Fixed Points Theorems with respect to \\fuzzy w-distance

Document Type : Research Paper


1 Department of Mathematics, Islamic Azad University, Science and Research Branch, 14778 93855 Tehran, Iran

2 Department of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15914, Iran

3 Department of Mathematics, Qaemshahr Branch, Islamic Azad Uni- versity, Qaemshahr , Iran


In this paper, we shall introduce the fuzzy
w-distance, then prove a common fixed point theorem with respect
to fuzzy w-distance for two mappings under the condition of
weakly compatible in complete fuzzy metric spaces.


\bibitem{AS} M. Amini and R. Saadati, {\it Topics in fuzzy metric spaces},
J. Fuzzy Math., {\bf11(4)} (2003), 765-768 .
\bibitem{CSW}Y. J. Cho, R. Saadati and S. Wang, {\it Common fixed
point theorems on generalized distance in ordered cone metric
spaces}, Comput. Math. Appl., {\bf61(4)} (2011), 1254-1260.
\bibitem{Cho1997}Y. J. Cho,{\it Fixed points in fuzzy metric spaces}, J. Fuzzy
Math., {\bf5} (1997), 949-962.
\bibitem{Fang1992}J. X. Fang, {\it On fixed point theorems in fuzzy metric
spaces}, Fuzzy Sets and Systems, {\bf46} (1992), 107-113.
\bibitem{George1994} A. George and P. Veeramani, {\it On some result in fuzzy
metric space}, Fuzzy Sets and Systems, {\bf64} (1994), 395-399.
\bibitem{Grabiec1988} M. Grabiec,{\it Fixed points in fuzzy metric spaces}, Fuzzy
Sets and Systems, {\bf27} (1988), 385-389.
\bibitem{Gregori}V. Gregori and A. Sapena, {\it On fixed-point theorem in fuzzy
metric spaces}, Fuzzy Sets and Systems, {\bf125} (2002), 245-252.
\bibitem{Hadzic1989} O. Had\v{z}i\'{c} and E. Pap, {\it Fixed point theory in
probabilistic metric spaces}, Kluwer Academic Publishers,
Dordrecht, 2001.
\bibitem{G1} G.S. Jeong and B.E. Rhoades, {\it Maps for which $F (T ) = F (T^ n)$} ,
Fixed Point Theory Appl., {\bf6} (2006), 72-105.
\bibitem{Kramosil1975}I. Kramosil and J. Michalek, {\it Fuzzy metric and
statistical metric spaces}, Kybernetica, {\bf11} (1975), 326-334.
\bibitem{Mihet}D. Mihe\c{t}, {\it On fuzzy contractive mappings in fuzzy metric
spaces}, Fuzzy Sets and Systems, {\bf158} (2007), 915 -921.
\bibitem{Mihet2}D. Mihe\c{t}, {\it Fuzzy $\psi $-contractive mappings in
non-Archimedean fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf159}
(2008), 739-744.
\bibitem{Mishra1994} S. N. Mishra, S. N. Sharma and S. L. Singh, {\it Common fixed
points of maps in fuzzy metric spaces}, Internat. J. Math. Math.
Sci., {\bf17} (1994), 253-258.
\bibitem{Rodriguez2004} J. L. Rodr\'{\i}guez and S. Ramaguera,{\it The Hausdorff
fuzzy metric on compact sets}, Fuzzy Sets and Systems, {\bf147} (2004),
\bibitem{SOVK} R. Saadati, D. O'Regan, S. M. Vaezpour and J. K. Kim,
{\it Generalized distance and common fixed point theorems in Menger
probabilistic metric spaces}, Bull. Iran. Math. Soc., {\bf35(2)} (2009), 97-117.
\bibitem{SVC}R. Saadati, S.M. Vaezpour and Lj.B. Ciric, {\it Generalized
distance and some common fixed point theorems}, J. Comput. Anal.
Appl., {\bf12(1)} (2010), 157-162.
\bibitem{Schweizer1960} B. Schweizer and A. Sklar, {\it Statistical metric
spaces}, Pacific J. Math., {\bf10} (1960), 313-334.
\bibitem{SAN1}S. Sedghi, N. Shobe and I. Altun, {\it A fixed fuzzy point for
fuzzy mappings in complete metric spaces} , Math. Commun., {\bf13(2)}
(2008), 289-294.
\bibitem{Zikic} T. \v{Z}iki\'{c}-Do\v{s}enovi\'{c}, {\it A common fixed point
theorem for compatible mappings in fuzzy metric spaces using
implicit relation}, Acta Math. Hungar, {\bf125(4)} (2009), 357-368.