\bibitem{aba} S. Abbasbandy, E. Babolian and M. Alavi, {\it Numerical
method for solving linear fredholm fuzzy integral equations of
the second kind}, Chaos Solitons \& Fractals, {\bf 31} (2007), 138-146.
\bibitem{abo} S. Abbasbandy and M. Otadi, {\it Numerical solution of fuzzy
polynomials by fuzzy neural network}, Applied Mathematics and Computation, {\bf 181}
(2006), 1084-1089.
\bibitem{abom} S. Abbasbandy, M. Otadi and M. Mosleh, {\it Numerical
solution of a system of fuzzy polynomials by fuzzy neural
network}, Information Sciences, {\bf 178} (2008), 1948-1960.
\bibitem{al1} G. Alefeld and J. Herzberger, {\it Introduction to interval
computations}, Academic Press, New York, 1983.
\bibitem{aaa1} T. Allahviranloo, E. Ahmady and N. Ahmady, {\it Nth-order
fuzzy linear differential eqations},Information Sciences, {\bf 178} (2008),
1309-1324.
\bibitem{aaa2} T. Allahviranloo, N. Ahmady and E. Ahmady, {\it Numerical
solution of fuzzy differential eqations by predictor-corrector
method}, Information Sciences, {\bf 177} (2007), 1633-1647.
\bibitem{at} K. E. Atkinson, {\it An introduction to numerical analysis},
New York, Wiley, 1987.
\bibitem{bsa} E. Babolian, H. S. Goghary and S. Abbasbandy, {\it Numerical
solution of linear fredholm fuzzy integral equations of the
second kind by adomian method}, Applied Mathematics and
Computation, {\bf 161} (2005), 733-744.
\bibitem{bm} P. Balasubramaniam and S. Muralisankar, {\it Existence and uniqueness of fuzzy
solution for the nonlinear fuzzy integro-differential equations}, Applied mathematics letters, {\bf 14} (2001), 455-462.
\bibitem{bb} B. Bede, I. J. Rudas and A. L. Bencsik, {\it First order linear
fuzzy differential eqations under generalized differentiability},
Information Sciences, {\bf 177} (2007), 1648-1662.
\bibitem{ber} J. F. Bernard, {\it Use of rule-based system for process control}, IEEE Control System Management, {\bf 8} (1988), 3-13.
\bibitem{bf} J. J. Buckley and T. Feuring, {\it Fuzzy differential equations}, Fuzzy Sets and Systems, {\bf 110} (2000), 69-77.
\bibitem{by} J. J. Buckley and Y. Hayashi, {\it Can fuzzy neural nets
approximate continuous fuzzy functions?}, Fuzzy Sets and Systems, {\bf 61}
(1994), 43-51.
\bibitem{cz} S. L. Chang and L. A. Zadeh, {\it On fuzzy mapping and control},
IEEE Transactions Systems Man and Cybernetics, {\bf 2} (1972), 30-34.
\bibitem{che} Y. C. Chen and C. C. Teng, {\it A model reference control structure using a fuzzy neural network}, Fuzzy Sets and Systems, {\bf 73} (1995), 291-312.
\bibitem{com} W. Congxin and M. Ming, {\it On embedding problem of fuzzy
number space}, Fuzzy Sets and Systems, {\bf 44} (1991), 33-38.
\bibitem{dd} D. Dubois and H. Prade, {\it Operations on fuzzy numbers}, International Journal of Systems Science, {\bf 9} (1978), 613-626.
\bibitem{dp} D. Dubois and H. Prade, {\it Towards fuzzy differential
calculus}, Fuzzy Sets and Systems, {\bf 8} (1982), 225-233.
\bibitem{effati} S. Effati and M. Pakdaman, {\it Artificial neural network approach for solving fuzzy differential equations}, Information Sciences, {\bf 180} (2010), 1434-1457.
\bibitem{wf} W. Fei, {\it Existence and uniqueness of solution for fuzzy random differential equations with non-lipschitz
coefficients}, Information Sciences, {\bf 177} (2007), 4329-4337.
\bibitem{fmk} M. Friedman, M. Ma and A. Kandel, {\it Numerical solutions
of fuzzy differential and integral equations}, Fuzzy Sets and
Systems, {\bf 106} (1999), 35-48.
\bibitem{gv} R. Goetschel and W. Voxman, {\it Elementary fuzzy calculus},
Fuzzy Sets and Systems, {\bf 18} (1986), 31-43.
\bibitem{go} D. Gottlieb and S.A. Orszag, {\it Numerical analysis of
spectral methods}, Theory and applications, CBMS-NSF Regional
Conference Series in Applied Mathematics, SIAM,
Philadelphia, {\bf 26} (1977).
\bibitem{hdb} M. T. Hagan, H. B. Demuth and M. Beale, {\it Neural network
design}, PWS publishing company, Massachusetts, 1996.
\bibitem{jb2} Y. Hayashi, J. J. Buckley and E. Czogala, {\it Fuzzy neural
network with fuzzy signals and weights}, International Journal of Intelligent
Systems, {\bf 8} (1993), 527-537.
