\bibitem{ABB1} S. Abbasbandy and B. Asady, {\it Ranking of fuzzy numbers by sign distance},
Information Sciences, \textbf{176} (2006), 2405--2416.
\bibitem{ABB2} S. Abbasbandy and T. Hajjari, {\it A new approach for ranking of trapezoidal fuzzy
numbers}, Computers and Mathematics with Applications, \textbf{57} (2009), 413--419.
\bibitem{ADA1} M. Adamo, {\it Fuzzy decision trees}, Fuzzy Sets and Systems, \textbf{4} (1980), 207--219.
\bibitem{ASA1} B. Asady, {\it The revised method of ranking LR fuzzy number based on deviation
degree}, Expert Systems with Applications, \textbf{37} (2010), 5056--5060.
\bibitem{ASA3} B. Asady, {\it Revision of distance minimization method for ranking of fuzzy
numbers}, Applied Mathematical Modelling, \textbf{35} (2011), 1306--1313.
\bibitem{ASA2} B. Asady and M. Zendehnam, {\it Ranking of fuzzy numbers by
distance minimization}, Applied Mathematical Modelling, \textbf{31} (2007),
2589--2598.
\bibitem{BAS1} S. Bass and H. Kwakernaak, {\it Rating and ranking of multiple-aspect
alternatives using fuzzy sets}, Automatica, \textbf{13} (1977), 47--58.
\bibitem{BOR1} G. Bortolan and R. Degani, {\it A review of some methods for ranking
fuzzy numbers}, Fuzzy Sets and Systems, \textbf{15} (1985), 1--19.
\bibitem{CHE2} S. J. Chen and C. L. Hwang, {\it Fuzzy multiple
attribute decision making}, Springer, New York, 1992.
\bibitem{CHE1} C. H. Cheng, {\it A new approach for ranking fuzzy numbers by distance method}, Fuzzy Sets and
Systems, \textbf{95} (1998), 307--317.
\bibitem{CHO1}F. Choobineh and H. Li, {\it An index for ordering fuzzy numbers}, Fuzzy Sets and Systems, \textbf{54} (1993), 287--294.
\bibitem{CHU1} T. Chu and C. Tsao, {\it Ranking fuzzy numbers with an area
between the centroid point and original point}, Computers and
Mathematics with Applications, \textbf{43} (2002), 111--117.
\bibitem{DIA1} P. Diamond and P. Kloeden, {\it Metric spaces of fuzzy sets}, Fuzzy Sets and Systems, \textbf{35} (1990), 241--249.
\bibitem{DUB2} D. Dubios and H. Prade, {\it Operations on fuzzy numbers}, Int. J. System Sci., \textbf{9} (1978), 626--631.
\bibitem{DUB1} D. Dubois and H. Prade, {\it Fuzzy sets and systems: theory and application}, Academic Press, New York, 1980.
\bibitem{FOR1} P. Fortemps and M. Roubens, {\it Ranking and defuzzification methods
based on area compensation}, Fuzzy Sets and Systems, \textbf{82} (1996), 319--330.
\bibitem{GRZ3} P. Grzegorzewski, {\it Metrics and orders in space of fuzzy numbers},
Fuzzy Sets and Systems, \textbf{97}(1998), 83--94.
\bibitem{GRZ1} P. Grzegorzewski, {\it Nearst interval approximation of a fuzzy
number}, Fuzzy Sets and Systems, \textbf{130} (2002), 321--330.
\bibitem{JAI1} R. Jain, {\it Decision-making in the presence of fuzzy variable},
IEEE Trans. Syst. Man Cybernet., \textbf{6} (1976), 698--703.
\bibitem{JAI2} R. Jain, {\it A procedure for multi-aspect decision making using fuzzy sets},
Int. J. Syst. Sci., \textbf{8} (1978), 1--7.
