEρ̃∗i (x,·)(x

′)
]
∧
[
γ′
∗i(x

′) ∧ µE ̂̃
Q∗

(·,τi+1)(x)
]
, (29)

where {
x′ ∈ X | µEρ̃∗i (x,·)(x

′) ≥ µE ̂̃
Q∗

(·,τi+1)(x)
}
=

{
x′ ∈ X | γ∗i(x′) ≥ µE ̂̃

Q∗
(·,τi+1)(x)

}
, (30)

and γ∗i is a B-measurable function.
Substituting (29) into (28), we obtain

µEρ̃∗i+1
(x,·)(x

′) =
[
µEρ̃∗i (x,·)(x

′) ∨ µE ̂̃
Q∗

(·,τi+1)(x)
]
∧
{[
µEρ̃∗i (x,·)(x

′) ∧ I[Eρ̃∗i (x,·)]αix
(x′)

]
∨
[
γ∗i(x

′) ∧ µE ̂̃
Q∗

(·,τi+1)(x)
]}
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=
{[
µEρ̃∗i (x,·)(x

′) ∨ µE ̂̃
Q∗

(·,τi+1)(x)
]
∧
[
µEρ̃∗i (x,·)(x

′) ∨ I[Eρ̃∗i (x,·)]αix
(x′)

]}
∨
{[
µEρ̃∗i (x,·)(x

′) ∨ µE ̂̃
Q∗

(·,τi+1)(x)
]
∧
[
γ∗i(x

′) ∧ µE ̂̃
Q∗

(·,τi+1)(x)
]}

=
[
µEρ̃∗i (x,·)(x

′) ∨ µE ̂̃
Q∗

(·,τi+1)(x)
]
∧
{[
µEρ̃∗i (x,·)(x

′) ∨ I[Eρ̃∗i (x,·)]αix
(x′)

]
∨ γ∗i(x

′)
}

=
[
µEρ̃∗i (x,·)(x

′) ∨ µE ̂̃
Q∗

(·,τi+1)(x)
]
∧
{[
µEρ̃∗i (x,·)(x

′) ∨ γ∗i(x
′)
]
∧
[
I[Eρ̃∗i (x,·)]αix

(x′) ∨ γ∗i(x
′)
]}

=
[
β∗i(x

′) ∨ µE ̂̃
Q∗

(·,τi+1)(x)
]
∧
[
I[Eρ̃∗i (x,·)]αix

(x′) ∨ γ∗i(x
′)
]
.

Comparing this result with (24) and assuming that the sought function is

β∗i(x
′) = I[Eρ̃∗i (x,·)]αix

(x′) ∨ γ∗i(x
′), (31)

we see that the lower measurable function µEρ̃∗i+1
(x,·)(x

′) ∀x′ ∈ X at the (i + 1)-th modeling step is defined, for fixed

x ∈ X, by relation (24) (the first equation). It is obvious that ∀x′ ∈ [Eρ̃∗i(x, ·)]αix , β∗i(x
′) = I[Eρ̃∗i (x,·)]αix

(x′). In

this case it is advisable to assume α
(i)
∗0 (x

′) = I[Eρ̃∗i (x,·)]αix
(x′). The function γ∗i(x

′) will be defined by α-levels for

α ≤ µE ̂̃
Q∗

(·,τi+1)(x). Let us consider arbitrary levels µ∗l (l = 1, . . . , l∗). At these levels µ∗l, the function α
(i)
∗l (x

′) will

have sets of the level
Ai

∗l =
{
x′ ∈ X | αi

∗l(x
′) ≥ µl

}
. (32)

Since {µ∗l}l∗l=1 is a decreasing sequence, from definitions (21)–(23) we conclude that for validity of conditions (18) (the
first inequality) it is sufficient that {

[Eρ̃∗i(x, ·)]µ∗l ∩ [E ̂̃
Q∗

(·, τi)]µ∗l ∈ Πi
∗l,

g(M ′
∗lis) ≥ µ∗l, s = 1, . . . , n∗l,

(33)

be fulfilled.
It is obvious that in order that the subset Ai

∗l, l = 1, . . . , l∗, be restored, taking into account the embeddedness of
sets of levels, it is sufficient for us to use any subset of the form

