On Lacunary Statistical Limit and Cluster Points of Sequences of Fuzzy Numbers

Document Type : Research Paper

Authors

1 Department of Mathematics, Haryana College of Technology and Management, Kaithal-136027, Haryana, India

2 School of Mathematics and Computer Application, Thapar Universtiy, Patiala, Punjab, India

Abstract

For any lacunary sequence $\theta = (k_{r})$, we define the concepts of $S_{\theta}-$limit point and $S_{\theta}-$cluster point of a sequence of fuzzy numbers $X = (X_{k})$. We introduce the new sets  $\Lambda^{F}_{S_{\theta}}(X)$, $\Gamma^{F}_{S_{\theta}}(X)$ and prove some inclusion relaions between these and the sets $\Lambda^{F}_{S}(X)$, $\Gamma^{F}_{S}(X)$ introduced in ~\cite{Ayt:Slpsfn} by Aytar [S. Aytar, Statistical limit points of sequences of fuzzy numbers, Inform. Sci. 165 (2004) 129-138]. Later, we find restriction on the lacunary sequence  $\theta = (k_{r})$ for which the sets $\Lambda^{F}_{S_{\theta}}(X)$ and $\Gamma^{F}_{S_{\theta}}(X)$ respectively coincides with the sets $\Lambda^{F}_{S}(X)$ and $\Gamma^{F}_{S}(X)$.

Keywords


\bibitem{AlCoEt:Ldssfn}
H. Altinok, R. Colak and M. Et, {\it $\lambda-$Difference sequence spaces of fuzzy numbers}, Fuzzy Sets and Systems, {\bf 160} (2009), 3128--3139.

\bibitem{AlAlIs:SCscsosfn}
H. Altinok, Y. Altin and M. Iski, {\it Statistical convergence and strong $p$-cesaro summability of order $\beta$ in sequences of fuzzy numbers}, Iranian Journal of Fuzzy Systems, {\bf9}\textbf{(2)} (2012), 63--73.

\bibitem{Ayt:Slpsfn}
S. Aytar, {\it Statistical limit points of sequences of fuzzy numbers}, Information Sciences, {\bf 165} (2004), 129--138.

\bibitem{AyPe:Scelpsfn}
S. Aytar and S. Pehlivan, {\it Statistical cluster and extreme limit points of sequences of fuzzy numbers}, Information Sciences, {\bf177} (2007), 3290--3296.

\bibitem{AyMaPe:Slilssfn}
S. Aytar, M. A. Mammadov and S. Pehlivan, {\it Statistical limit inferior and limit superior for sequences of fuzzy numbers}, Fuzzy Sets and Systems, {\bf157} (2006), 976--985.

\bibitem{AyMaPe:Csfn}
S. Aytar, M. A. Mammadov and S. Pehlivan, {\it The core of a sequence of fuzzy numbers}, Fuzzy Sets and Systems, {\bf159} (2008), 3369--3379.

\bibitem{AyPe:Lsclpsfn}
S. Aytar and S. Pehlivan, {\it Levelwise statistical cluster and limit points of a sequence of fuzzy numbers}, Int. J. Gen. Sys., {\bf37} (2008), 573--584.

\bibitem{Dem:Lslp}
K. Demirci, {\it On lacunary statistical limit points}, Demonstratio Math., {\bf35} (2002), 93--101.

\bibitem{Fas:Scs}
H. Fast, {\it Surla convergence statistique}, Colloq. Math., {\bf2} (1951), 241--244.

\bibitem{FrSeRa:Sctss}
A. R. Freedman, J.J. Sember and M. Raphael, {\it Some cesaro type summability spaces}, Proc. London Math. Soc., {\bf37} (1978), 508--520.

\bibitem{Fri:Sc}
J. A. Fridy, {\it On statistical convergence}, Analysis, {\bf5} (1985), 301--313.

\bibitem{Fri:Slp}
J. A. Fridy, {\it Statistical limit points}, Proc. Amer. Math. Soc., {\bf118} (1993), 1187--1192.

\bibitem{FrOr:Slsli}
J. A. Fridy and C. Orhan, {\it Statistical limit superior and limit inferior}, Proc. Amer. Math. Soc., {\bf125} (1997), 3625--3631.

\bibitem{FrOr:Lsc}
J. A. Fridy and C. Orhan, {\it Lacunary statistical convergence}, Pacific J. Math., {\bf 160} (1993), 43--51.

\bibitem{KwSh:Rlscfn}
J. S. Kwon and H. T. Shim, {\it Remark on lacunary statistical convergence of fuzzy numbers}, Fuzzy Sets and Systems, {\bf123} (2001), 85--88.

\bibitem{MaPe:Scpttnp}
M. Mammadov and S. Pehlivan, {\it Statistical cluster points and turnpike theorem in nonconvex problems}, J. Math. Anal. and Appl., {\bf256} (2001), 686--693.

\bibitem{Mat:Sfn}
M. Matloka, {\it Sequences of fuzzy numbers}, Busefal, {\bf 128} (1986), 28--37.

\bibitem{Nan:Sfn}
S. Nanda, {\it On sequences of fuzzy numbers}, Fuzzy sets and systems, {\bf33} (1989), 123--126.

\bibitem{NuSa:Scsfn}
F. Nuray and E. Savas, {\it Statistical convergence of sequences of fuzzy numbers}, Math. Slovaca, {\bf45} (1995), 269--273.

\bibitem{Nur:Lscsfn}
F. Nuray, {\it Lacunary statistical convergence of sequences of fuzzy numbers}, Fuzzy Sets and Systems, {\bf99} (1998), 353--355.

\bibitem{PeMa:Scpt}
S. Pehlivan and M. Mammadov, {\it Statistical cluster point and turnpike}, Optimization, {\bf48} (2000), 297--300.

\bibitem{PeSe:Scfnls}
S. Pehlivan and C. Sencimen, {\it Statistical convergence in fuzzy normed linear spaces}, Fuzzy Sets and Systems, {\bf159} (2008), 361--370.

\bibitem{PeGuFi:Lscps}
S. Pehlivan, M. G. Gurdal and B. Fisher, {\it Lacunary statistical cluster points of sequences}, Mathematical Communications, {\bf11} (2006), 39--46.

\bibitem{PuRa:Dfn}
M. L. Puri and D. A. Ralescu, {\it Differential of fuzzy numbers}, J. Math. Anal. Appl., {\bf91} (1983), 552--558.

\bibitem{Sal:Oscsrn}
T. Salat, {\it On statistically convergent sequences of real numbers}, Math. Slovaca, {\bf30} (1980), 139--150.

\bibitem{Sav:Dssfnof}
E. Savas, {\it $(A)_\Delta-$Double sequence spaces of fuzzy numbers via orliz function}, Iranian Journal of Fuzzy Systems, {\bf 8}\textbf{(2)} (2011), 91--103.

\bibitem{Sch:Icfrsm}
I. J. Schoenberg, {\it The integrability of certain functions and related summability methods}, Amer. Math. Month., {\bf66} (1951), 361--375.

\bibitem{TuBe:Slpsfn}
A. N. Tuncer and F. B. Benli, {\it $\lambda-$Statistical limit points of the sequences of fuzzy numbers}, Information Sciences, {\bf177} (2007), 3297--3304.