\bibitem{KAU1} A. Kauffman and M. M. Gupta, {\it Introduction to fuzzy arithmetic: theory and application}, Van
Nostrand Reinhold, New York, 1991.
\bibitem{KUM1} A. Kumar, A. Gupta and M. K. Sharma, {\it Application of tabu search for solving the bi-objective
warehouse problem in a fuzzy environment}, Iranian Journal of Fuzzy Systems, \textbf{9(1)} (2012), 1--19.
\bibitem{LEE2} K. M. Lee, C. H. Cho and H. Lee-Kwang, {\it Ranking fuzzy values with
satisfaction function}, Fuzzy Sets and Systems, \textbf{64} (1994), 295--311.
\bibitem{LEE1} E. Lee and R. J. Li, {\it Comparison of fuzzy numbers based
on the probability measure of fuzzy events}, Computers and
Mathematics with Applications, \textbf{15(10}) (1988), 887--896.
\bibitem{LI1} J. Li, W. Li and X. Kong, {\it A New Algorithm Model for Solving Fuzzy Linear
Systems}, Southeast Asian Bulletin of Mathematics, \textbf{34} (2010), 121--132.
\bibitem{MA1} M. Ma, M. Friedman and A. Kandel, {\it A new fuzzy arithmetic}, Fuzzy Sets and Systems, \textbf{108} (1999), 83--90.
\bibitem{MAH1} I. Mahdavi, N. Mahdavi-Amiri and S. Nejati, {\it Algorithms for biobjective shortest path problems in fuzzy networks},
Iranian Journal of Fuzzy Systems , \textbf{8(4)} (2011), 9--37.
\bibitem{MOH1} A. Mohamadi Nejad and M. Mashinchi, {\it Ranking fuzzy
numbers based on the areas on the left and right sides of fuzzy
number}, Computers and Mathematics with Applications, \textbf{61(2)} (2011), 731--442.
\bibitem{SEV1} P. Sevastianov, {\it Numerical methods for interval and fuzzy number comparison based
on the probabilistic approach and Dempster-Shafer theory}, Information Sciences, \textbf{177} (2007), 4645--4661.
\bibitem{WAN1} X. Wang and E. E. Kerre, {\it Reasonable properties for the
ranking of fuzzy quantities I}, Fuzzy Sets and Systems, \textbf{118} (2001), 375--385.
\bibitem{WAN2} X. Wang and E. E. Kerre, {\it Reasonable properties for the
ranking of fuzzy quantities II}, Fuzzy Sets and Systems, \textbf{118} (2001), 387--405.
\bibitem{WAN5} Y. J. Wang and S. H. Lee, {\it The revised method of ranking fuzzy numbers
with an area between the centroid and original points}, Computers
and Mathematics with Applications, \textbf{55} (2008), 2033--2042.
\bibitem{ZXW1} Z. X. Wang, Y. J. Liu, Z. P. Fan and B. Feng, {\it Ranking L-R fuzzy number based on deviation
degree}, Information Sciences, \textbf{179} (2009), 2070--2077.
\bibitem{WAN3} Y. M. Wang and Y. Luo, {\it Area ranking of fuzzy numbers based on positive and negative ideal
points}, Computers and Mathematics with Applications, \textbf{58} (2009), 1769--1779.
\bibitem{WAN4} Y. M. Wang, J. B. Yang, D. L. Xu and K. S. Chin, {\it On the centroids of
fuzzy numbers}, Fuzzy Sets and Systems, \textbf{157} (2006), 919--926.
\bibitem{YAG2} R. R. Yager, {\it On choosing between fuzzy subsets}, Kybernetes, \textbf{9} (1980), 151--154.
\bibitem{YAG1} R. R. Yager, {\it A procedure for ordering fuzzy subsets of the unit interval},
Information Sciences, \textbf{24} (1981), 143--161.
\bibitem{ZAD1} L. A. Zadeh, {\it Fuzzy sets}, Information and Control, \textbf{8} (1965), 338--353.