Categories of fuzzy topology in the context of graded ditopologies on textures

Document Type : Research Paper

Authors

1 Department of Mathematics, and Institute of Mathematics & CS, University of Latvia, Riga, Latvia

2 Hacettepe University, Ankara, Turkey

Abstract

This paper extends the notion of ditopology to the case where openness and closedness are given in terms of {\em a priori} unrelated Drading functions. The resulting notion of graded ditopology is considered both in the setting of lattices and in that textures, the relation between the two approaches being discussed in detail. Interrelations between graded ditopologies and ditopologies on textures are also studied.

Keywords


\bibitem{Adamek:ACC}
 J. Ad\'amek, H. Herrlich and G. E. Strecker, {\it Abstract and concrete categories}, New York, Chichester, Brisbane, Toronto, Singapore:
John Wiley \& Sons, Inc., 1990.

\bibitem{Brown:DTSIS}
L. M. Brown and M. Diker, {\it Ditopological texture spaces and intuitionistic sets}, Fuzzy Sets and Systems,
{\bf 98} (1998), 217-224.

\bibitem{Brown:FSTS}
L. M. Brown and R. Ert\"urk, {\it Fuzzy sets as texture spaces, I. Representation theorems}, Fuzzy Sets and Systems,
{\bf 110} (2000), 227-236.

\bibitem{Brown:DTSFT-GC}
L. M. Brown,  R. Ert\"urk and \d{S}. Dost, {\it Ditopological texture spaces and fuzzy topology, I. Basic Concepts},
Fuzzy Sets and Systems, {\bf 147} (2004), 171-199.

\bibitem{Brown:DTSFT-TC} L. M. Brown, R. Ert\"urk and \d{S}. Dost,  {\it Ditopological texture spaces and fuzzy topology, II. Topological
Considerations}, Fuzzy Sets and Systems, {\bf 147} (2004), 201--231.
%\end{thebibliography}
%\end{document}
\bibitem{Brown:BDOSRDT} L. M. Brown and  A. Irkad,
{\it Binary di-operations and spaces of real difunctions on a texture}, Hacettepe Journal of  Mathematics and  Statistics,
{\bf 37} (2008), 25-39.
\bibitem{Chang:FTS}
C. L. Chang, {\it Fuzzy topological spaces}, Journal of  Mathematical Analysis and  Applications, {\bf 24} (1968), 182-190.

\bibitem{Demirci:TC-S}
M. Demirci, {\it Textures and C-spaces}, Fuzzy Sets and Systems, {\bf 158} (2007), 1237-1245.

\bibitem{Gierz:CCL}
G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, {\it A compendium of continuous
lattices}, Berlin: Springer, 1980.

\bibitem{Goguen:FTT}
J. A. Goguen, {\it The fuzzy Tychonoff theorem}, Journal of  Mathematical Analysis and Applications, {\bf 18} (1973), 734-742.

\bibitem{Hutton:PFTS}
B. Hutton, {\it Products of fuzzy topological spaces}, Topology and Applications, {\bf 11} (1980), 59-67.

\bibitem{Hohle:USFSA}
U. H\"ohle, {\it Upper semicontinuous fuzzy sets and applications}, Journal of  Mathematical Analysis and Applications,
 {\bf 78} (1980), 659-673.

\bibitem{Kubiak:FT}
T. Kubiak,  {\it On fuzzy topologies}, Ph.\,D. Thesis, Adam Mickiewicz Univ., Pozna\'{n}, Poland, 1985.

\bibitem{Kubiak:FCM-VL-TS}
T. Kubiak and A. \v{S}ostak,  {\it A fuzzification of the category of $M$-valued $L$-topological spaces}, Applied General
Topology, {\bf 5} (2004), 137--154.

\bibitem{Ozcag:D-UHU}
S. \"Ozca{g}, L. M. Brown and B. Krsteska, {\it Di-uniformities and  Hutton uniformities}, Fuzzy Sets and
Systems, {\bf 195} (2012), 58-74.

\bibitem{Rodabaugh:CAVNFT}
S. E. Rodabaugh, {\it A categorical accommodation of various notions of fuzzy topology}, Fuzzy Sets and Systems, {\bf 9} (1983),
241-265.

\bibitem{Rodabaugh:CFV-BFT}
S. E. Rodabaugh, {\it Categorical foundations of variable-basis fuzzy topology},   Mathematics of
Fuzzy Sets: Logic, Topology and Measure Theory, U. H\"ohle, S.E. Rodabaugh eds. The Handbook of Fuzzy Sets Series,
 Boston, Dordrecht, London: Kluwer Academic Publ., {\bf 3} (1999), 273-389.

\bibitem{Rodabaugh:POFPFSTT}
S. E. Rodabaugh, {\it Powerset operator foundations for poslat fuzzy set theories and topology},
Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, U. H\"ohle, S.E. Rodabaugh eds. The Handbook of Fuzzy Sets Series,
 Boston, Dordrecht, London: Kluwer Academic Publ., {\bf 3} (1999), 91-116.

\bibitem{Sostak:FTS}
A. \v{S}ostak, {\it On a fuzzy topological structure}, Suppl. Rend. Circ. Matem. Palermo, Ser II, {\bf 11} (1985), 89-103.

\bibitem{Sostak:TDFT-BINR}
A. \v{S}ostak, {\it Two decades of fuzzy topology: basic ideas, notions and results}, Russian Mathematical Surveys, {\bf 44}\textbf{{6}} (1989),
125-186.

\bibitem{Sostak:AOAS}
A. \v{S}ostak, {\it On approximation operators and approximative systems},  Proceedings of the Congress of the International Fuzzy
Systems Association, Lisbon, Portugale, (2009), 1061-1066.

\bibitem{Sostak:TTM-AS}
A. \v{S}ostak, {\it Towards the theory of M-approximative systems: Fundamentals and examples}, Fuzzy Sets and
Systems, {\bf 161} (2010), 2440-2461.

\bibitem{Sostak:TTAS-VRC}
A. \v{S}ostak, {\it Towards the theory of approximate systems: variable range categories},
Proceedings of the International Conference on Topology and Applications (ICTA2011), Islamabad, Pakistan: Cambridge University Publ., (2012),
265-284.

\bibitem{Tiryaki:FSOP}
I. U. Tiryaki, {\it Fuzzy sets over the poset $\bI$}, Hacettepe Journal of  Mathematics and Statistics, {\bf 37} (2008), 143-166.

\bibitem{Tiryaki:PDTS}
I. U. Tiryaki and L. M. Brown, {\it Plain ditopological texture spaces}, Topology and its Applications, {\bf 158}\textbf{(15)} (2010), 2005-2015.

\bibitem{Yildiz:ERDAHS}
F. Yildiz and  L. M. Brown, {\it Extended real dicompactness and an application to Hutton spaces}, Fuzzy Sets and
Systems, {\bf 227} (2013), 74-95.

\bibitem{Ying:NAFT}
M. S. Ying, {\it A new approach to fuzzy topology, Part I}, Fuzzy Sets and Systems, {\bf 39} (1991), 303-321.