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Abstract

In this article, we propose a new distance measure between intuitionistic fuzzy sets(IFSs), which takes into account the
membership degree, non-membership degree, and their difference between membership and non-membership degree of
intuitionistic fuzzy sets, as well as the exponential distance measure to avoid information loss. Meanwhile we prove that
it satisfies the axiomatic definition of distance measure, and do comparison analysis with some widely used distance
measures. Finally, we apply our distance measure in pattern recognition, these results show that our distance measure
can significantly overcome the drawback of information loss and have more widely application scope.

Keywords: Intuitionistic fuzzy set, distance measure, exponential distance measure, pattern recognition, decision mak-
ing.

1 Introduction

As a generalization of Zadeh’s traditional fuzzy set(FS) [30], intuitionistic fuzzy set(IFS) was introduced by Atanassov
[1] in 1986, which its most significant feature is that it consists of both membership function and non-membership
function, and can clearly express the evidence, hence it has the ability to handle the vagueness and hesitancy lying in
imprecise information or knowledge. Being a very useful tool in modeling real life problems, IFS has attracted a large
number of researchers to study the topic, and apply it in many fields such as decision making and evaluation system,
image segmentation, clustering analysis, pattern recognition and so on. For example, Atanassov et al. [2, 3] investigated
IFS and its some operations, Chaira et al. [4, 5] investigated intuitionistic fuzzy C-means clustering(IFCM) algorithm
and applied in medical image segmentation and edge detection, Pedro et al. [19] investigated IFCM algorithm and
applied in image segmentation, Xu et al. [29] investigated intuitionistic fuzzy clustering analysis based on transitive
closure method, Hung et al. [14] investigated the divergence of IFS and applied in pattern recognition, Vlachos
and Sergiadis [22] used intuitionistic fuzzy information and applied in pattern recognition, Wei [25] investigated gray
relational analysis of IFS and applied group decision making, Chen et al. [6] proposed the score function of IFS and
applied in multiple criteria decision making, Liu et al. [17] investigated multi-criteria decision making methods based
on IFS environment, Wang et al. [24] investigated multi-criteria decision making method with incomplete information
based on IFS environment, Xu [27] investigated intuitionistic preference relation and applied in group decision making.

Considering that the information measure is an important feature in describing fuzzy system and its system structure,
generally speaking, information measure includes similarity measure, distance measure, entropy and inclusion measure,
and it has extensively been applied in decision making, data mining, image segmentation and other artificial intelligence
fields, hence information measure is extended to IFS theory. Many researchers have investigated the topic and obtained
some meaningful achievement. For example, Chen et al. [8, 9] investigated the entropy measure of IFS to determine the
objective weight, respectively, Xia et al. [26] investigated entropy and cross entropy of IFS and applied group decision
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making, Gou et al. [10, 11] proposed exponential operators under intuitionistic fuzzy numbers and interval-valued
intuitionistic fuzzy numbers and gave their application in decision making, Hung et al. [13] investigated the similarity
measure between IFSs based on Lp metric, Szmidt and Kacprzyk [21] used membership degree, non-membership degree
and hesitancy degree of IFS to propose the distance measure between IFSs, Wang et al. [23] improved the formula
to calculate the distance measure between IFSs and applied in pattern recognition, Zhang et al. [31] investigated the
distance measure between IFSs and interval-valued fuzzy sets, Papakostas et al. [18] and Xu et al. [28] compared and
analyzed distance measure and similarity measure between IFSs, and proposed some applications, respectively, Li et
al. [15] investigated the relationship between similarity measure and entropy of intuitionistic fuzzy sets based on their
axiomatic definitions, Huang et al. [12] proposed novel distance measure and score function under Pythagorean fuzzy
environments, Lin et al. [16] proposed distance measure combining correlation coefficient measures, Chen and Deng
[7] investigated novel distance measures under IFS and IVIFS, Rezaei [20] gave novel distance measures under hesitant
soft environments.

