On $\varphi $-Contractions in Fuzzy Metric Spaces with Application to the Intuitionistic Setting

Document Type : Research Paper


1 Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cam de Vera s/n, 46022 Valencia, Spain

2 Instituto Universitario de Matematica Pura y Aplicada, Uni- versitat Politecnica de Valencia, Cam de Vera s/n, 46022 Valencia, Spain


We obtain two fixed point theorems for a kind of $\varphi $-contractions in
complete fuzzy metric spaces, which are applied to easily deduce
intuitionistic versions that improve and simplify the recent results of X.
Huang, C. Zhu and X. Wen.


bibitem{AIG} M. Abbas, M. Imdad and D. Gopal, textit{$psi $-weak contractions in fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, textbf{8(5)} (2011), 141-148.

bibitem{ATY}  C. Alaca, D. Turkoglu and C. Yildiz, textit{Fixed points in
intuitionistic fuzzy metric spaces,} Chaos Soliton Fract., textbf{29 }%
(2006), 1073-1078.

bibitem{BW}  D. W. Boyd and J. S. W. Wong, textit{On nonlinear contractions,}
Proc. Am. Math. Soc., textbf{20 } (1969), 458-464.

bibitem{Ciric}  L. B. '{C}iri'{c}, textit{Solving the Banach fixed point
principle for nonlinear contractions in probabilistic metric spaces, }%
Nonlinear Anal., textbf{72 } (2010), 2009-2018.

bibitem{GV}  A. George and P. Veeramani, textit{On some results in fuzzy
metric spaces,} Fuzzy Sets and Systems, textbf{64} (1994), 395-399.

bibitem{GV2}  A. George and P. Veeramani,textit{ On some results of analysis
of fuzzy metric spaces,} Fuzzy Sets and Systems, textbf{90} (1997), 365-368.

bibitem{Golet}  I. Golet, textit{On contractions in probabilistic metric
spaces,} Radovi Mat., textbf{13 } (2004), 87-92.

bibitem{Grabiec}  M. Grabiec, textit{Fixed points in fuzzy metric spaces, }%
Fuzzy Sets and Systems, textbf{27} (1988), 385-389.

bibitem{GR}  V. Gregori and S. Romaguera, textit{Some properties of fuzzy
metric spaces, }Fuzzy Sets and Systems, textbf{115} (2000), 485-489.

bibitem{GRV}  V. Gregori, S. Romaguera and P. Veeramani, textit{A note on
intuitionistic fuzzy metric spaces, }Chaos Soliton. Fract., textbf{28}
(2006), 902-905.

bibitem{GS}  V. Gregori and A. Sapena, textit{On fixed-point theorems in
fuzzy metric spaces, }Fuzzy Sets and Systems, {bf125} (2002), 245-253.

bibitem{Hadzic}  O. Hadv{z}i'{c}, textit{Some theorems on the fixed
points in probabilistic metric and random normed spaces, }Boll. Unione Mat.
Ital. B(6), textbf{1} (1982), 381-391.

bibitem{HadzicPap}  O. Hadv{z}i'{c} and E. Pap, textit{Fixed Point Theory
in Probabilistic Metric Spaces, }Kluwer Acad. Publ., Dordrecht, 2001.

bibitem{Hicks}  T. L. Hicks, textit{Fixed point theory in probabilistic
metric spaces,} Zb. Rad. Prir. Mat. Fak. Novi Sad, textbf{13} (1983), 63-72.

bibitem{Huang}  X. Huang, C. Zhu and X. Wen, textit{On (g,}$varphi $textit{%
)-contraction in intuitionistic fuzzy metric spaces, }Math. Commun., textbf{%
15} (2010), 425-435.

bibitem{Jachymski}  J. Jachymski, textit{On probabilistic }$varphi $-%
textit{contractions on Menger spaces, }Nonlinear Anal., textbf{73} (2010),

bibitem{KM}  I. Kramosil and J. Michalek, textit{Fuzzy metrics and
statistical metric spaces,} Kybernetika, textbf{11 }(1975), 326-334.

bibitem{Matkowski}  J. Matkowski, textit{Integrable solutions of
functional equations}, Diss. Math., textbf{127 }(1975), 1-68.

bibitem{Mihet3}  D. Mihet, textit{A Banach contraction theorem in fuzzy
metric spaces, }Fuzzy Sets and Systems, textbf{144} (2004), 431-439.

bibitem{Mihet2}  D. Mihet, textit{A note on a paper of I. Golet, }Sarajevo
J. Math., textbf{2} (2006), 115-117.

bibitem{Mihet}  D. Mihet, textit{Fuzzy }$psi $-textit{contractive
mappings in non-Archimedean fuzzy metric spaces, }Fuzzy Sets and Systems, textbf{%
159} (2008), 739-744.

bibitem{Park}  J. H. Park, textit{Intuitionistic fuzzy metric spaces,}
Chaos Soliton. Fract., textbf{22} (2004), 1039-1046.

bibitem{Radu}  V. Radu, textit{Some fixed point theorems in probabilistic
metric spaces,} Lecture Notes Math., textbf{1233} (1987), 125-133.

bibitem{Radu2}  V. Radu, textit{Some remarks on the probabilistic
contractions on fuzzy Menger spaces, }The Eighth Internat. Conf. on Applied
Mathematics and Computer Science, Cluj-Napoca 2002, Automat. Comput. Appl.
Math., textbf{11} (2002), 125-131.

bibitem{RoTi}  S. Romaguera and P. Tirado, textit{On fixed point theorems in
intuitionistic fuzzy metric spaces,} Internat. J. Nonlinear Sci. Numer.
Simul., textbf{8} (2007), 233-238.

bibitem{RoTi2}  S. Romaguera and P. Tirado,textit{ Contraction maps on
ifqm-spaces with application to recurrence equations of Quicksort,}
Electronic Notes Theoret. Comput. Sci., textbf{225} (2009), 269-279.

bibitem{ParkSaadati}  R. Saadati and J. H. Park, textit{On the intuitionistic
fuzzy topological spaces, }Chaos Soliton. Fract., textbf{27} (2006), 331-344.

bibitem{SSZ} R. Saadati, S. Sedghi and H. Zaou, textit{A common fixed point theorem for $psi $-weakly commuting
maps in L-fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, textbf{5(1)} (2008), 47-53.

bibitem{SS}  B. Schweizer and A. Sklar, textit{Statistical metric spaces,}
Pacific J. Math., textbf{10} (1960), 314-334.

bibitem{Tirado}  P. Tirado, textit{On compactness and G-completeness in
fuzzy metric spaces, }Iranian Journal of Fuzzy Systems, textbf{9(4)} (2012), 151-158.

bibitem{VV}  R. Vasuki and P. Veeramani, textit{Fixed point theorems and
Cauchy sequences in fuzzy metric spaces,} Fuzzy Sets and Systems, textbf{135}
(2003), 409-413.