Ai
∗l = Ai

∗l−1 ∪
[ n∗l∗∪

s=1

M ′
∗lis

]
, l = 1, . . . .n∗l∗ . (34)

One can easily check that now conditions (24) (the first equation) are fulfilled. To obtain a quasi-optimal solution,
in view of the regularization condition (19) it is sufficient, at the i-th modeling step, for each l, l = 1, . . . , l∗, to solve
the problem of conditional optimization for families of measurable sets ⟨M ′

∗li1 , . . . ,M∗lin∗l∗
⟩

∧
⟨M ′

∗li1
,...,M∗lin∗l∗

⟩∈Πi
∗l

g

(
[Eρ̃∗i(x, ·)]µ∗l∩

(
Ai

∗l ∪
nl∗∪
s=1

M ′
∗lis

))
⇒min,

g(M ′
∗lis) ≥ µ∗l, s = 1, . . . , nl∗ .

(35)

Let the optimization problem (35) have some solution ⟨
◦
M ′

∗li1 , . . . ,
◦
M ′

∗lin∗l∗
⟩ by the condition of the theorem. After

substituting this optimal solution into (34), calculating the function β∗i(x
′) by (29) and restoring Eρ̃∗i+1

(x, ·), we obtain
the estimate of the operator ρ̃∗ at the (i+1)-th modeling step, which satisfies the regularization condition (19). �

Remark 5.3. It is obvious that the solution obtained by Theorem 5.2 is unique in the sense of the embeddedness
property.

Thus, from the standpoint of application, by the proven theorem we can construct, for finite X = {x1, . . . , xn}, an
acceptable identification algorithm that makes it possible to obtain a quasi-optimal solution by using the regularization
condition (19). This algorithm has the following structure.



An identification model for a fuzzy time based stationary discrete process 13

5.3 Algorithm 1

1) For fixed x ∈ X and the lower function µEρ̃∗i (x,·)(x
′), at the i-th modeling step from expert knowledge reflections on

the SDEFDS states in the fuzzy extremal intervals we define the variational series (20a) as follows:(
µ∗1 µ∗2 . . . µ∗l∗
n∗1 n∗2 . . . n∗l∗

)
, l = 1, . . . , l∗. (36)

2) For each SDEFDS input, at each level µ∗l (l = 1, . . . , l∗) we define the solution ⟨
◦
M ′

∗li1 , . . . ,
◦
M ′

∗lin∗l∗
⟩ of the

conditional discrete optimization problem (such a solution exists because X is finite) as follows:
∧

⟨M ′
∗li1

,...,M∗lin∗l∗
⟩∈Πi

∗l

g

(
[Eρ̃∗i(x, ·)]µ∗l∩

(
Ai

∗l ∪
nl∗∪
s=1

M ′
∗lis

))
⇒min,

g(M ′
∗lis) ≥ µ∗l, s = 1, . . . , n∗l.

(37)

It may be approximately solved by a genetic algorithm or other heuristic methods.
3) Ai

∗l+1 is defined by formula (26), while the function αi
∗l+1(x

′) by (25).
4) Steps 2)–3) are fulfilled up to l = l∗ and, using (25), (26), we calculate the function αi

∗l∗(x
′) = β∗i(x

′) for each
x′ ∈ X.

5) At the (i+1)-th modeling step, we construct the estimate of the compatibility function of a fuzzy relation ρ̃∗i+1,
taking into account information on 1÷ i steps and applying (24).

6) Steps 1)–5) are repeated for each x ∈ X and thus we restore the function µρ̃∗i+1
(x, x′).

7) Steps 1)–6) are repeated, but this time for the upper function µρ̃∗
i+1

. We thus complete the restoration of the

transition operator of the SDEFDS at the (i+ 1)-th modeling step with information on 1÷ i steps taken into account.
8) Upon the arrival of new information on the output of E ̂̃

Q∗
(·, τi+2), steps 1)–7) are repeated so as to define more

exactly the estimate of the SDEFDS operator (ρ̃∗, ρ̃
∗).

