Fuzzy collocation methods for second- order fuzzy Abel-Volterra integro-differential equations

Document Type : Research Paper


1 Department of Mathematics, Islamic Azad University, Qazvin Branch, Qazvin, Iran.

2 Department of Mathematics, Science and Research Branch, Is- lamic Azad University, Tehran, Iran.

3 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.


In this paper we intend to offer new numerical methods to solve the second-order fuzzy Abel-Volterra
integro-differential equations under the generalized $H$-differentiability. The existence and uniqueness of the
solution and convergence of the proposed methods are proved in details and the efficiency of the methods is illustrated through a numerical example.


S. Abbasbandy and M. S. Hashemi, {it Fuzzy integro-differential
equations: formulation and solution using the variational
iteration method}, Nonlinear Science Letters A, { bf 1} (2010),
T. Allahviranloo, S. Abbasbandy, O. Sedaghgatfar and
P. Darabi, {it A new method for solving fuzzy
integro-differential equation under generalized
differentiability}, Neural Computing and Applications, {bf 21}
(2012), 191-196.
T. Allahviranloo, M. Khezerloo, O. Sedaghatfar and S.
Salahshour, {it Toward the existence and uniqueness of solutions
of second-order fuzzy volterra integro-differential equations with
fuzzy kernel}, Neural Computing and Applications, DOI
10.1007/s00521-012-0849-x, 2012.
T. Allahviranloo, M. Khezerloo, M. Ghanbari and S. Khezerloo,{it
The homotopy perturbation method for fuzzy Volterra integral
equations}, International Journal of Computational Cognition, {bf
8} (2010), 31-37.
R. Alikhani, F. Bahrami and A. Jabbari, {it Existence of global
solutions to nonlinear fuzzy Volterra integro-differential
equations}, Nonlinear Analysis, {bf 75} (2012), 1810-1821.
T. Allahviranloo, S. Abbasbandy and S. Salahshour, {it A new method
for solving fuzzy integro-differential equation under generalized
differentiability}, Neural Computing and Applications, {bf
21} (2012), 191-196.
E. Babolian, H. Sadeghi Goghary and S. Abbasbandy, {it Numerical solution of linear fredholm fuzzy integral equations
of the second kind by Adomian method}, Applied Mathematics and
Computation, {bf 161} (2005), 733-744.
B. Bede and S. G. Gal, {it Generalizations of differentiability of
fuzzy-number valued function with application to fuzzy
differential equations}, Fuzzy Sets and Systems, {bf 151} (2005),
B. Bede, Note on {it Numerical solutions of fuzzy differential
equations by predictor–corrector method}, Information Sciences,
{bf 178} (2008), 1917-1922.
A. M. Bijura, {it Error bounded analysis and singularly perturbed
Abel-Volterra equations}, Journal of Applied Mathematics, {bf 6}
(2004), 479-494.
Y. Chalco-Cano and H. Román-Flores, {it On new solutions of fuzzy
differential equations}, Chaos Soliton and Fractals, {bf
38} (2006), 112-119.
R. N. Desmarais and S. R. Bland, {it Tables of properties of airfoil
polynomials}, Nasa Reference Publication, 1343, September 1995.
D. Dubois and H. Prade,{it Theory and application}, Academic Press, 1980.
M. Friedman, M. Ma and A. Kandel, {it Numerical methods for calculating the fuzzy integral}, Fuzzy Sets and Systems, {bf83} (1996), 57–62.
R. Goetschel and W. Voxman, {it Elementary calculus}, Fuzzy
Sets Syst, {bf 18} (1986), 31-43.
M. Jahantigh, T. Allahviranloo and M. Otadi,{it Numerical solution of fuzzy integral equation}, Applied Mathematical Sciences, {bf2} (2008), 33-46.
A. Kauffman and M. M. Gupta, {it Introduction to fuzzy arithmetic: theory and application}, Van Nostrand Reinhold. New York, 1991.
H. Kim and R. Sakthivel, {it Numerical solution of hybrid fuzzy
differential equations using improved predictor-corrector method},
Communications in Nonlinear Science and Numerical Simulation, {bf
17} (2012), 3788-3794.
X. Li and T. TANG, {it Convergence analysis of Jacobi spectral
collocation methods for Abel-Volterra integral equations of second
kind}, Frontiers of Mathematics in China, {bf 7} (2012), 69–84.
N. Mikaeilvand, S. Khakrangin and T. Allahviranloo, {it Solving fuzzy
Volterra integro-differential equation by fuzzy differential
transform method}, EUSFLAT- LFA, (2011), 891-896.
A. Molabahrami, A. Shidfar and A. Ghyasi, {it An analytical method
for solving linear Fredholm fuzzy integral equations of the second
kind}, Computers and Mathematics with Applications, {bf 61}
(2011), 2754-2761.
M. L. Puri and D. Ralescu, { it Fuzzy random variables}, Journal of Mathematical Analysis and Applications, { bf 114} (1986), 409-422.
S. Sadigh Behzadi, { it Solving fuzzy nonlinear
Volterra-Fredholm integral equations by using homotopy analysis
and Adomian decomposition methods}, Journal of Fuzzy Set Valued
Analysis, { bf 2011}(2011), 1-13.
S. Sadigh Behzadi, T. Allahviranloo and S. Abbasbandy, {it Solving
fuzzy second-order nonlinear Volterra–Fredholm
integro-differential equations by using Picard method}, Neural
Computing and Applications, DOI 10.1007/s00521- 012 - 0926 -1,
S. Sadigh Behzadi, T. Allahviranloo and S. Abbasbandy, {it The
use of fuzzy expansion method for Solving Fuzzy linear
Volterra-Fredholm Integral Equations}, Journal of Intelligent and
Fuzzy Systems, DOI:10.3233/IFS-130861, 2013.
S. Salahshour and T. Allahviranloo, {it Application of fuzzy
differential tansform method for solving fuzzy Volterra integral
equations}, Applied Mathematical Modelling, {bf 37} (2013),
S. Salahshour, T. Allahviranloo and S. Abbasbandy, {it Solving fuzzy
fractional differential equations by fuzzy Laplace transforms},
Communication in Nonlinear Science and Numerical Simulation, {bf
17} (2012), 1372-1381.
M. Sugeno, {it Theory of fuzzy integrals and its application}, Ph.D. Thesis, Tokyo Institute of Technology, 1974.
L. A. Zadeh, {it Information and control}, Fuzzy Sets and Systems, {bf 8} (1965), 338-353.