However, aimed at the complexity in the real application, some existing distance measures for intuitionistic fuzzy
sets have some shortcomings, we think that it is necessary to reconsider the distance measure between IFSs and
investigate its properties. In this article, we introduce the exponential function to enlarge influence of membership
degree, and propose a novel distance measure to overcome the shortcoming of existing distance measures in which the
distance measure consists of two part. The first part can describe membership degree difference through exponential
function and the second part concludes membership degree and non-membership degree. These two parts can describe
intuitionistic fuzzy number comprehensively and focus on membership degree more. Meanwhile, we do comparison
analysis with some existing distance measures between IFSs, and apply in pattern recognition, the experiment results
show that our distance measure has good performance and can provide more objective in specific scenarios.

This article is organized as follows. In Section 2, some basic notions and some existing distance measures between
IFSs are introduced. In Section 3, we propose a novel distance measure between IFSs, and do comparison analysis with
some existing distance measures by using several data. In Section 4, we apply our novel distance measure into pattern
recognition to illustrate its effectiveness. The conclusion is given in the last Section.

2 Preliminary

Throughout this study, let X = {x1, x2, · · · , xn} be an nonempty set, we use IFS to denote the intuitionistic fuzzy set
in X, and A, B and C are intuitionistic fuzzy subsets(IFSs) in X.

Definition 2.1. [1] An intuitionistic fuzzy set(IFS) in X, A, is defined as follows:

A = {< x, µA(x), νA(x) > |x ∈ X},

where µA(x) → [0, 1] and νA(x) → [0, 1] denote the membership degree and non-membership degree of an element x ∈ X
belonging to set A, respectively. And it satisfies the property: 0 ≤ µA(x)+ νA(x) ≤ 1. Here, πA(x) = 1−µA(x)− νA(x)
denotes the hesitancy degree of an element x ∈ X belonging to set A.

Specially, if µA(x) + νA(x) = 1, for all x in X, then the intuitionistic fuzzy set becomes the classical fuzzy set(FS).

Definition 2.2. [1] Some operations of intuitionistic fuzzy sets were defined as follows.
(1) A ⊆ B iff ∀X ∈ X, µA(x) ≤ µB(x) and νA(x) ≥ νB(x);
(2) A = B iff ∀X ∈ X, µA(x) = µB(x) and νA(x) = νB(x);
(3) Ac = {< x, νA(x), µA(x) > |x ∈ X}, where Ac is called as the complement of intuitionistic fuzzy set A.

Definition 2.3. [22] Let d be a mapping, d: IFSs×IFSs → [0, 1]. If d(A,B) satisfies the following properties, then
d(A,B) is called as the distance measure between intuitionistic fuzzy sets A and B.

(1) 0 ≤ d(A,B) ≤ 1;
(2) d(A,B) = d(B,A);
(3) d(A,B) = 0 iff A = B;
(4) If A ⊆ B ⊆ C, then d(A,C) ≥ d(A,B) and d(A,C) ≥ d(B,C).

It is well known that the distance measure between fuzzy sets is an important research topic in fuzzy set theory,
which indicates the discrepancy between fuzzy sets. In this section, we will recall several widely used distance measures
between intuitionistic fuzzy sets. For intuitionistic fuzzy sets

A = {< x, µA(x), νA(x) > |x ∈ X}, B = {< x, µB(x), νB(x) > |x ∈ X},
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d(A,B) is the distance measure between IFSs A and B. We will present some existing distance measures between IFSs
in the following.

The distance measures of Szmidt and Kacprzyk [21]:

dhSK(A,B) =

∑n
i=1[|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|+ |πA(xi)− πB(xi)|]

2
,

dnhSK(A,B) =

∑n
i=1[|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|+ |πA(xi)− πB(xi)|]

2n
,

deSK(A,B) =

√∑n
i=1[(µA(xi)− µB(xi))2 + (νA(xi)− νB(xi))2 + (πA(xi)− πB(xi))2]

2
,

dneSK(A,B) =

√∑n
i=1[|µA(xi)− µB(xi)|2 + |νA(xi)− νB(xi)|2 + (πA(xi)− πB(xi))2]