To illustrate the performance of Algorithm 1, let us consider the following numerical example.

5.4 An example of SDEFDS identification

Let X = {1, 2, 3, 4} be a finite set of SDEFDS states. Let, on 2X , a fuzzy measure be given as a possibilistic one with
possibilistic distribution

π ∼
(

1 2 3 4
0.6 0.7 0.6 1.0

)
,

so that ∀A ∈ 2X

g∗(A) = ∨
x∈A

π(x) g is a possibility measure.

Let, at the i = 2-th modeling step, the estimate (ρ̃∗2, ρ̃
∗
2) of the transition operator (ρ̃∗, ρ̃

∗) be represented as follows:

ρ̃∗2 =


1 0.8 0.5 0.2
0.7 0.9 0.8 0.2
0.5 0.6 0.9 0.3
0.1 0.4 0.8 1

 , ρ̃∗2 =


1 0.9 0.6 0.2
0.6 0.9 0.7 0.1
0.6 0.7 0.9 0.2
0.2 0.5 0.9 1

 .

Let three input fuzzy states (signals) be delivered to the SDEFDS input so that Ã0∗τi = Ã∗
0τi , i = 1, 2, 3, and

Ã∗0τ1 =
(
1/0.8 2/0.7 3/0.4 4/0.2

)
, i = 1,

Ã∗0τ2 =
(
1/0.4 2/0.6 3/0.6 4/0.2

)
, i = 2,

Ã∗0τ3 =
(
1/0.2 2/0.4 3/0.5 4/0.6

)
, i = 3,

where τ1 < τ2 < τ3 and measurements were taken in some extremal fuzzy time intervals (r̃τi∗ , r̃
∗
τi), i = 1, 2, 3. Let three

output fuzzy states (signals) be assumed to have the form:

E ̂̃
Q∗

(·, τ1) =
(
1/0.6 2/0.5 3/0.4 4/0.4

)
,

E ̂̃
Q∗

(·, τ2) =
(
1/0.4 2/0.6 3/0.5 4/0.4

)
,

E ̂̃
Q∗

(·, τ3) =
(
1/0.4 2/0.6 3/0.5 4/0.5

)
.
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It is required to restore (to define more exactly) the estimate (ρ̃∗3, ρ̃
∗
3) of the transition operator (ρ̃∗, ρ̃

∗) at the
i = 3-th modeling step by the information on the input-output signals presented here.

To solve this problem, we use Algorithm 1.
Step 1: Let x = 1 be fixed. Then

Eρ̃∗2(1, ·) =
(
1/1 2/0.8 3/0.5 4/0.4

)
,

Eρ̃∗
2
(1, ·) =

(
1/1 2/0.9 3/0.6 4/0.5

)
.

For x = 1 the variational series (36) looks like(
0.6 0.4
1 2

)
l∗ = 2, n∗1 = 1, n∗3 = 2, i = 2,
µ∗1 = 0.6, µ∗2 = 0.4.

Define the sets M i
∗lis and Πi

∗lis as follows:
for l = 1: M2

∗11 = {1, 2};
for l = 2: M2

∗22 = {1, 2, 3}, M2
∗23 = {2, 3, 4},

Π2
∗11 =

{
{1}, {2}, {1, 2}

}
,

Π2
∗22 =

{
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
,

Π2
∗23 =

{
{2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4}

}
.

Then
Π2

∗1 = Π2
∗11, Π2

∗2 = Π2
∗22 ×Π2

∗23.

Now define the sets M∗i
liq

and Π∗i
liq
:

µ∗
1 = 0.6, M∗2

11 = {1, 2}, µ∗
2 = 0.6, M∗2

22 = {1, 2, 3}, M∗2
23 = {2, 3, 4}.

Then
Π∗2

11 = Π2
∗11, Π∗2

22 = Π2
∗22, Π∗2

23 = Π2
∗23, Π2

∗1 = Π∗2
2 , Π2

∗2 = Π∗2
2 .

