Roughness in modules by using the notion of reference points

Document Type : Research Paper

Authors

Department of Mathematics, Yazd University, Yazd, Iran

Abstract

 module over a ring is a general mathematical concept for many examples of mathematical
objects that can be added to each other and multiplied by scalar numbers.
In this paper, we consider a module over a ring as a universe and by using the notion of reference points, we provide local approximations for  subsets of the universe.

Keywords


\bibitem{Ac}
 U. Acar, {\it On $L$-fuzzy prime submodules},  Hacettepe Journal of Mathematics and Statistics,  {\bf 34} (2005), 17--25.

\bibitem{A} F. W. Anderson and K. R. Fuller, {\it Rings and categories of modules}, Springer-Verlag, USA, 1992.

\bibitem{B} R. Biswas and S. Nanda, {\it Rough groups and rough subgroups}, Bulletin of the Polish Academy of Science and Mathematics, {\bf 42} (1994), 251--254.

\bibitem{Bo} G. L.  Booth and N. J.  Groenewald,  {\it Special radicals of
near-ring modules}, Quaest. Math.,  {\bf 15(2)} (1992),
127--137.


\bibitem{C} D. Ciucci, {\it A unifying abstract approach for rough
models}, In: RSKTO8 Proceedings, Lecture Notes in Artificial
Intelligence, {\bf 5009} (2008), 371--378.

\bibitem{D} B. Davvaz, {\it Roughness in rings}, Information Sciences, {\bf  164} (2004), 147--163.

\bibitem{D1}
B. Davvaz, {\it Roughness based on fuzzy ideals}, Information Sciences, {\bf  176} (2006), 2417--2437.

\bibitem{BD} B. Davvaz, {\it A short note on algebraic $T$-rough sets}, Information Sciences, {\bf  178} (2008), 3247--3252.

\bibitem{BD1} B. Davvaz,  {\it Rough subpolygroups in a factor polygroup}, Journal of Intelligent and Fuzzy Systems, {\bf 17(6)} (2006), 613--621.

\bibitem{D2}
B. Davvaz and M. Mahdavipour, {\it Roughness in modules}, Information Sciences, {\bf  176} (2006), 3658--3674.

\bibitem{BD2} B. Davvaz and M. Mahdavipour,  {\it Rough approximations in a general approximation space and their fundamental properties}, Int. J. General Systems, {\bf  37}  (2008), 373--386.

\bibitem{Du}D. Dubois and H. Prade, {\it Rough fuzzy sets and fuzzy rough sets}, Int. J. General Systems, {\bf 17} (1990), 191--209.

\bibitem{d}
A. Gaur, A. Kumar Maloo and  A. Parkash, {\it Prime submodules in multiplication modules}, International Journal of Algebra, {\bf  1} (2007), 375--380.

\bibitem{KD} O. Kazanc{\i} and  B. Davvaz, {\it On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings}, Information Sciences, {\bf  178} (2008), 1343--1354.

\bibitem{KSD} O. Kazanc{\i}, S. Yamak and  B. Davvaz, {\it The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets}, Information Sciences, {\bf  178} (2008), 2349--2359.

\bibitem{Ked} B. S. Kedukodi, S. P. Kuncham and  S. E.  Bhavanari,
 {\it 3-prime and c-prime fuzzy ideals of
nearrings}, Soft Comput.,  {\bf 13(2)} (2009),  933--944.

\bibitem{r}
B. S. Kedukodi, S. P. Kuncham and  S. Bhavanari, {\it Reference points and roughness}, Information Sciences, {\bf  180} (2010), 3348--3361.

\bibitem{e}
D. Keskin, {\it A study on prime submodules}, Banyan Mathematical Journal, {\bf  3} (1996), 27--32.

\bibitem{K}
N. Kuroki, {\it Rough ideals in semigroups}, Information Sciences, {\bf  100} (1997), 139--163.

\bibitem{K1} N. Kuroki and  P. P. Wang, {\it The lower and upper approximations in a fuzzy group}, Information Sciences, {\bf 90} (1996), 203--220.

\bibitem{L} V. Leoreanu-Fotea and  B. Davvaz, {\it Roughness in n-ary hypergroups}, Information Sciences, {\bf  178} (2008), 4114--4124.

\bibitem{N} C. V. Negoita and D. A. Ralescu, {\it Applications of fuzzy sets and
systems analysis}, Birkhauser, Basel, 1975.

\bibitem{P3} Z. Pawlak and  A. Skowron, {\it Rough sets: some extensions}, Information Sciences, {\bf  177} (2007), 28--40.

\bibitem{P4} Z. Pawlak and A. Skowron, {\it Rough sets and boolean reasoning}, Information Sciences, {\bf 177} (2007), 41--73.

\bibitem{P1} Z. Pawlak, {\it Rough sets}, Int. J. Inf. Comp. Sci., {\bf  11} (1982), 341--356.

\bibitem{P2} Z. Pawlak, {\it Rough sets - theoretical aspects of reasoning about data},
            Kluwer Academic Publishing, Dordrecht, 1991.

\bibitem{R} S. Rasouli and B. Davvaz, {\it Roughness in $MV$-algebras}, Information Sciences, {\bf  180} (2010), 737--747.

\bibitem{S} M. H. Shahzamanian, M. Shirmohammadi and B. Davvaz, {\it Roughness in Cayley graphs}, Information Sciences, {\bf  180} (2010), 3362--3372.

\bibitem{f}
F. I. Sidky, {\it On radicals of fuzzy submodules and primary fuzzy submodules}, Fuzzy Sets and Systems, {\bf  119} (2001), 419--425.

\bibitem{S1} B. Sun, Z. Gong and  D. Chen, {\it Fuzzy rough set theory for the interval-valued fuzzy information systems}, Information Sciences, {\bf  178} (2008), 2794--2815.

\bibitem{S2}B. Sun, Z. Gong and  D. Chen, {\it Rough set theory for the interval-valued fuzzy information systems}, Information Sciences, {\bf  178} (2008), 1968--1985.

\bibitem{T1} H. Torabi, B. Davvaz and J. Behboodian,
           {\it Fuzzy random events in incomplete probability models}, Journal of Intelligent and Fuzzy
           Systems, {\bf  17(2)} (2006), 183--188.

 \bibitem{T2} H. Torabi, B. Davvaz and J. Behboodian, {\it Inclusiveness measurement of random events using rough set theory}, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, {\bf  15(4)} (2007),  483--491.

\bibitem{Y} S. Yamak, O. Kazanc{\i} and  B. Davvaz, {\it Generalized lower and upper approximations in a ring}, Information Sciences, {\bf 180} (2010), 1759--1768.

\bibitem{Z} L. A. Zadeh, {\it Fuzzy sets}, Information and Control, {\bf  8} (1965), 338--353.