On $\varphi $-Contractions in Fuzzy Metric Spaces with Application to the Intuitionistic Setting

Document Type : Research Paper

Authors

1 Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cam de Vera s/n, 46022 Valencia, Spain

2 Instituto Universitario de Matematica Pura y Aplicada, Uni- versitat Politecnica de Valencia, Cam de Vera s/n, 46022 Valencia, Spain

Abstract

We obtain two fixed point theorems for a kind of $\varphi $-contractions in
complete fuzzy metric spaces, which are applied to easily deduce
intuitionistic versions that improve and simplify the recent results of X.
Huang, C. Zhu and X. Wen.

Keywords


\bibitem{AIG} M. Abbas, M. Imdad and D. Gopal, \textit{$\psi $-weak contractions in fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, \textbf{8(5)} (2011), 141-148.

\bibitem{ATY}  C. Alaca, D. Turkoglu and C. Yildiz, \textit{Fixed points in
intuitionistic fuzzy metric spaces,} Chaos Soliton Fract., \textbf{29 }%
(2006), 1073-1078.

\bibitem{BW}  D. W. Boyd and J. S. W. Wong, \textit{On nonlinear contractions,}
Proc. Am. Math. Soc., \textbf{20 } (1969), 458-464.

\bibitem{Ciric}  L. B. \'{C}iri\'{c}, \textit{Solving the Banach fixed point
principle for nonlinear contractions in probabilistic metric spaces, }%
Nonlinear Anal., \textbf{72 } (2010), 2009-2018.

\bibitem{GV}  A. George and P. Veeramani, \textit{On some results in fuzzy
metric spaces,} Fuzzy Sets and Systems, \textbf{64} (1994), 395-399.

\bibitem{GV2}  A. George and P. Veeramani,\textit{\ On some results of analysis
of fuzzy metric spaces,} Fuzzy Sets and Systems, \textbf{90} (1997), 365-368.

\bibitem{Golet}  I. Golet, \textit{On contractions in probabilistic metric
spaces,} Radovi Mat., \textbf{13 } (2004), 87-92.

\bibitem{Grabiec}  M. Grabiec, \textit{Fixed points in fuzzy metric spaces, }%
Fuzzy Sets and Systems, \textbf{27} (1988), 385-389.

\bibitem{GR}  V. Gregori and S. Romaguera, \textit{Some properties of fuzzy
metric spaces, }Fuzzy Sets and Systems, \textbf{115} (2000), 485-489.

\bibitem{GRV}  V. Gregori, S. Romaguera and P. Veeramani, \textit{A note on
intuitionistic fuzzy metric spaces, }Chaos Soliton. Fract., \textbf{28}
(2006), 902-905.

\bibitem{GS}  V. Gregori and A. Sapena, \textit{On fixed-point theorems in
fuzzy metric spaces, }Fuzzy Sets and Systems, {\bf125} (2002), 245-253.

\bibitem{Hadzic}  O. Had\v{z}i\'{c}, \textit{Some theorems on the fixed
points in probabilistic metric and random normed spaces, }Boll. Unione Mat.
Ital. B(6), \textbf{1} (1982), 381-391.

\bibitem{HadzicPap}  O. Had\v{z}i\'{c} and E. Pap, \textit{Fixed Point Theory
in Probabilistic Metric Spaces, }Kluwer Acad. Publ., Dordrecht, 2001.

\bibitem{Hicks}  T. L. Hicks, \textit{Fixed point theory in probabilistic
metric spaces,} Zb. Rad. Prir. Mat. Fak. Novi Sad, \textbf{13} (1983), 63-72.

\bibitem{Huang}  X. Huang, C. Zhu and X. Wen, \textit{On (g,}$\varphi $\textit{%
)-contraction in intuitionistic fuzzy metric spaces, }Math. Commun., \textbf{%
15} (2010), 425-435.

\bibitem{Jachymski}  J. Jachymski, \textit{On probabilistic }$\varphi $-%
\textit{contractions on Menger spaces, }Nonlinear Anal., \textbf{73} (2010),
2199-2203.

\bibitem{KM}  I. Kramosil and J. Michalek, \textit{Fuzzy metrics and
statistical metric spaces,} Kybernetika, \textbf{11 }(1975), 326-334.

\bibitem{Matkowski}  J. Matkowski, \textit{Integrable solutions of
functional equations}, Diss. Math., \textbf{127 }(1975), 1-68.

\bibitem{Mihet3}  D. Mihet, \textit{A Banach contraction theorem in fuzzy
metric spaces, }Fuzzy Sets and Systems, \textbf{144} (2004), 431-439.

\bibitem{Mihet2}  D. Mihet, \textit{A note on a paper of I. Golet, }Sarajevo
J. Math., \textbf{2} (2006), 115-117.

\bibitem{Mihet}  D. Mihet, \textit{Fuzzy }$\psi $-\textit{contractive
mappings in non-Archimedean fuzzy metric spaces, }Fuzzy Sets and Systems, \textbf{%
159} (2008), 739-744.

\bibitem{Park}  J. H. Park, \textit{Intuitionistic fuzzy metric spaces,}
Chaos Soliton. Fract., \textbf{22} (2004), 1039-1046.

\bibitem{Radu}  V. Radu, \textit{Some fixed point theorems in probabilistic
metric spaces,} Lecture Notes Math., \textbf{1233} (1987), 125-133.

\bibitem{Radu2}  V. Radu, \textit{Some remarks on the probabilistic
contractions on fuzzy Menger spaces, }The Eighth Internat. Conf. on Applied
Mathematics and Computer Science, Cluj-Napoca 2002, Automat. Comput. Appl.
Math., \textbf{11} (2002), 125-131.

\bibitem{RoTi}  S. Romaguera and P. Tirado, \textit{On fixed point theorems in
intuitionistic fuzzy metric spaces,} Internat. J. Nonlinear Sci. Numer.
Simul., \textbf{8} (2007), 233-238.

\bibitem{RoTi2}  S. Romaguera and P. Tirado,\textit{\ Contraction maps on
ifqm-spaces with application to recurrence equations of Quicksort,}
Electronic Notes Theoret. Comput. Sci., \textbf{225} (2009), 269-279.

\bibitem{ParkSaadati}  R. Saadati and J. H. Park, \textit{On the intuitionistic
fuzzy topological spaces, }Chaos Soliton. Fract., \textbf{27} (2006), 331-344.

\bibitem{SSZ} R. Saadati, S. Sedghi and H. Zaou, \textit{A common fixed point theorem for $\psi $-weakly commuting
maps in L-fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, \textbf{5(1)} (2008), 47-53.

\bibitem{SS}  B. Schweizer and A. Sklar, \textit{Statistical metric spaces,}
Pacific J. Math., \textbf{10} (1960), 314-334.

\bibitem{Tirado}  P. Tirado, \textit{On compactness and G-completeness in
fuzzy metric spaces, }Iranian Journal of Fuzzy Systems, \textbf{9(4)} (2012), 151-158.

\bibitem{VV}  R. Vasuki and P. Veeramani, \textit{Fixed point theorems and
Cauchy sequences in fuzzy metric spaces,} Fuzzy Sets and Systems, \textbf{135}
(2003), 409-413.