\bibitem{Adamek}
J. Ad\'amek, H. Herrlich and G. E. Strecker, {\it Abstract and concrete categories}, John Wiley and Sons, 1990.
\bibitem{3}
B. Banaschewski, {\it Equational Compactness of $G$-sets}, Canadian Mathematical Bulletin, {\bf 17}\textbf{(1)} (1974), 11-18.
\bibitem{Bel1}
R. Belohlavek, {\it Birkhoff variety theorem and fuzzy logic}, Archive for Mathematical Logic, {\bf 42} (2003), 781-790.
\bibitem{Bel2}
R. Belohlavek and V. Vychodil, {\it Algebras with fuzzy equalities}, Fuzzy Sets and Systems, {\bf 157} (2006), 161-201.
\bibitem{Bos}
I. Bosnjak, R.Madarasz and G.Vojvodic, {\it Algebra of fuzzy sets}, Fuzzy Sets and Systems, {\bf 160} (2009), 2979-2988.
\bibitem{univalg}
S. Burris and H. P. Sankapanavar, {\it A course in universal algebra}, Springer-Verlag, 1981.
\bibitem{7}
S. Burris and M. Valeriote, {\it Expanding varieties by monoids of endomorphisms}, Algebra Universalis, {\bf 17}\textbf{(2)} (1983), 150-169.
\bibitem{Me1}
M. M. Ebrahimi, {\it Algebra in a Grothendieck topos: injectivity in quasi-equational classes}, Pure and Applied Algebra, {\bf 26}\textbf{(3)} (1982), 269-280.
\bibitem{Me2}
M. M. Ebrahimi, {\it Equational compactness of sheaves of algebras on a notherian local}, Algebra Universalis, {\bf 16} (1983), 318-330.
\bibitem{Me-MH2}
M. M. Ebrahimi and M. Haddadi, {\it Essential pure monomorphisms of sheaves of group actions}, Semigroup Forum, {\bf 80} (2010), 440-452.
\bibitem{Me-MH1}
M. M. Ebrahimi, M. Haddadi and M. Mahmoudi, {\it Equational compactness of $G$-sheaves}, Communucations in Algebra, {\bf 40} (2012), 666-680.
\bibitem{Mset}
M. M. Ebrahimi and M. Mahmoudi, {\it The category of $M$-sets}, Italian Journal of Pure and Applied Mathematics, {\bf 9} (2001), 123-132.
\bibitem{G-pure}
M. M. Ebrahimi and M. Mahmoudi, {\it Purity of $G$-sheaves}, Submitted, 2009.
\bibitem{process}
H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, C. Dimitrovici and M. Grosse-Rhode, {\it Algebraic data type and process specifications based on projection Spaces}, Lecture Notes in Computer Science, {\bf 332} (1988), 23-43.
\bibitem{combine}
H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, C. Dimitrovici and M. Grosse-Rhode, {\it Combining data type and recursive process specifications using projection algebras}, Theoretical Computer Science, {\bf 71} (1990), 347-380.
\bibitem{pro}
H. Herrlich and H. Ehrig, {\it The construct PRO of projection spaces: its internal structure}, Lecture Notes in Computer Science, {\bf 393} (1988), 286-293.
\bibitem{hohle1}
U. Hohle, {\it Fuzzy sets and sheaves. Part \text{I} Basic concepts}, Fuzzy Sets and Systems, {\bf 158} (2007), 1143-1174.
\bibitem{hohle2}
U. Hohle, {\it Fuzzy sets and sheaves. Part \text{II}: Sheaf-theoretic foundations of fuzzy set theory with applications to algebra and topology}, Fuzzy Sets and Systems, {\bf 158} (2007), 1175-1212.
\bibitem{KKM}
M. Kilp and U. Knauer and A. Mikhalev, {\it Monoids, Acts and Categories}, New York, 2000.
\bibitem{Kura}
T. Kuraoka, {\it Formulas on the lattice of fuzzy subalgebras in universal algebra}, Fuzzy Sets and Systems, {\bf 158} (2007), 1767-1781.
\bibitem{12}
S. Maclane, {\it Categories for the working Mathematicians}, Springer Verlag, 1971.
\bibitem{11}
S. Maclane and I. Moerdijk, {\it Sheaves in Geometry and Logic}, Springer Verlag, 1992.
\bibitem{tennison}
R. Tennison, {\it Sheaf Theory}, Cambridge University Press, 1975.