2n
,

The distance measure of Xu et al. [28]:

dX(A,B) =

[∑n
i=1 |µA(xi)− µB(xi)|α + |νA(xi)− νB(xi)|α + |πA(xi)− πB(xi)|α

2

] 1
α

,

dnX(A,B) =

[∑n
i=1 |µA(xi)− µB(xi)|α + |νA(xi)− νB(xi)|α + |πA(xi)− πB(xi)|α

2n

] 1
α

,

Xu et al. [28] also considered the weighted distance measures, which take into account the weight of every element
xi ∈ X, wi, as follows:

dwX(A,B) =

[∑n
i=1 wi(|µA(xi)− µB(xi)|α + |νA(xi)− νB(xi)|α + |πA(xi)− πB(xi)|α)

2

] 1
α

,

dnwX(A,B) =

[∑n
i=1 wi(|µA(xi)− µB(xi)|α + |νA(xi)− νB(xi)|α + |πA(xi)− πB(xi)|α)

2n

] 1
α

,

The distance measure of Wang and Xin [23]:

dWX1(A,B) =
n∑

i=1

wi

[
|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|

4
+

max(|µA(xi)− µB(xi)|, |νA(xi)− νB(xi)|)
2

]
,

dWX2(A,B) =

∑n
i=1[|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|]

2n
.

The distance measure of Zhang and Yu [31]:
Firstly, intuitionistic fuzzy sets A′ and B′ are transformed into the symmetric triangular fuzzy numbers A =

(µA,mA, 1 − νA) and B = (µB ,mB , 1 − νB), respectively, where mA = (µA + 1 − νA)/2 and mB = (µB + 1 − νB)/2.
Without loss of generality, suppose that mA ≤ mB .

Secondly, let µA(t) and µB(t) be the membership functions of symmetric triangular fuzzy number A and symmetric
triangular fuzzy number B, respectively, and be given as follows:

µA(t) =


(t− µA)/(mA − µA), µA ≤ t ≤ mA

(1− νA − t)/(1− νA −mA), mA ≤ t ≤ νA

0, Otherwise

µB(t) =


(t− µB)/(mB − µB), µB ≤ t ≤ mB

(1− νB − t)/(1− νB −mB), mB ≤ t ≤ νB

0, Otherwise

Hence, the distance measure between IFSs A′ and B′ is defined as follows:
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dZY (A
′, B′) = U − I,

where U =
∫mA

0
max(µA(t), µB(t))dt+ |mB −mA|+

∫ 1

mB
max(µA(t), µA(t))dt and I =

∫ 1

0
min(µA(t), µB(t))dt.

The distance measures of Hung and Yang [14]:

dHY1(A,B) =
1

n

n∑
i=1

min(µA(xi), µB(xi)) +min(νA(xi), νB(xi))

max(µA(xi), µB(xi)) +max(νA(xi), νB(xi))
,

dHY2(A,B) =
1

n

n∑
i=1

1− (|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|)
2

,

dHY3(A,B) =

∑n
i=1(min(µA(xi), µB(xi)) +min(νA(xi), νB(xi)))∑n
i=1(max(µA(xi), µB(xi)) +max(νA(xi), νB(xi)))

,

dHY4(A,B) = 1− max(|µA(xi)− µB(xi)|+max(|νA(xi)− νB(xi)|)
2

,

dHY5(A,B) = 1−
∑n

i=1(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|)∑n
i=1(|µA(xi) + µB(xi)|+ |νA(xi) + νB(xi)|)

.

Vlachos and Sergiadis [22] introduced the discrimination degree between IFSs, which is denoted by IIFS(A,B) and
can also be called the discrimination information of IFSs as follows:

IIFS(A,B) =
n∑

i=1

[
µA(xi)ln

2µA(xi)

µA(xi) + µB(xi)
+ νA(xi)ln

2νA(xi)

νA(xi) + νB(xi)

]
.

Therefore, the distance measure between IFSs A and B was defined as follows:

dV S(A,B) = IIFS(A,B) + IIFS(B,A).