\bibitem{ha} S. Haykin,{\it Neural networks: a comprehensive
foundation}, Prentice Hall, New Jersey, 1999.
\bibitem{h} H. Hochstadt, {\it Integral equations}, New York: Wiley,
1973.
\bibitem{hsw} K. Hornick, M. Stinchcombe and H. White, {\it Multilayer
feedforward networks are universal approximators}, Neural Networks,
{\bf 2} (1989), 359-366.
\bibitem{dr} H. Ishibuchi, K. Kwon and H. Tanaka, {\it A learning algorithm of
fuzzy neural networks with triangular fuzzy weights}, Fuzzy Sets
and Systems, {\bf 71} (1995), 277-293.
\bibitem{imt} H. Ishibuchi, K. Morioka and I.B. Turksen, {\it Learning by
fuzzified neural networks}, International Journal of Approximate Reasoning, {\bf 13} (1995),
327-358.
\bibitem{ism} H. Ishibuchi and M. Nii, {\it Numerical analysis of the
learning of fuzzified neural networks from fuzzy if-then rules},
Fuzzy Sets and Systems, {\bf 120} (2001), 281-307.
\bibitem{wc1} H. Ishibuchi, H. Okada and H. Tanaka, {\it Fuzzy neural networks
with fuzzy weights and fuzzy biases}, Proceedings ICNN, {\bf 93} (1993), 1650-1655.
\bibitem{ito} H. Ishibuchi, H. Tanaka and H. Okada, {\it Fuzzy neural
networks with fuzzy weights and fuzzy biases}, IEEE International Conferences on Neural Networks, (1993), 1650-1655.
\bibitem{kal} O. Kaleva, {\it Fuzzy differential equations}, Fuzzy Sets
and Systems, {\bf 24} (1987), 301-317.
\bibitem{kh} T. Khanna, {\it Foundations of neural networks},
Addison-Wesly, Reading, MA, 1990.
\bibitem{kcy} G. J. Klir, U. S. Clair, B. Yuan, {\it Fuzzy set theory:
foundations and applications}, Prentice-Hall, 1997.
\bibitem{kbrh} P. V. Krishnamraju, J. J. Buckley, K. D. Relly and Y.
Hayashi, {\it Genetic learning algorithms for fuzzy neural nets},
IEEE International Conference on Fuzzy
Systems, (1994), 1969-1974.
\bibitem{lag} I. E. Lagaris and A. Likas, {\it Artificial neural networks for solving ordinary and partial differential equations}, IEEE Transactions on Neural Networks, September, {\bf 9}\textbf{(5)} (1998).
\bibitem{lam} J. D. Lamber, {\it Computational methods in ordinary
differential equations}, John Wiley \& Sons, New York, 1983.
\bibitem{lf} A. Lapedes and R. Farber, {\it How neural nets work?}, Neural Information Processing Systems, AIP, 1988,
442-456.
\bibitem{lk} H. Lee and I. S. Kang, {\it Neural algorithms for solving
differential equations}, Journal of Computational Physics, {\bf 91}
(1990), 110-131.
\bibitem{tlee} T. Leephakpreeda, {\it Novel determination of
differential-equation solutions: universal approximation method},
Computational and Applied Mathematics, {\bf 146} (2002), 443-457.
\bibitem{leng} G. Leng, G. Prasad and T. M. McGinnity, {\it An on-line algorithm for creating self-organizing fuzzy neural networks}, Neural Networks, {\bf 17} (2004), 1477-1493.
\bibitem{lin1} D. Lin and X. Wang, {\it Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation}, Fuzzy Sets and Systems, {\bf 161} (2010), 2066-2080.
\bibitem{lin3} D. Lin and X. Wang, {\it Self-organizing adaptive fuzzy neural control for the synchronization of uncertain chaotic systems with random-varying parameters}, Neurocomputing, {\bf 74} (2011), 2241-2249.
\bibitem{lin2} D. Lin, X. Wang, F. Nian and Y. Zhang, {\it Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems}, Neurocomputing, {\bf 73} (2010), 2873-2881.
\bibitem{li} R. P. Lippmann, {\it An introduction to computing with
neural nets}, IEEE ASSP Magazine, (1987), 4-22.
\bibitem{mas} A. Malek and R. Shekari Beidokhti, {\it Numerical solution
for high order differential equations using a hybrid neural
network-Optimization method}, Applied Mathematics and Computation, {\bf 183} (2006),
260-271.
\bibitem{mf} A. J. Meade Jr and A. A. Fernandez, {\it The numerical solution
of linear ordinary differential equations by feedforward neural
networks}, Mathematical and Computer Modelling, {\bf 19}\textbf{(12)} (1994), 1-25.
\bibitem{mef} A. J. Meade Jr and A. A. Fernandez, {\it Solution of nonlinear
ordinary differential equations by feedforward neural networks},
Mathematical and Computer Modelling, {\bf 20}\textbf{(9)} (1994), 19-44.
