A NEW ANALYTICAL METHOD FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS

Document Type : Research Paper

Authors

1 School of Mathematics and Computer Applications, Thapar University, Patiala, 147004, India

2 School of Mathematics and Computer Applications, Thapar Univer- sity, Patiala, 147004, India

Abstract

In the literature, several numerical methods are proposed for solving
nth-order fuzzy linear diff erential equations. However, till now there are
only two analytical methods for the same. In this paper, the fuzzy Kolmogorov's
di fferential equations, obtained with the help of fuzzy Markov model
of piston manufacturing system, are solved by one of these analytical methods
and illustrated that the obtained solution does not represent a fuzzy number.
To resolve the drawback of existing method, a new analytical method is proposed
for solving nth-order fuzzy linear di fferential equations. Furthermore,
the advantage of proposed method over existing method is also discussed.

Keywords


\bibitem{113-124}    S. Abbasbandy and T. Allahviranloo, {\it Numerical solutions of fuzzy differential equations by taylor method}, Computational Methods in Applied Mathematics, {\bf 2} (2002), 113--124.
\bibitem{41-52}      S. Abbasbandy and T. Allahviranloo, {\it Numerical solution of fuzzy differential equation}, Mathematical and Computational Applications, {\bf 7} (2002), 41--52.
\bibitem{117–129}    S. Abbasbandy and T. Allahviranloo, {\it Numerical solution of fuzzy differential equation by Runge-Kutta method}, Nonlinear Studies, {\bf 11} (2004), 117--129.
\bibitem{1633-1641}  S. Abbasbandy, T. Allahviranloo, O. Lopez-Pouso and J. J. Nieto, {\it Numerical methods for fuzzy differential inclusions}, Computers and Mathematics with Applications, {\bf 48} (2004), 1633--1641.
\bibitem{Abbasbandy6}S. Abbasbandy, J. J. Nieto and M. Alavi, {\it Tuning of reachable set in one dimensional fuzzy differential equations}, Chaos, Solitons and Fractals, {\bf 26} (2005), 1337--1341.
\bibitem{945-955}    T. Allahviranloo, S. Abbasbandy, N. Ahmady and E. Ahmady, {\it Improved predictor-corrector method for solving fuzzy initial value problems}, Information Sciences, {\bf 179} (2009), 945--955.
\bibitem{1633-1647}  T. Allahviranloo, N. Ahmady and A. Ahmady, {\it Numerical solution of fuzzy differential equations by predictor-corrector method}, Information Sciences, {\bf 177} (2007), 1633--1647.
\bibitem{1309-1324}  T. Allahviranloo, E. Ahmady and N. Ahmady, {\it $N^{th}$ order fuzzy linear differential equations}, Information Sciences, {\bf 178} (2008), 1309--1324.
\bibitem{Bandyopadhyay} S. Bandyopadhyay, {\it An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection}, Fuzzy Sets and Systems, {\bf 152} (2005), 5--16.
\bibitem{Barro}      S. Barro and R. Marn, {\it Fuzzy logic in medicine}, Physica-Verlag, Heidelberg, 2002.
\bibitem{Bede1}      B. Bede, {\it Note on numerical solutions of fuzzy differential equations by predictor-corrector method}, Information Sciences, {\bf 178} (2008), 1917--1922.
\bibitem{1-4}        P. T. T. Binh and T. Q. D. Khoa, {\it Application of fuzzy markov in calculating reliability of power systems}, Proceedings IEEE PES Transmission and Distribution Conference and Exposition Latin America, Venezuela, (2006), 1--4.
\bibitem{Buckley}    J. J. Buckley, K. D. Reilly and L. J. Jowers, {\it Simulating continuous fuzzy systems: I}, Iranian Journal of Fuzzy Systems, {\bf 2} (2005), 1--17.
\bibitem{Buckley1}   J. J. Buckley and T. Feuring, {\it Fuzzy differential equations}, Fuzzy Sets and Systems, {\bf 110} (2000), 43--54.
\bibitem{247-255}    J. J. Buckley and T. Feuring, {\it Fuzzy initial value problem for $N^{th}$-order fuzzy linear differential equations}, Fuzzy Sets and Systems, {\bf 121} (2001), 247--255.