3 Novel distance measure between intuitionistic fuzzy sets

In this section, we will present a new method to calculate the distance measure between intuitionistic fuzzy sets. The
proposed method will combine some information of intuitionistic fuzzy set including the membership degree, non-
membership degree and their difference between membership and non-membership degree of intuitionistic fuzzy sets,
as well as the exponential distance to avoid information loss.

Suppose that A = {< x, µA(x), νA(x) > |x ∈ X} and B = {< x, µB(x), νB(x) > |x ∈ X} are intuitionistic fuzzy
sets in X, then the novel distance measure between IFSs A and B is defined as follows.

d(A,B) =

∑n
i=1 dei(A,B)× dµνi

(A,B)

n
,

where
dei(A,B) = e|µA(xi)−µB(xi)|−1

dµνi
(A,B) =

|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|
2

.

Here, dei(A,B) denotes the exponential distance measure, which is determined by the difference of the ith member-
ship degree between A and B, dµνi

(A,B) denotes the average including absolute value of ith membership degree and
non-membership degree between A and B.

Theorem 3.1. d(A,B) is the distance measure between intuitionistic fuzzy sets A and B.
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Proof. (1) d(A,B) ∈ [0, 1];
Because µA(xi), µB(xi), νA(xi) and νB(xi) ∈ [0, 1], thus, we have
1)

|µA(xi)− µB(xi)| ∈ [0, 1] =⇒ |µA(xi)− µB(xi)| − 1 ∈ [−1, 0]

=⇒ e|µA(xi)−µB(xi)|−1 ∈ [e−1, 1] ⊂ [0, 1]

=⇒ 0 < dei(A,B) ≤ 1.

2)

|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)| ∈ [0, 2] =⇒ |µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|
2

∈ [0, 1]

=⇒ 0 ≤ dµνi
(A,B) ≤ 1.

Hence,

dei(A,B)× dµνi
(A,B) ∈ [0, 1] =⇒

∑n
i=1 dei(A,B)× dµνi

(A,B)

n
∈ [0, 1].

(2) d(A,B) = d(B,A) is obvious;
(3) d(A,B) = 0 iff A = B;

1) Sufficiency: If d(A,B) = 0, then for every xi, we have dµνi
(A,B) = 0, which means

|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|
2

= 0 =⇒ |µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)| = 0.

Namely, {
|µA(xi)− µB(xi)| = 0

|νA(xi)− νB(xi)| = 0

Hence, we can have µA(xi) = µB(xi) and νA(xi) = νB(xi), for every xi. That means A = B.
2) Necessity: If A = B, then it means that for every xi, we have µA(xi) = µB(xi), νA(xi) = νB(xi), thus,

That is,

dµνi
(A,B) =

|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|
2

= 0

=⇒ d(A,B) =

∑n
i=1 dei(A,B)× dµνi

(A,B)

n
= 0.

(4) For A ⊆ B ⊆ C, then we have d(A,C) ≥ d(A,B) and d(A,C) ≥ d(B,C).
If A ⊆ B ⊆ C, known by Definition 2.2, we have{

µA(xi) ≤ µB(xi) ≤ µC(xi)

νA(xi) ≥ νB(xi) ≥ νC(xi)

Then, we can get 
|µA(xi)− µC(xi)| ≥ |µA(xi)− µB(xi)|
|µA(xi)− µC(xi)| ≥ |µB(xi)− µC(xi)|
|νA(xi)− νC(xi)| ≥ |νA(xi)− νB(xi)|
|νA(xi)− νC(xi)| ≥ |νB(xi)− νC(xi)|

Further, we can get {
e|µA(xi)−µC(xi)|−1 ≥ e|µA(xi)−µB(xi)|−1

|µA(xi)−µC(xi)|+|νA(xi)−νC(xi)|
2 ≥ |µA(xi)−µB(xi)|+|νA(xi)−νB(xi)|

2

That is, {
dei(A,C) ≥ dei(A,B)

dµνi
(A,C) ≥ dµνi

(A,B)

