bibitem{1}
T. Bag and S. K. Samanta, {it Fuzzy bounded linear operators in Felbin's type fuzzy normed linear spaces}, Fuzzy Sets and Systems, {bf 159} (2008), 685-707.
%bibitem{2}
%T. Bag, S.K. Samanta, {it Fuzzy bounded linear operators}, Fuzzy Sets and Systems, {bf 151} (2005), 513-547.
bibitem{3}
C. Felbin, {it Finite dimensional fuzzy normed linear space}, Fuzzy Sets and Systems, {bf 48} (1992), 239-248.
%bibitem{4}
%C. Felbin, {it The completion of a fuzzy normed linear space}, Mathematical Analysis and Applications, {bf 174} (1993), 428-440.
bibitem{5}
A. Hasankhani, A. Nazari and M. Saheli, {it Some properties of fuzzy hilbert spaces and norm of operators}, Iranian Journal of Fuzzy Systems, {bf 7}textbf{(3)} (2010), 129-157.
bibitem{55}
A. Hasankhani, A. Nazari and M. Saheli, {it Bounded inverse theorem and compact linear operators on fuzzy normed linear spaces}, Ital. J. Pure Appl. Math., accepted for publication.
bibitem{7}
O. Kaleva and S. Seikkala, {it On fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 12} (1984), 215-229.
bibitem{6}
E. Kreyszig, {it Introductory functional analysis with applications}, John Wiley and Sons, New York, 1978.
bibitem{8}
J. Xiao and X. Zhu, {it Fuzzy normed space of operators and its completeness}, Fuzzy Sets and Systems, {bf 133} (2003), 389-399.
bibitem{9}
J. Xiao and X. Zhu, {it On linearly topological structure and property of fuzzy normed linear space}, Fuzzy Sets and Systems, {bf 125} (2002), 153-161.