\bibitem{mbcrb} M. T. Mizukoshi, L. C. Barros, Y. Chalco-Cano, H. Román-Flores and R. C.
Bassanezi, {\it Fuzzy differential equations and the extention
principle}, Information Sciences, {\bf 177} (2007), 3627-3635.
\bibitem{mto} M. Mosleh, T. Allahviranloo and M. Otadi, {\it Evaluation of fully fuzzy regression models by fuzzy neural
network}, Neural Comput and Applications, {\bf 21} (2012), 105 - 112.
\bibitem{mom1} M. Mosleh and M. Otadi, {\it Minimal solution of fuzzy linear system of differential equations}, Neural Comput and Applications, {\bf 21} (2012), 329-336.
\bibitem{mom} M. Mosleh and M. Otadi, {\it Simulation and evaluation of fuzzy differential equations by fuzzy neural network}, Applied Soft Computing, {\bf 12} (2012), 2817–2827.
\bibitem{moa1} M. Mosleh, M. Otadi and S. Abbasbandy, {\it Evaluation of fuzzy regression models by fuzzy neural network}, Journal of Computational and Applied
Mathematics, {\bf 234} (2010), 825-834.
\bibitem{moa2} M. Mosleh, M. Otadi and S. Abbasbandy, {\it Fuzzy polynomial regression with fuzzy neural networks}, Applied Mathematical Modelling, {\bf 35} (2011), 5400-5412.
\bibitem{oma1} M. Otadi and M. Mosleh, {\it Simulation and evaluation of dual fully fuzzy linear systems by fuzzy neural network}, Applied Mathematical Modelling, {\bf 35} (2011), 5026-5039.
\bibitem{oma2} M. Otadi, M. Mosleh and S. Abbasbandy, {\it Numerical solution of fully fuzzy linear systems
by fuzzy neural network}, Soft Computing, {\bf 15} (2011), 1513-1522.
\bibitem{oms} M. Otadi, M. Mosleh, S. Saidanlu and N. A. Aris, {\it Fuzzy hyperbolic regression with fuzzy neural networks}, Australian Journal of Basic and Applied Sciences, {\bf 5}\textbf{(10)} (2011), 838-847.
\bibitem{pse} G. Papaschinopoulos, G. Stefanidou and P. Efraimidis,
{\it Existence, uniquencess and asymptotic behavior of the solutions
of a fuzzy differential equation with piecewise constant
argument}, Information Sciences, {\bf 177} (2007), 3855-3870.
\bibitem{pi} P. Picton, {\it Neural Networks}, Second edition, Palgrave,
Great Britain, 2000.
\bibitem{pr} M. L. Puri and D. Ralescu, {\it Fuzzy random variables}, Journal of Mathematical Analysis and Applications, {\bf 114} (1986), 409-422.
\bibitem{rrl} R. Rodriguez-Lopez, {\it Comparison results for fuzzy
differential eqations}, Information Sciences, {\bf 178} (2008), 1756-1779.
\bibitem{ru} D. E. Rumelhart and J. L. McClelland, {\it Parallel distributed processing}, MIT Press,
Cambridge, MA, 1986.
\bibitem{sc} R. J. Schalkoff, {\it Artificial neural networks},
McGraw-Hill, New York, 1997.
\bibitem{seik} S. Seikkala, {\it On the fuzzy initial value problem},
Fuzzy Sets and Systems, {\bf 24} (1987), 319-330.
\bibitem{st} J. Stanley, {\it Introduction to neural networks}, Sierra Mardre, 1990.
\bibitem{sb} J. Store and R. Bulirsch, {\it Introduction to numerical
analysis}, Springer-Verlag, New York, 1993.
\bibitem{tung} W. L. Tung and C. Quek, {\it A generic self-organizing fuzzy neural network}, IEEE Transactions on Neural networks, {\bf 13} (2002), 1075-1086.
\bibitem{yuan} X. Wang and J. Zhao, {\it Cryptanalysis on a parallel keyed hash function based on chaotic neural network}, Neurocomputing, {\bf 73} (2010,) 3224-3228.
\bibitem{xin} W. Xingyuan, X. Bing and Z. Huaguang, {\it A multi-ary number communication system based on hyperchaotic system of 6th-order cellular neural network}, Communications in Nonlinear Science and Numerical Simulation, {\bf 15} (2010), 124-133.
\bibitem{kin} L. A. Zadeh, {\it The concept of a liguistic variable and its
application to approximate reasoning} Information Sciences, {\bf 8}
(1975), 199-249, 301-357; {\bf 9} (1975), 43-80.
\bibitem{laz} L. A. Zadeh, {\it Is there a need for fuzzy logic?}, Information
Sciences, {\bf 178} (2008), 2751-2779.
\bibitem{zhang1} H. G. Zhang and D. R. Liu, {\it Fuzzy modeling and fuzzy control}, Boston, 2006.
\bibitem{zhang2} H. G. Zhang and Y. B. Quan, {\it Modeling, identification and control of a class of nonlinear systems}, IEEE Transactions on Fuzzy Systems, {\bf 9} (2001), 349-354.