Namely, we have d(A,C) ≥ d(A,B).
Similarly, we have d(A,C) ≥ d(B,C).
Hence, we complete the proof of Theorem 3.1.
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Theorem 3.2. For IFSs A and B, suppose that wi is the weight of element xi, wi ∈ [0, 1],
∑n

i wi = 1, then dw(A,B)
is the distance measure between intuitionistic fuzzy sets A and B.

dw(A,B) =

∑n
i=1 dwei(A,B)× dwµνi

(A,B)

n
,

where
dwei(A,B) = ewi|µA(xi)−µB(xi)|−1

dwµνi
(A,B) =

wi|µA(xi)− µB(xi)|+ wi|νA(xi)− νB(xi)|
2

.

The proof is similar to that of Theorem 3.1.
Furthermore, we will make comparison analysis with some existing distance measures between IFSs by the following

7 group data which are adapted from Zhang and Yu [31], and which is listed in Table 1 and Table 2.

Table 1: Pattern recognition data of two elements
A1 A2 B

1 {(0.1, 0.2), (0.1, 0.7)} {(0.3, 0.4), (0.75, 0.15)} {(0.4, 0.5), (0.4, 0.4)}
2 {(0.1, 0.3), (0.3, 0.3)} {(0.2, 0.2), (0.4, 0.2)} {(0.4, 0.4), (0.6, 0.4)}
3 {(0.4, 0.5), (0.3, 0.4)} {(0.5, 0.4), (0.4, 0.3)} {(0.1, 0.1), (0.5, 0.5)}

Table 2: Pattern recognition data of three elements
A1 A2 A3 B

1 {(0.1, 0.1), (0.1, 0.3), (0.1, 0.9)} {(0.7, 0.2), (0.1, 0.8), (0.4, 0.4)} {(0.4, 0.4), (0.6, 0.2), (0, 0.8)}
2 {(0.4, 0.5), (0.7, 0.1), (0.3, 0.3)} {(0.5, 0.4), (0.7, 0.2), (0.4, 0.3)} {(0.5, 0.4), (0.7, 0.1), (0.4, 0.3)} {(0.1, 0.1), (1, 0), (0, 1)}
3 {(0.2, 0.3), (0.1, 0.4), (0.2, 0.6)} {(0.3, 0.2), (0.4, 0.1), (0.5, 0.3)} {(0.2, 0.3), (0.4, 0.1), (0.5, 0.3)} {(0.1, 0.2), (0.4, 0.5), (0, 0)}
4 {(0.2, 0.4), (0.1, 0.4), (0.1, 0.5)} {(0.3, 0.3), (0.2, 0.3), (0.4, 0.3)} {(0, 0), (0, 0), (0, 0)}

Table 3 and Table 4 represent the distance measures by different calculation methods based on Table 1 and Table
2, respectively, where di(Ak, B), i = 1, 2, 3, 4, k = 1, 2, 3, represents the distance measure based on ith group data in
Table 1 or Table 2.

Table 3: Distance measures by different calculation methods based on Table 1
d1(A1, B) d1(A2, B) d2(A1, B) d2(A2, B) d3(A1, B) d3(A2, B)

