BILEVEL LINEAR PROGRAMMING WITH FUZZY PARAMETERS

Document Type : Research Paper

Authors

1 Faculty of Mathematics, University of Sistan and Baluchestan, Za- hedan, Iran

2 Faculty of Mathematics, University of Sistan and Baluches- tan, Zahedan, Iran

Abstract

Bilevel linear programming  is a decision making problem with a two-level decentralized organization. The \textquotedblleft leader\textquotedblright~ is in the upper level and the \textquotedblleft follower\textquotedblright, in the lower. Making a decision at one level affects that at the other one. In this paper, bilevel linear programming  with inexact parameters has been studied and a method is proposed to solve a fuzzy bilevel linear programming  using  interval bilevel linear programming.

Keywords


\bibitem{AaW:Smls}
G. Anandalingam and D. White, {\it A solution method for the linear Stackelberg problem using penalty functions}, IEEE Trans. Automatic Control,
{\bf 35} (1990), 1170--1173.

\bibitem{Bar:Ocbp}
J. Bard, {\it Optimality conditions for the bilevel progamming problem}, Naval Research Logistics Quarterly, {\bf 31} (1984),
13--26.

\bibitem{Bar:Pboa}
J. Bard, {\it Practical bilevel optimizaton: algorithms and applications}, Kluver Academic Publishers, The Netherlands, USA, 1988.


\bibitem{BaM:BaB}
J. Bard and J. Moore, {\it A branch and bound algorithm for the bilevel programming problem}, SIAM J. Sci. Stat. Comput., {\bf 11}\textbf{(2)} (1990), 281--292.


\bibitem{BaBl:Cdbl}
O. Ben-Ayed and C. Blair, {\it Computational difficulties of bilevel linear programming}, Operations Research, {\bf
38} (1990), 556--560.

\bibitem{BaK:Tlp}
W. Bialas and M. Karwan, {\it Two level linear programming}, Management Science, {\bf
30} (1984), 1004--1020.

\bibitem{CadVer:Ufnlp}
J. M. Cadenas and J. L. Verdegay, {\it Using fuzzy numbers in linear programming}, IEEE Transaction on Systems, Man and Cybernetics (Part B: Cybernetics),
 {\bf 27}\textbf{(6)} (1997), 1016--1022.

\bibitem{CadVer:Pfom}
J. M. Cadenas and J. L. Verdegay, {\it A Primer on fuzzy optimization models and methods}, Iranian Journal of Fuzzy Systems,
 {\bf 3}\textbf{(1)} (2006), 1--21.

\bibitem{CaG:Lbpic}
H. I. Calvete and C. Gal\'{e}, {\it Linear bilevel programming with interval coefficients}, Journal of Computational and Applied Mathematics, {\bf 236}\textbf{(15)} (2012), 3751--3762.

\bibitem{Car:Lpic}
JW. Chinneck and K. Ramadan, {\it Linear programming with interval coefficients}, J. Oper. Res. Society, {\bf
51} (2000), 209--220.

\bibitem{DelVer:Gmflp}
M. Delgado, J. L Verdegay and M. A. Vila, {\it A general model for fuzzy linear programming}, Fuzzy
Set and Systems, {\bf 29} (1989), 21--29.
%-------------------------------
\bibitem{JaMaMah:Flps}
N. Javadian, Y. Maali and N. Mahdavi-Amiri, {\it Fuzzy linear programming with grades of satisfaction in constraints}, Iranian Journal of Fuzzy Systems,
 {\bf 6}\textbf{(3)} (2009), 17--35.
%------------------------------
\bibitem{Jaf:Slbl}
J. Judice and A. Faustino, {\it A sequential LCP method for bilevel linear programming}, Annals of  Operations Research, {\bf
34} (1992), 89--106.

\bibitem{LaJaZ:Ogsq}
H. Li, Y. Jiao and L. Zhang, {\it Orthogonal genetic algorithm for solving quadratic bilevel programming problems}, Journal of Systems Engineering and Electronics, {\bf 21} (2010), 763--770.

\bibitem{Mal:Rfaflp}
H. R. Maleki, {\it Ranking functions and their applications to fuzzy linear programming}, Far
East Journal of Mathematical Sciences, {\bf 4}\textbf{(3)} (2003), 283--301.

\bibitem{MalTaMa:Lfv}
H. R. Maleki, M. Tata and M. Mashinchi, {\it Linear programming with fuzzy variables}, Fuzzy
Set and Systems, {\bf 106} (2000), 21--33.

\bibitem{MalTaMa:Fnlp}
H. R. Maleki, M. Tata and M. Mashinchi, {\it Fuzzy number linear programming}, In: C. Lucas
, ed., Proc. Internat. Conf. on Intelligent and Cognitive System FSS ’96, sponsored by
IEE ISRF, Tehran, Iran, (1996), 145--148.

\bibitem{MaA:Ilp}
H. Mishmast Nehi and M. Allahdadi, {\it Interval linear programming}, 4th Iranian Conference on Applied Mathematics, 2010.

\bibitem{RamRamin:Irfb}
J. Ramik and J. Raminak, {\it Inequality relation between fuzzy numbers and its use in fuzzy
optimization}, Fuzzy
Set and Systems, {\bf 16} (1985), 123--138.

\bibitem{SafMalZa:Nzlp}
M. R. Safi, H. R. Maleki and E. Zaeimazad, {\it A note on Zimmermann method for solving fuzzy linear
programming problem}, Iranian Journal of Fuzzy Systems,
 {\bf 4}\textbf{(2)} (2007), 31--45.

\bibitem{Ver:Fmp}
J. L. Verdegay, {\it Fuzzy mathematical programming}, In: M. M. Gupta and E. Sanchez, eds.,
Fuzzy Information and Decision Processes, North-Holland, Amsterdam, (1982), 231--237.

\bibitem{St:Fbp}
H. Von Stackelberg, {\it The theory of the market economy}, Oxford University Press, New York, Oxford, 1952.


\bibitem{ZaL:Fbp}
G. Zhang  and J. Lu, {\it Fuzzy bilevel programming with multiple objectives and cooperative multiple followers}, J. Glob. Optim., {\bf 47}\textbf{(3)} (2010), 403--419.

\bibitem{ZaLaD:Dmb}
G. Zhang  and J. Lu  and J. Dillon, {\it Decentralized multi-objective bilevel decision making with fuzzy demonds}, Knowl. Base. Syst., {\bf 20} (2007), 495--507.


\bibitem{ZhaLu:Dose}
G. Zhang  and J. Lu, {\it The definition of optimal solution and an extended Kuhn-Tucker approach for fuzzy linear bilevel programming}, IEEE Inteligent Information Bulletin, {\bf 6} (2005), 1--7.

\bibitem{ZhaLuaDi:Flbp}
G. Zhang, J. Lu  and J. Dillon, {\it Fuzzy linear bilevel optimization: solution concepts, approaches and applications}, Studies in Fuzziness and Soft Computing, {\bf 215} (2007), 351--379.

\bibitem{Zim:Fplp}
H. J. Zimmermann, {\it Fuzzy programming and linear programming with several objective
functions}, Fuzzy
Sets and Systems, {\bf 1} (1978), 45--55.