\bibitem{Buckley3}   J. J. Buckley, T. Feuring and Y. Hayashi, {\it Linear system of first order ordinary differential equations: fuzzy initial conditions}, Soft Computing, {\bf 6} (2002), 415--421.
\bibitem{Cano}       Y. C. Cano and H. R. Flores, {\it On the new solution of fuzzy differential equations}, Chaos, Solitons and Fractals, {\bf 38} (2008), 112--119.
\bibitem{Cano1}      Y. C. Cano, H. R. Flores, M. A. R. Medar, O. Saavedra and M. J. Gamero, {\it The extension principle and a decomposition of fuzzy sets}, Information Sciences, {\bf 177} (2007), 5394--5403.
\bibitem{Casasnovas} J. Casasnovas and F. Rossell, {\it Averaging fuzzy biopolymers}, Fuzzy Set and Systems, {\bf 152} (2005), 139--158.
\bibitem{Chang}      B. C. Chang and S. K. Halgamuge, {\it Protein motif extraction with neuro-fuzzy optimization}, Bioinformatics, {\bf 18} (2002), 1084--1090.
\bibitem{30-34}      S. L. Chang and L. A. Zadeh, {\it On fuzzy mapping and control}, IEEE Transactions on Systems, Man and Cybernetics, {\bf 2} (1972), 30--34.
\bibitem{Cho}        Y. J. Cho and H. Y. Lan, {\it The existence of solutions for the non linear first order fuzzy differential equations with discontinuous conditions}, Dynamics Continuous Discrete Impulsive Systems Series A: Mathematical Analysis, {\bf 14} (2007), 873--884.
\bibitem{Congxin}    W. Congxin and S. Shiji, {\it Exitence theorem to the Cauchy problem of fuzzy differential equations under compactance-type conditions}, Information Sciences, {\bf 108} (1993), 123--134.
\bibitem{Diamond}    P. Diamond, {\it Time-dependent differential inclusions}, cocycle attractors and fuzzy differential equations, IEEE Transactions on Fuzzy Systems, {\bf 7} (1999), 734–-740.
\bibitem{Diamond1}   P. Diamond, {\it Brief note on the variation of constants formula for fuzzy differential equations}, Fuzzy Sets and Systems, {\bf 129} (2002), 65--71.
\bibitem{Ding}       Z. Ding, M. Ma and A. Kandel, {\it Existence of solutions of fuzzy differential equations with parameters}, Information Sciences, {\bf 99} (1997), 205--217.
\bibitem{1980}       D. Dubois and H. Prade, {\it Fuzzy sets and systems : theory and applications}, Academic Press, New York, 1980.
\bibitem{225-233}    D. Dubois and H. Prade, {\it Towards fuzzy differential calculus: Part 3, differentiation}, Fuzzy Sets and Systems, {\bf 8} (1982), 225--233.
\bibitem{Fard}       O. S. Fard and A. V. Kamyad, {\it Modified K-step method for solving fuzzy initial value problems}, Iranian Journal of Fuzzy Systems, {\bf 8} (2011), 49--63.
\bibitem{Flores}     H. R. Flores and Y. C. Cano, {\it Robinsons chaos in set-valued discrete systems}, Chaos, Solitons and Fractals, {\bf 25} (2005), 33--42.
\bibitem{Flores1}    H. R. Flores and Y. C. Cano, {\it Some chaotic properties of Zadeh's extensions}, Chaos, Solitons and Fractals, {\bf 35} (2008), 452--459.
\bibitem{Georgiou}   D. N. Georgiou, J. J. Nieto and R. Rodriguez-Lopez, {\it Initial value problems for higher order fuzzy differential equations}, Nonlinear Analysis, {\bf 63} (2005), 587--600.
\bibitem{Goetschel}  R. Goetschel and W. Voxman, {\it Elementary fuzzy calculus}, Fuzzy Sets and Systems, {\bf 18} (1986), 31--43.
\bibitem{Hua}        J. M. Hua, Z. J. li and H. Ming, {\it Fuzzy reliability of an iSCSI-based disk array system}, Journal of Communication and Computer, {\bf 4} (2007), 37--42.
\bibitem{Huang}      H. Z. Huang, X. Tonga and M. J. Zuob, {\it Posbist fault tree analysis of coherent systems}, Reliability Engineering and System Safety, {\bf 84} (2004), 141--148.
\bibitem{Huang1}     H. Z. Huang, M. J. Zuo and Z. Q. Sun, {\it Bayesian reliability analysis for fuzzy lifetime data}, Fuzzy Sets and Systems, {\bf 157} (2006), 1674--1686.