dhSK 0.900 0.550 0.800 0.800 1.000 1.000
dnhSK 0.450 0.275 0.400 0.400 0.500 0.500
deSK 0.600 0.357 0.510 0.490 0.663 0.663
dneSK 0.424 0.252 0.361 0.346 0.469 0.469
dX(α = 3) 0.545 0.326 0.451 0.431 0.617 0.617
dX(α = 4) 0.533 0.319 0.429 0.412 0.614 0.614
dnX(α = 3) 0.433 0.259 0.358 0.342 0.490 0.490
dnX(α = 4) 0.449 0.269 0.361 0.346 0.516 0.516
dwX(α = 3) 0.273 0.163 0.226 0.215 0.309 0.309
dwX(α = 4) 0.267 0.160 0.214 0.206 0.307 0.307
dnwX(α = 3) 0.216 0.130 0.179 0.171 0.245 0.245
dnwX(α = 4) 0.224 0.134 0.180 0.173 0.258 0.258
dWX1 0.300 0.213 0.250 0.200 0.275 0.275
dWX2 0.300 0.200 0.200 0.200 0.250 0.250
dZY 0.350 0.238 0.231 0.200 0.256 0.256
dHY1 0.394 0.628 0.550 0.550 0.461 0.461
dHY2 0.200 0.300 0.300 0.300 0.250 0.250
dHY3 0.400 0.610 0.556 0.556 0.474 0.474
dHY4 0.700 0.700 0.800 0.800 0.650 0.650
dHY5 0.571 0.758 0.714 0.714 0.643 0.643
dV S 0.301 0.126 0.162 0.122 0.273 0.273
d 0.149 0.099 0.099 0.090 0.121 0.127
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Table 4: Distance measures by different calculation methods based on Table 2
d1(A1, B) d1(A2, B) d2(A1, B) d2(A2, B) d2(A3, B) d3(A1, B) d3(A2, B) d3(A3, B) d4(A1, B) d4(A2, B)

dhSK 1.300 1.300 1.700 1.700 1.700 1.400 1.400 1.400 1.700 1.800
dnhSK 0.433 0.433 0.567 0.567 0.567 0.467 0.467 0.467 0.567 0.600
deSK 0.714 0.735 0.900 0.900 0.900 0.825 0.831 0.825 0.894 0.911
dneSK 0.412 0.424 0.520 0.520 0.520 0.476 0.480 0.476 0.516 0.526
dX(α = 3) 0.617 0.632 0.767 0.767 0.767 0.748 0.739 0.737 0.743 0.756
dX(α = 4) 0.586 0.596 0.727 0.727 0.727 0.733 0.719 0.719 0.684 0.704
dnX(α = 3) 0.428 0.439 0.532 0.532 0.532 0.519 0.513 0.511 0.515 0.524
dnX(α = 4) 0.445 0.453 0.552 0.552 0.552 0.557 0.546 0.546 0.520 0.535
dwX(α = 3) 0.206 0.211 0.256 0.256 0.256 0.249 0.246 0.246 0.248 0.252
dwX(α = 4) 0.195 0.199 0.242 0.242 0.242 0.244 0.240 0.240 0.228 0.235
dnwX(α = 3) 0.143 0.146 0.177 0.177 0.177 0.173 0.171 0.170 0.172 0.175
dnwX(α = 4) 0.148 0.151 0.184 0.184 0.184 0.186 0.182 0.182 0.173 0.178
dWX1 0.267 0.417 0.408 0.425 0.417 0.283 0.300 0.283 0.358 0.317
dWX2 0.233 0.400 0.350 0.383 0.367 0.233 0.233 0.233 0.283 0.300
dZY 0.296 0.483 0.401 0.418 0.410 0.267 0.314 0.283 0.349 0.305
dHY1 0.461 0.364 0.363 0.340 0.358 0.385 0.385 0.385 0.000 0.000
dHY2 0.267 0.100 0.150 0.117 0.133 0.267 0.267 0.267 0.217 0.200
dHY3 0.481 0.351 0.364 0.343 0.353 0.364 0.364 0.364 0.000 0.000
dHY4 0.600 0.450 0.500 0.450 0.450 0.550 0.550 0.550 0.650 0.650
dHY5 0.650 0.520 0.533 0.511 0.522 0.533 0.533 0.533 0.000 0.000
dV S 0.473 0.812 0.745 0.883 0.814 0.684 0.752 0.727 1.178 1.248
d 0.124 0.226 0.174 0.206 0.192 0.107 0.120 0.119 0.120 0.151

Remark 3.3. Known from Table 3 and Table 4, our proposed distance has good judgment and recognition ability.

4 Pattern recognition applications

In this section, we will use our proposed distance measure and apply in the pattern recognition field.

