Fuzzy rules for fuzzy $\overline{X}$ and $R$ control charts

Document Type : Research Paper


Department of Statistics, Faculty of Mathematics and Computer Sience, Shahid Bahonar University of Kerman, Kerman, Iran


Statistical process control ($SPC$), an internationally recognized technique for improving product quality and productivity, has been widely employed in various industries. $SPC$ relies on the use of control charts to monitor a manufacturing process for identifying causes of process variation and signaling the necessity of corrective action for the process. Fuzzy data exist ubiquitously in the modern manufacturing process, and in this paper, two alternative approaches to fuzzy control charts are developed for monitoring sample averages and range. These approaches are based on "fuzzy mode" and "fuzzy rules" methods, when the measures are expressed by non-symmetric triangular fuzzy numbers. In contrast to the existing fuzzy control charts, the proposed approach does not require the use of the defuzzification and this prevents the loss of information included in samples. A numeric example illustrates the performance of the method and interprets the results.


\bibitem{[1] } H. Alipour and  R. Noorossana,  {\it Fuzzy Multivariate exponentially weighted Moving average control chart}, Int J Adv Manuf Techno, {\bf 48} (2010), 1001-1007.
\bibitem{[2]} C. B. Cheng,  {\it Fuzzy process control: Construction of control charts with fuzzy numbers}, Fuzzy Sets and Systems, {\bf 154} (2005), 287-303.
\bibitem{[3]} A. Faraz  and M. B. Moghadam,  {\it Fuzzy control chart a better alternative for Shewhart average chart}, Quality and Quantity, {\bf 41} (2007), 375-385.
\bibitem{[4]} A. Faraz,  R. B.  Kazemzadeh, M. B. Moghadam   and  A. Bazdar,  {\it Constructing a fuzzy Shewhart control chart for variables when uncertainty and randomness are combined}, Journal of Quality \& Quantity, {\bf 44} (2010), 905-914.
\bibitem{[5]}  A. Faraz and A. F. Shapiro,  {\it An application of fuzzy random variables to control charts}, Fuzzy Sets and Systems,  {\bf 161} (2010), 2684-2694.
\bibitem{ [6]} M.H. FazelZarandi,  A. Alaeddini and  I. B. Turksen,  {\it A hybrid fuzzy adaptive sampling- Run rules for Shewhart control charts}, Information Sciences, {\bf 178} (2008), 1152-1170.
\bibitem{[7]} P. Grzegorzewski,  {\it  Control charts for fuzzy data}, In Proceedings of the 5th European congress on intelligent techniques and soft computing EUFIT97, Aachen (1997), 1326-1330.
\bibitem{[8]} P. Grzegorzewski,  {\it Testing statistical hypotheses with vague data}, Fuzzy Sets and Systems, {\bf 112} (2000), 501-510.
\bibitem{[9]} P. Grzegorzewski, {\it Testing fuzzy hypotheses with vague data}, In C. Bertoluzza, M. A. Gil, \& Ralescu, D. (Eds.), Statistical modeling. Analysis and management of fuzzy data. Heidelberg: Springer-PhysicaVerlag, (2002), 213-225.
\bibitem{[10]} M. Gulbay, C. Kahraman  and  D. Ruan,  {\it $\alpha$-cuts fuzzy control charts for linguistic data}, International Journal of Intelligent Systems, {\bf19} (2004), 1173-1196.
\bibitem{[11]} M.  Gulbay and  C.  Kahraman, {\it An alternative approach to fuzzy control charts}, Direct fuzzy approach. Information Sciences, {\bf 177} (2007), 1463-1480.
\bibitem{[12]} M. Gulbay and C.  Kahraman,  {\it Development of fuzzy process control charts and fuzzy unnatural pattern analyses}, Computational Statistics \& Data Analysis, {\bf 51} (2006), 434-451.
\bibitem{[13]} H. M. Hsu and  Y. K. Chen,  {\it A fuzzy reasoning based diagnosis system for $\overline{X}$ control charts}, Journal of Intelligent Manufacturing, {\bf 12} (2001).
\bibitem{[14]} A.  Kanagawa, F.  Tamaki  and H. Ohta, {\it Control charts for process average and variability based on linguistic data}, Intelligent Journal of Production Research, {\bf 31(4)}  (1993), 913-922.
\bibitem{[15]} I. Kaya and  C. Kahraman, {\it Process capability analyses based on fuzzy measurements and fuzzy control charts}, Expert Systems with Applications, {\bf 38} (2011), 3172-3184.
\bibitem{[16]} M. Laviolette, J. W. Seaman  and W. H. Barrett,  {\it A Probabilistic and statistical view of fuzzy methods, with discussion}, Techno metrics, {\bf 37} (1995), 249-292.
\bibitem{[17]} D. C. Montgomery, {\it Introduction to Statistical Quality Control}, New York: John 626 Wiley \& Sons, 2005.
\bibitem{[18]} T. J. Ross, {\it Fuzzy logic with engineering applications}, McGraw-Hill, 1995.
\bibitem{[19]} H. Rowlands  and L. R. Wang, {\it An approach of fuzzy logic evaluation and control in $SPC$}, Quality Reliability Engineering Intelligent, {\bf 16} (2000), 91-98.
\bibitem{[20]} S. Senturk  and  N. Erginel, {\it Development of fuzzy $\tilde{\overline{X}}-\tilde{R}$ and $\tilde{\overline{X}}-\tilde{S}$ control charts using $\alpha$- cuts}, Information Sciences, {\bf 179} (2009), 1542-1551.
\bibitem{[21]} W. A. Shewhart, {\it  Economic Control of Quality of Manufactured Product}, D. Van Nostrand Inc, Princeton, NJ, 1931.
\bibitem{[22]} M. H. Shu and  H. C. Wu, {\it Fuzzy $\overline{X}$ and $R$ control charts: Fuzzy dominance approach}, Computers \& Industrial Engineering, {\bf 613} (2011), 676-686.
\bibitem{[23]} J. D. T. Tannock, {\it A fuzzy control charting method for individuals}, International Journal of Production Research, {\bf 41(5)} (2003).
\bibitem{[24]} H. Taleb and  M. Limam, {\it On fuzzy and probabilistic control charts}, International Journal of Production Research, {\bf 40(15)} (2002), 2849-2863.
\bibitem{[25]} J. H. Wang  and T. Raz, {\it Applying fuzzy set theory in the development of quality control chart}, proceeding of the International of Production Research, {\bf 28} (1988), 30-35.
\bibitem{[26]}  J. H. Wang and T. Raz, {\it on the construction of control charts using linguistic variables}, International Journal of Production Research, {\bf 28} (1990), 477-487.
\bibitem{[27]} L. A. Zadeh,  {\it Fuzzy sets}, Information and Control, {\bf 8} (1965), 338-359.