\bibitem{Jowers}     L. J. Jowers, J. J. Buckley and K. D. Reilly, {\it Simulating continuous fuzzy systems}, Information Sciences, {\bf 177} (2007), 436--448.
\bibitem{Kaleva}     O. Kaleva, {\it Fuzzy differential equations}, Fuzzy Sets and Systems, {\bf 24} (1987), 301--317.
\bibitem{Kaleva1}    O. Kaleva, {\it The cauchy problem for fuzzy differential equations}, Fuzzy Sets and Systems, {\bf 35} (1990), 389--396.
\bibitem{1985}       A. Kaufmann and M. M. Gupta, {\it Introduction to fuzzy arithmetics: theory and applications}, Van Nostrand Reinhold, New York, 1985.
\bibitem{67-80}      Y. Kleiner, R. Sadiq and B. Rajani,{\it Modelling the deterioration of buried infrastructure as a fuzzy Markov process}, Journal of Water Supply Research and Technology, {\bf 55} (2006), 67--80.
\bibitem{6743}       A. Kumar, P. Kaur and J. Kaur, {\it Fuzzy optimal solution of fully fuzzy project crashing problems with new representation of $LR$ flat fuzzy numbers}, Lecture Notes in Computer Science, {\bf 6743} (2011), 171--174.
\bibitem{65-71}      A. Kumar, J. Singh and P. Kumar, {\it Fuzzy reliability and fuzzy availability of the serial process in butter oil processesing plant}, Journal of Mathematics and Statistics, {\bf 5} (2009), 65--71.
\bibitem{Kurano}     M. Kurano, M. Yasuda, J. Nakagami and Y. Yoshida, {\it A fuzzy approach to Markov decision processes with uncertain transition probabilities}, Fuzzy Sets and Systems, {\bf 157} (2006), 2674--2682.
\bibitem{365-379}    Y. Liu and H. Z. Huang, {\it Reliability assessment for fuzzy multi-state systems}, International Journal of Systems Science, {\bf 41} (2010), 365--379.
\bibitem{Naschie}    M. S. El Naschie, {\it On a fuzzy Khler manifold which is consistent with the two slit experiment}, International Journal of Nonlinear Sciences and Numerical Simulation, {\bf 6} (2005), 95--98.
\bibitem{Nieto2}     J. J. Nieto, A. Khastan and K. Ivaz, {\it Numerical solution of fuzzy differential equations under generalized differentiability}, Nonlinear Analysis: Hybrid Systems, {\bf 3} (2009), 700--707.
\bibitem{Oberguggenberger}M. Oberguggenberger and S. Pittschmann, {\it Differential equations with fuzzy parameters}, Mathematical and Computer Modelling of Dynamical Systems, {\bf 5} (1999), 181--202.
\bibitem{Onisawa}    T. Onisawa, {\it An application of fuzzy concepts to modelling of reliability analysis}, Fuzzy Sets and Systems, {\bf 37} (1990), 267--286.
\bibitem{626–634}    S. Pederson and M. Sambandham, {\it The Runge-Kutta method for hybrid fuzzy differential equations}, Nonlinear Analysis: Hybrid Systems, {\bf 2} (2008), 626--634.
\bibitem{Puri}       M. L. Puri and D. A. Ralescu, {\it Differentials of fuzzy functions}, Journal of Mathematical Analysis and Applications, {\bf 91} (1983), 552--558.
\bibitem{Seikkala}   S. Seikkala, {\it On the fuzzy initial value problem}, Fuzzy Sets and Systems, {\bf 24} (1987), 319--330.
\bibitem{Singer}     D. Singer, {\it A fuzzy set approach to fault tree and reliability analysis}, Fuzzy Sets and Systems, {\bf 34} (1990), 145--155.
\bibitem{(2009) 1-4} I. Uprety and Zaheeruddin, {\it Fuzzy reliability of gracefully degradable computing systems}, Proceedings International Conference on Methods and Models on Computer Science, (2009), 1--4.
\bibitem{Utkin}      L. V. Utkin, {\it Fuzzy reliability of repairable systems in the possibility context}, Microelectronics Reliability, {\bf 34} (1994), 1865--1876.
\bibitem{Utkin1}     L. V. Utkin and S. V. Gurov, {\it A general formal approach for fuzzy reliability analysis in the possibility context}, Fuzzy Sets and Systems, {\bf 83} (1996), 203--213.
\bibitem{Yuhua}      D. Yuhua and Y. Datao, {\it Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis}, Journal of Loss Prevention in the Process Industries, {\bf 18} (2005) 83--88.