Example 4.1. (Data from Wang et al. [23]) The pattern recognition of building material. Here, there exist four
types of building materials which are represented intuitionistic fuzzy sets A1, A2, A3 and A4 in the feature set X =
{x1, x2, x3, x4, x5, x5, x6, x7, x8, x9, x10, x11, x12}, respectively, and the data was given in Table 5, where IFS B is a kind
of unknown building material, we try to justify which type of building material the IFS B should belong to.

Table 5: Building material data
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

uA1(x) 0.173 0.102 0.530 0.965 0.420 0.008 0.331 1.000 0.215 0.432 0.750 0.432
vA1(x) 0.524 0.818 0.326 0.008 0.351 0.956 0.512 0.000 0.625 0.534 0.126 0.430
uA2(x) 0.510 0.627 1.000 0.125 0.026 0.732 0.556 0.650 1.000 0.145 0.047 0.760
vA2(x) 0.365 0.125 0.000 0.648 0.823 0.153 0.303 0.267 0.000 0.762 0.923 0.231
uA3(x) 0.495 0.603 0.987 0.073 0.037 0.690 0.147 0.213 0.501 1.000 0.324 0.045
vA3(x) 0.387 0.298 0.006 0.849 0.923 0.268 0.812 0.653 0.284 0.000 0.483 0.912
uA4(x) 1.000 1.000 0.857 0.734 0.021 0.076 0.152 0.113 0.489 1.000 0.386 0.028
vA4(x) 0.000 0.000 0.123 0.158 0.896 0.912 0.712 0.756 0.389 0.000 0.485 0.912
uB(x) 0.978 0.980 0.798 0.693 0.051 0.123 0.152 0.113 0.494 0.987 0.376 0.012
vB(x) 0.003 0.012 0.132 0.213 0.876 0.756 0.721 0.732 0.368 0.000 0.423 0.897

Then we have the following calculation results in Table 6.
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Table 6: Distance measure between IFSs Ai and B, i = 1, 2, 3, 4 by difference calculation methods
d(A1, B) d(A2, B) d(A3, B) d(A4, B)

dhSK 5.717 5.829 2.695 0.512
dnhSK 0.476 0.486 0.225 0.043
deSK 1.724 1.709 1.023 0.181
dneSK 0.498 0.493 0.295 0.052
dX(α = 3) 1.247 1.197 0.808 0.148
dX(α = 4) 1.091 1.023 0.733 0.142
dnX(α = 3) 0.545 0.523 0.353 0.065
dnX(α = 4) 0.586 0.550 0.394 0.076
dwX(α = 3) 0.104 0.100 0.067 0.012
dwX(α = 4) 0.104 0.085 0.061 0.012
dnwX(α = 3) 0.045 0.044 0.029 0.005
dnwX(α = 4) 0.049 0.046 0.033 0.006
dWX1 0.454 0.460 0.211 0.034
dWX2 0.431 0.436 0.198 0.027
dZY 5.808 5.765 2.754 0.492
dHY1 0.387 0.384 0.698 0.944
dHY2 0.069 0.064 0.302 0.473
dHY3 0.349 0.349 0.643 0.943
dHY4 0.153 0.198 0.372 0.893
dHY5 0.518 0.517 0.783 0.971
dV S 4.167 3.982 1.499 0.042
d 0.295 0.287 0.116 0.010

Remark 4.2. In the engineering application field, recognition of building materials is a practical problem. Hence, we
choose this problem to make comparison experiments between proposed method and existing methods. Known from the
calculation results in Table 6, we can find that A4 should approach B. Obviously, this result is the same as Wang and
Xin’s.

Example 4.3. (Data from Wang et al. [23]) The pattern recognition of mineral. Here, there exist five kinds of hybrid
minerals which are represented intuitionistic fuzzy sets A1, A2, A3, A4 and A5 in the feature set X = {x1, x2, x3, x4, x5, x5, x6},
respectively, and the data was given in Table 7, where IFS B is another kind of unknown hybrid mineral, now we want
to justify which kind of mineral the IFS B should belong to.