We have

[Eρ̃∗2(1, ·)]µ∗1 = [Eρ̃∗2(1, ·)]0.6 = {1, 2}, [Eρ̃∗
2
(1, ·)]µ∗

1
= {1, 2, 3},

[Eρ̃∗2(1, ·)]µ∗2 = {1, 2, 3}, [Eρ̃∗
2
(1, ·)]µ∗

2
= {1, 2, 3}.

Step 2: For l = 1, 2, we formulate the conditional optimization problem:
First we consider the case l = 1

g
(
{1, 2} ∩

[
∅ ∪ {1} ∪ {2} ∪ {1, 2}

])
= g({1, 2})=∨(0.6, 1)=1⇒min

or
◦
M ′

∗11 = {1, 2}, since g(
◦
M ′

∗11) = 0.7 ≥ µ∗1.

Analogously we obtain
◦
M∗′

11 = {1, 2}, A2
∗1 = A2

∗0 ∪
◦
M ′

∗11 = {1, 2} = A∗2
1 .

Further, by formula (25) we construct the functions α∗l and α∗
l for l = 1:

α2
∗1(x

′) = α2
∗0(x

′) ∨
[
µE ̂̃

Q∗
(·,τ1)(x

′) ∧ IA2
∗1
(x′)

]
=

{
0, x′ ∈ {1, 2},
0.4 x′ ∈ {3, 4}.

Analogously, we find that α∗2
1 (x′) = α2

∗1(x
′).

Now let us consider the case l = 2:

∧
{
g
(
{1, 2, 3} ∩ [{1, 2} ∪ ({1} ∪ {2})], . . . , g

(
{1, 2, 3} ∩ [{1, 2} ∪ ({1, 2} ∪ ({1, 2, 3}{2, 3, 4}))]

}
⇒ min .

Clearly, a minimum is attained at g({1, 2}∪{1}∪{2}) = g({1, 2}) or
◦
M ′

∗22 = {1},
◦
M ′

∗23 = {2} since g(
◦
M ′

∗22) ≥ µ∗2

and g(
◦
M ′

∗23) ≥ µ∗2.
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Thus we obtain A2
∗2 = A2

∗1 ∪
◦
M ′

∗22 ∪
◦
M ′

∗23 = {1, 2}.
Analogously, we obtain A∗2

2 = {1, 2}. Then

β∗2(x
′) = α2

∗2(x
′) = α2

∗1(x
′) ∨

[
µE ̂̃

Q∗
(·,τ2)(x

′) ∧ IA2
∗2
(x′)

]
= (1/0.4, 2/0.6, 3/0.4, 4/0.4).

Analogously, β∗
2(x

′) = β∗2(x
′).

Step 3: Using (24), we construct Eρ̃∗3(1, ·) and Eρ̃∗
3
(1, ·):

µρ̃∗3(1, x
′) =

[
µρ̃∗2(1, x

′) ∨ µE ̂̃
Q∗

(·,τ1)
]
∧ β∗2(x

′).

Then

Eρ̃∗3(1, ·) =
[
(1/1, 2/0.8, 3/0.5, 4/0.2) ∨ 0.4

]
∧
[
1/0.4, 2/0.6, 3/0.4, 4/0.4

]
=

(
1/0.4, 2/0.6, 3/0.5, 4/0.4

)
= Eρ̃∗

3
(1, ·).

The model output estimate is calculated by (13):

µEQ̃∗
(·,τ1)(1) = �

∫
X

[
µρ̃∗3(1, x

′) ∧ µÃ∗0τ3
(x′)

]
◦ g(·)

= �
∫
X

[
(1/0.4, 2/0.6, 3/0.5, 4/0.4) ∧ (1/0.8, 2/0.7, 3/0.4, 4/0.2)

]
◦ g(·)

= 0.4 = µE ̂̃
Q∗

(·,τ3)(1),

i.e., the model value coincides with the true expert valuations (output values). Analogously,

µEQ̃∗ (·,τ3)(i) = �
∫
X

[
µρ̃∗

3
(i, x′) ∧ µÃ∗

0τ3

(i)
]
◦ g(·) = µEQ̃∗ (·,τ3)(i), i = 2, 3, 4.

