\bibitem{Ac}
U. Acar, {\it On $L$-fuzzy prime submodules}, Hacettepe Journal of Mathematics and Statistics, {\bf 34} (2005), 17--25.
\bibitem{A} F. W. Anderson and K. R. Fuller, {\it Rings and categories of modules}, Springer-Verlag, USA, 1992.
\bibitem{B} R. Biswas and S. Nanda, {\it Rough groups and rough subgroups}, Bulletin of the Polish Academy of Science and Mathematics, {\bf 42} (1994), 251--254.
\bibitem{Bo} G. L. Booth and N. J. Groenewald, {\it Special radicals of
near-ring modules}, Quaest. Math., {\bf 15(2)} (1992),
127--137.
\bibitem{C} D. Ciucci, {\it A unifying abstract approach for rough
models}, In: RSKTO8 Proceedings, Lecture Notes in Artificial
Intelligence, {\bf 5009} (2008), 371--378.
\bibitem{D} B. Davvaz, {\it Roughness in rings}, Information Sciences, {\bf 164} (2004), 147--163.
\bibitem{D1}
B. Davvaz, {\it Roughness based on fuzzy ideals}, Information Sciences, {\bf 176} (2006), 2417--2437.
\bibitem{BD} B. Davvaz, {\it A short note on algebraic $T$-rough sets}, Information Sciences, {\bf 178} (2008), 3247--3252.
\bibitem{BD1} B. Davvaz, {\it Rough subpolygroups in a factor polygroup}, Journal of Intelligent and Fuzzy Systems, {\bf 17(6)} (2006), 613--621.
\bibitem{D2}
B. Davvaz and M. Mahdavipour, {\it Roughness in modules}, Information Sciences, {\bf 176} (2006), 3658--3674.
\bibitem{BD2} B. Davvaz and M. Mahdavipour, {\it Rough approximations in a general approximation space and their fundamental properties}, Int. J. General Systems, {\bf 37} (2008), 373--386.
\bibitem{Du}D. Dubois and H. Prade, {\it Rough fuzzy sets and fuzzy rough sets}, Int. J. General Systems, {\bf 17} (1990), 191--209.
\bibitem{d}
A. Gaur, A. Kumar Maloo and A. Parkash, {\it Prime submodules in multiplication modules}, International Journal of Algebra, {\bf 1} (2007), 375--380.
\bibitem{KD} O. Kazanc{\i} and B. Davvaz, {\it On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings}, Information Sciences, {\bf 178} (2008), 1343--1354.
\bibitem{KSD} O. Kazanc{\i}, S. Yamak and B. Davvaz, {\it The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets}, Information Sciences, {\bf 178} (2008), 2349--2359.
\bibitem{Ked} B. S. Kedukodi, S. P. Kuncham and S. E. Bhavanari,
{\it 3-prime and c-prime fuzzy ideals of
nearrings}, Soft Comput., {\bf 13(2)} (2009), 933--944.
\bibitem{r}
B. S. Kedukodi, S. P. Kuncham and S. Bhavanari, {\it Reference points and roughness}, Information Sciences, {\bf 180} (2010), 3348--3361.
\bibitem{e}
D. Keskin, {\it A study on prime submodules}, Banyan Mathematical Journal, {\bf 3} (1996), 27--32.
\bibitem{K}
N. Kuroki, {\it Rough ideals in semigroups}, Information Sciences, {\bf 100} (1997), 139--163.
\bibitem{K1} N. Kuroki and P. P. Wang, {\it The lower and upper approximations in a fuzzy group}, Information Sciences, {\bf 90} (1996), 203--220.
\bibitem{L} V. Leoreanu-Fotea and B. Davvaz, {\it Roughness in n-ary hypergroups}, Information Sciences, {\bf 178} (2008), 4114--4124.
\bibitem{N} C. V. Negoita and D. A. Ralescu, {\it Applications of fuzzy sets and
systems analysis}, Birkhauser, Basel, 1975.
\bibitem{P3} Z. Pawlak and A. Skowron, {\it Rough sets: some extensions}, Information Sciences, {\bf 177} (2007), 28--40.
\bibitem{P4} Z. Pawlak and A. Skowron, {\it Rough sets and boolean reasoning}, Information Sciences, {\bf 177} (2007), 41--73.
\bibitem{P1} Z. Pawlak, {\it Rough sets}, Int. J. Inf. Comp. Sci., {\bf 11} (1982), 341--356.
\bibitem{P2} Z. Pawlak, {\it Rough sets - theoretical aspects of reasoning about data},
Kluwer Academic Publishing, Dordrecht, 1991.
\bibitem{R} S. Rasouli and B. Davvaz, {\it Roughness in $MV$-algebras}, Information Sciences, {\bf 180} (2010), 737--747.
\bibitem{S} M. H. Shahzamanian, M. Shirmohammadi and B. Davvaz, {\it Roughness in Cayley graphs}, Information Sciences, {\bf 180} (2010), 3362--3372.
\bibitem{f}
F. I. Sidky, {\it On radicals of fuzzy submodules and primary fuzzy submodules}, Fuzzy Sets and Systems, {\bf 119} (2001), 419--425.
\bibitem{S1} B. Sun, Z. Gong and D. Chen, {\it Fuzzy rough set theory for the interval-valued fuzzy information systems}, Information Sciences, {\bf 178} (2008), 2794--2815.
\bibitem{S2}B. Sun, Z. Gong and D. Chen, {\it Rough set theory for the interval-valued fuzzy information systems}, Information Sciences, {\bf 178} (2008), 1968--1985.
\bibitem{T1} H. Torabi, B. Davvaz and J. Behboodian,
{\it Fuzzy random events in incomplete probability models}, Journal of Intelligent and Fuzzy
Systems, {\bf 17(2)} (2006), 183--188.
\bibitem{T2} H. Torabi, B. Davvaz and J. Behboodian, {\it Inclusiveness measurement of random events using rough set theory}, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, {\bf 15(4)} (2007), 483--491.
\bibitem{Y} S. Yamak, O. Kazanc{\i} and B. Davvaz, {\it Generalized lower and upper approximations in a ring}, Information Sciences, {\bf 180} (2010), 1759--1768.
\bibitem{Z} L. A. Zadeh, {\it Fuzzy sets}, Information and Control, {\bf 8} (1965), 338--353.