Table 7: Mineral data
x1 x2 x3 x4 x5 x6

uA1(x) 0.739 0.033 0.188 0.492 0.020 0.739
vA1(x) 0.125 0.818 0.626 0.358 0.628 0.125
uA2(x) 0.124 0.030 0.048 0.136 0.019 0.393
vA2(x) 0.665 0.825 0.800 0.648 0.823 0.653
uA3(x) 0.449 0.662 1.000 1.000 1.000 1.000
vA3(x) 0.387 0.298 0.000 0.000 0.000 0.000
uA4(x) 0.280 0.521 0.470 0.295 0.188 0.735
vA4(x) 0.715 0.368 0.423 0.658 0.806 0.118
uA5(x) 0.326 1.000 0.182 0.156 0.049 0.675
vA5(x) 0.452 0.000 0.725 0.765 0.896 0.263
uB(x) 0.629 0.524 0.210 0.218 0.069 0.658
vB(x) 0.303 0.356 0.689 0.753 0.876 0.256

Then we can obtain the following calculation results in Table 8.
Known by the calculation results in Table 8, we can find that A5 should approach B. Obviously, this result is the

same as Wang and Xin’s.

Remark 4.4. In this example, we use a practical mineral task to compare different distance measures. Firstly, we
collect the data described by intuitionistic fuzzy set; Secondly, we calculate these distance measures between the samples
A1 − A4 and B. All the experiment results show that our method can provide the minimal distance measure in order
to illustrate the most closeness A4 and B. And among these distance measures, our method can provide more accurate
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Table 8: Distance measure between IFSs Ai and B, i = 1, 2, 3, 4, 5 by difference calculation methods
d(A1, B) d(A2, B) d(A3, B) d(A4, B) d(A5, B)

dhSK 1.577 1.848 3.163 1.042 0.921
dnhSK 0.263 0.308 0.527 0.174 0.154
deSK 0.685 0.783 1.448 0.500 0.508
dneSK 0.280 0.320 0.591 0.204 0.207
dX(α = 3) 0.561 0.631 1.179 0.427 0.456
dX(α = 4) 0.521 0.578 1.075 0.405 0.443
dnX(α = 3) 0.309 0.347 0.649 0.235 0.251
dnX(α = 4) 0.333 0.369 0.687 0.259 0.283
dwX(α = 3) 0.094 0.105 0.196 0.071 0.076
dwX(α = 4) 0.087 0.096 0.179 0.068 0.074
dnwX(α = 3) 0.051 0.058 0.108 0.039 0.042
dnwX(α = 4) 0.055 0.062 0.114 0.043 0.047
dWX1 0.230 0.270 0.509 0.165 0.138
dWX2 0.209 0.255 0.490 0.156 0.124
dZY 1.521 1.738 3.105 1.109 0.915
dHY1 0.642 0.590 0.393 0.734 0.793
dHY2 0.291 0.245 0.010 0.343 0.376
dHY3 0.613 0.556 0.317 0.711 0.763
dHY4 0.524 0.513 0.097 0.620 0.584
dHY5 0.760 0.715 0.481 0.831 0.865
dV S 0.585 0.829 2.888 0.305 0.395
d 0.104 0.138 0.386 0.074 0.066

results. For example, when two samples are very close according many distance measures, our proposed method can
provide more accurate level of closeness.

5 Conclusion

Aimed at the intuitionistic fuzzy information in real life, we propose a novel distance measure between intuitionistic
fuzzy sets and prove that our proposed distance measure satisfy the axiomatic definition of distance measure. In the
article, we make a comparative analysis with some existing distance measures between intuitionistic fuzzy sets and
apply into pattern recognition field, these results show the effectiveness of our proposed distance measure.

It needs to point out that we have some work to do in the future. One is to continue the investigation of the
structure of intuitionistic fuzzy set in-depth, present more and more characteristics to describe intuitionistic fuzzy
set based on the different problem background, and generalize its application scope to some fields such as medical
diagnosis, fault diagnosis, risk analysis, decision making and evaluation system, and so on. The other is to further
research the information measure between intuitionistic fuzzy sets, and investigate their relationship based on their
axiomatic definitions.
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