Further study on $(L,M)$-fuzzy topologies and $(L,M)$-fuzzy neighborhood systems

Document Type : Research Paper

Authors

1 College of Mathematics and Information Science, Shaanxi Normal Uni- versity, Xi'an, 710062, P. R. China and School of Science, Xian Polytechnic University, Xian 710048, P.R .China

2 College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, P. R. China

Abstract

Following the idea of $L$-fuzzy neighborhood system as introduced by
Fu-Gui Shi, and its generalization to $(L,M)$-fuzzy neighborhood system, the relationship between  $(L,M)$-fuzzy topology and $(L,M)$-fuzzy neighborhood system will be further studied. As an application of the obtained results, we will describe the initial structures of $(L,M)$-fuzzy neighborhood subspaces and $(L,M)$-fuzzy topological product spaces.

Keywords


\bibitem{DeMeRo:Iatlvts}
J. T. Denniston, A. Melton and S. E. Rodabaugh, {\it Interweaving
algebra and topology: Lattice-valued topological systems}, Fuzzy
Sets and Systems, {\bf 192} (2012), 58-103.

\bibitem{Fan:Slfts}
J. Fang, {\it Sums of $L$-fuzzy topological spaces}, Fuzzy Sets and
Systems, {\bf 157} (2005), 739 --754.

\bibitem{GiHO:Cld}
G. Gierz, K. H. Hofmann and etc., {\it Contionuous Lattices  and
 Domains}, Cambridge University Press, 2003.

\bibitem{HoSo:Affbft}
U. H\"ohle and A. P. \u{S}ostak, {\it Axiomatic foundations of fixed
basis fuzzy topology}, Chapter 3, In: U. H\"ohle, S. E. Rodabaugh,
eds., Mathematics of Fuzzy Sets: Logic, Topology, and Measure
Theory, The Handbooks of Fuzzy Sets Series, , Kluwer
Academic Publishers, Dordrecht, {\bf 3} (1999), 123--272.

\bibitem{Kub:Oft} T. Kubiak,
{\it On fuzzy topologies}, Ph. D. Thesis, Adam Mickiewicz,
Pozna\'{n}, Poland, 1985.

\bibitem{KuSo:Aftcmvlts} T. Kubiak, A. \u{S}ostak, {\it A fuzzification of the category of
$M$-valued $L$-topological spaces}, Applied General Topology, {\bf
5} (2004), 137--154.

\bibitem{KuSo:Ftttts} T. Kubiak, A. \u{S}ostak, {\it
Foundations of the theory of $(L,M)$-fuzzy topological spaces},
Abstracts of the 30th Linz Seminar on Fuzzy Set Theory (U.
Bodenhofer, B. De Baets, E. P. Klement, and S. Saminger-Platz,
eds.), Johannes Kepler Universit\"{a}t, Linz, (2009), 70--73.

\bibitem{LiLu:Ft} Y. M. Liu and M. K. Luo, {\it Fuzzy Topology}, World Scientific Publishing, Singapore, 1997.

\bibitem{Rod:Cfvbft}
S. E. Rodabaugh, {\it Categorical Foundations of Variable-Basis
Fuzzy Topology}, Mathematics of Fuzzy Sets: Logic, Topology, and
Measure Theory (U. H\"ohle, S. E. Rodabaugh eds.), The Handbooks of
Fuzzy Sets Series, Dordrecht: Kluwer Academic Publishers,
Boston, Dordrecht, London, {\bf3} (1999), 273--88.

\bibitem{Shi:Lfilfc}
F. G. Shi, {\it$L$-fuzzy interiors and $L$-fuzzy closures}, Fuzzy
Sets and Systems, {\bf 160} (2009), 1218-1232.

\bibitem{Shi:Rnlfts}F. G. Shi, {\it Regularity and normality of $(L,M)$-Fuzzy topological
spaces}, Fuzzy Sets and Systems, {\bf 182} (2011), 37--52.

\bibitem{Wan:Ttml}G. J. Wang, {\it Theory of topological molecular
 lattices}, Fuzzy Sets and Systems, {\bf 47} (1992), 351--376.

\bibitem{ZhZhLi:Rdlfnslfislfco} H. Zhao, X. J. Zhong and S. G. Li,
{\it Reciprocally determining of $L$-fuzzy neighborhood systems,
$L$-fuzzy interior systems and $L$-fuzzy closure operators}, Journal
of Shaanxi Normal University (Natural Science Edition), in Chinese, {\bf 38}
{\textbf(1)} (2010), 16--19.