Repeating steps 1)–3) for x = 2, 3, 4, we obtain

Eρ̃∗3(2, ·) = (1/0.6, 2/0, 3/0, 4/0) = Eρ̃∗
3
(2, ·),

Eρ̃∗3(3, ·) = (1/0, 2/0, 3/0.5, 4/0) = Eρ̃∗
3
(3, ·),

Eρ̃∗3(4, ·) = (1/0.4, 2/0, 3/0.5, 4/0) = Eρ̃∗
3
(4, ·).

This completes the construction of the estimate (ρ̃∗3, ρ̃
∗
3) of the transition operator (ρ̃∗, ρ̃

∗):

ρ̃∗3 = ρ̃∗3 =


0.4 0.6 0.5 0.4
0.6 0 0 0
0 0 0.5 0
0.4 0 0.5 0

 .

For the step i = 3, the model extremal fuzzy output states of the SDEFDS look like

µEQ̃∗
(·,τj)(i) = �

∫
X

[
µρ̃∗3(i, x

′) ∧ µÃ∗0τj
(x′)

]
◦ g(·),

µEQ̃∗ (·,τj)(i) = �
∫
X

[
µρ̃∗

3
(i, x′) ∧ µÃ∗

0τj

(x′)
]
◦ g∗(·).

Then, comparing the output results, we obtain{EQ̃∗
(·, τ1) = (1/0.6, 2/0.6, 3/0.5, 4/0.4) = EQ̃∗(·, τ1),

E ̂̃
Q∗

(·, τ1) = (1/0.6, 2/0.6, 3/0.4, 4/0.4) = E ̂̃
Q

∗(·, τ1),{EQ̃∗
(·, τ2) = (1/0.6, 2/0.4, 3/0.5, 4/0.4) = EQ̃∗(·, τ2),

E ̂̃
Q∗

(·, τ2) = (1/0.4, 2/0.6, 3/0.4, 4/0.4) = E ̂̃
Q

∗(·, τ2),{EQ̃∗
(·, τ3) = (1/0.4, 2/0.6, 3/0.5, 4/0.4) = EQ̃∗(·, τ3),

E ̂̃
Q∗

(·, τ3) = (1/0.4, 2/0.6, 3/0.4, 4/0.5) = E ̂̃
Q

∗(·, τ3).
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It is obvious that there exists a sufficiently good coincidence of model and expert valuations of true extremal fuzzy
states of the SDEFDS.

Based on a complete calculation mechanism, the software is designed to solve the constructed discrete optimization
model.

6 Conclusion

Based on the results presented in the papers [34–36], we have considered questions of the fuzzy optimization of extremal
processes, where:

a) The general EFDS model is described. The dualization of a time structure forms the most important part of the
fuzzy instrument of modeling and optimization of SDEFDS;

b) the SDEFDS model with fuzzy uncertainty is introduced, the source of which is ”fuzzy measurement” (”expert
reflections” on the states of SDEFDS) of the system state in the so-called current and future discrete sequence of fuzzy
time intervals.

c) a method has been developed for identifying of the transition operator of an SDEFDS by using the fuzzy-integral
model (14) and the information on realized N input-output pairs (16).

d) the restoration of the transition operator by expert data in the model (14) is a nonregular problem. In order to
obtain a unique (in a certain sense) quasi-optimal solution of the identification problem, the regularization conditions
are introduced: for SDEFDS this is the extremalization of the initial fuzzy measure functions (19) by the corresponding
expert-extremal data (16);

e) the respective algorithm of identification of (ρ̃∗, ρ̃
∗) has been developed. The results obtained are illustrated by

the example with a finite set of SDEFDS states. A good agreement between the estimates obtained by the proposed
method and expert data is observed.

f) currently we work on practical applicability of the results. Namely in modeling and controlling complex industrial
processes. We are close to finish the work on analysis and synthesis problems of fuzzy-extremal processes for intuitionistic
and q-rung orthopair fuzzy environments.
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