An explicit formula for the number of fuzzy subgroups of a finite abelian $p$-group\\ of rank two

Document Type : Research Paper

Author

Mathematics, Gangneung-Wonju National University, Gangneung, Re- public of Korea

Abstract

Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian
$p$-group, Iranian J. of Fuzzy Systems {\bf 7} (2010), 149-153]
considered the number of fuzzy subgroups of a finite abelian
$p$-group $\mathbb{Z}_{p^m}\times \mathbb{Z}_{p^n}$ of rank two, and
gave explicit formulas for the cases when $m$ is any positive
integer and $n=1,2,3$. Even though their method can be used for the
cases when $n=4,5,\ldots$ by using inductive arguments, it does not
provide an explicit formula for that number  for an arbitrarily
given positive integer $n$. In this paper we give a complete answer
to this problem. Thus for arbitrarily given positive integers $m$
and $n$, an explicit formula for the number of fuzzy subgroups of
$\mathbb{Z}_{p^m}\times \mathbb{Z}_{p^n}$  is given.

Keywords


\bibitem{BR92} R. A. Brualdi, Introductory Combinatorics,  New York, North Holland, Second Edition,
1992.

\bibitem{DA81} P. S. Das, {\em Fuzzy groups and level subgroups}, J. Math. Anal. Appl., {\bf  84} (1981), 264-269.

\bibitem{JCLJ2011} S. Jia, Y. Chen, J. Liu and Y. Jiang, {\em On the number of fuzzy subgroups
of finite abelian p-groups with type $(p^n, p^m)$}, In Proceedings
of The 3rd International Conference on Computer Research and
Development, China, {\bf 4} (2011), 62-64.

\bibitem{NG05} S. Ngcibi, {\it Studies of equivalent fuzzy
subgroups of finite abelian $p$-groups of rank two and their
subgroup lattices}, Thesis, (PhD) Rhodes university, 2005.

\bibitem{NMM10} S. Ngcibi, V. Murali and B. B. Makamba, {\em Fuzzy subgroups of rank two
abelian $p$-group}, Iranian Journal of Fuzzy Systems, {\bf 7(2)} (2010),
149-153.

\bibitem{PS98} E. Pergola and R. A. Sulanke, {\em Schr\"{o}der triangles, paths, and
parallelogram polyominoes}, J. Integer Seq., Article
98.1.7., {\bf 1} (1998).

\bibitem{SL} N. J. A. Sloane, {\it The on-line encyclopedia of integer
sequences}, https://oeis.org.

\bibitem{TB08} M. T\u{a}rn\u{a}uceanu and L. Bentea, {\em On the number of fuzzy subgroups of finite abelian
groups}, Fuzzy Sets and Systems, {\bf 159} (2008), 1084-1096.

\bibitem{Tu95} A. Tucker, {\it Applied combinatorics}, John Wiley \& Sons, Inc., New York, 1995.