On Fixed Point Theorems for Contractive-type Mappings in Fuzzy Metric Spaces

Document Type : Research Paper

Authors

College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Nanan, Chongqing, 400065, P. R. China

Abstract

In this paper,  we provide two different kinds of fixed point
theorems in  fuzzy metric spaces. The first kind is for the fuzzy
$\varepsilon$-contractive type mappings and  the second kind is for
the fuzzy order $\psi$-contractive type mappings. They improve the
corresponding  conclusions in the literature.

Keywords


\bibitem{Ab2007}
 H. Abu-Donia, {\it Common fixed point theorems for mappings in metric
space under $\phi$-contraction condition}, Chaos, Soliton Fract., {\bf 34}\textbf{(1)} (2007), 538--543.

\bibitem{A}
T. Altun and D. Mihe$\c{t}$,  {\it Ordered non-archimedean fuzzy metric spaces and some fixed point results}, Fixed Point Theory
Appl., Article ID 782680,  2010.

\bibitem{Ba2006}
 T. Bag and  S. Samanta, {\it Fixed point theorems on fuzzy normed linear spaces}, Information Sciences, {\bf 176}\textbf{(2)} (2006), 2910--2931.

\bibitem{Ba2007}
T. Bag and  S. Samanta,  {\it Some fixed
point theorems in fuzzy normed linear spaces}, Information Sciences, {\bf 177}\textbf{(4)} (2007), 3271--3289.

\bibitem{Geo1994}
  A. George and  P. Veeramani, {\it On some results in fuzzy metric spaces},
Fuzzy Sets and Systems, {\bf 64}\textbf{(2)} (1994), 395--399.

\bibitem{Geo1997}
 A. George and  P. Veeramani, {\it On some results of analysis for fuzzy
metric spaces}, Fuzzy Sets and Systems, {\bf 90}\textbf{(2)} (1997), 365--368.

\bibitem{Ghi2003}
B. Ghil and    K. Kim,  {\it Continuity of functions defined on the space
of fuzzy sets}, Information Sciences, {\bf 157}\textbf{(1)} (2003), 155--165.

\bibitem{Grb1989}
M. Grabiec,  {\it Fixed points in fuzzy
metric spaces}, Fuzzy Sets and Systems,  {\bf 27}\textbf{(2)} (1989), 385--389.

\bibitem{Gre2000}
 V. Gregori and S.  Romaguera,  {\it Some
properties of fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 115}\textbf{(2)} (2000), 485--489 .

\bibitem{Gre2002}
 V. Gregori and S.  Romaguera, {\it On completion of fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf 130}\textbf{1} (2002), 399--404.

\bibitem{Gre2010}
V. Gregori, S.  Morillas and A.  Sapena,  {\it On a class of completable fuzzy
metric spaces}, Fuzzy Sets and Systems, {\bf 161}\textbf{(5)} (2010), 2193--2205.

\bibitem{Hua2007}
H. Huang and  C. Wu,  {\it  On the triangle
inequalities in fuzzy metric spaces}, Information Sciences, {\bf 177}\textbf{(2)} (2007), 1063--1072.

\bibitem{Kal1984}
O. Kaleva, and S.  Seikkala,  {\it On fuzzy metric
spaces}, Fuzzy Sets and Systems, {\bf 12}\textbf{(1)} (1984), 215--229.

\bibitem{Kle2000book}
E. Klement, R.  Mesiar and E.  Pap, {\it Triangular norms}, Kluwer, Dordrecht, 2000.

\bibitem{Kra1975}
I. Kramosil and J. Michalek,  {\it Fuzzy metric and statistical metric spaces}, Kybernetika, {\bf 11}\textbf{(2)} (1975), 326--334.

\bibitem{Men1942}
K. Menger,  {\it Statistical metrics}, Proc. Natl. Acad. Sci. USA,  {\bf 28}\textbf{(1)} (1942), 535--537.

\bibitem{M}
D. Mihe$\c{t}$,  {\it On fuzzy $\varepsilon$-contractive
mappings in fuzzy metric spaces}, Fixed Point Theory  Appl., Article ID 87471,  2007.

\bibitem{M2008}
D. Mihe$\c{t}$, {\it Fuzzy
$\phi$-contractive mappings in non-Archimedean fuzzy metric spaces}, Fuzzy Sets and Systems, {\bf
159}\textbf{(4)} (2008), 739--744.

\bibitem{Pu1986}
M. Puri and D.   Ralescu, {\it  Fuzzy
random variables}, J Math Anal Appl., {\bf 114}\textbf{(2)} (1986), 409--422.

\bibitem{Qiu2008}
 D. Qiu,
L. Shu  and G. Jian,  {\it Common fixed point theorems for fuzzy mappings
under $\phi$-contraction condition},
Chaos Soliton  Fract., {\bf 41}\textbf{(1)} (2009),  360--367.

\bibitem{R}
 A. Razani,  {\it A contraction theorem in fuzzy metric spaces},  Fixed
Point Theory  Appl., {\bf 3}\textbf{(1)} (2005),  257--265.

\bibitem{Saa2008}
R. Saadati,  {\it On the L-fuzzy topological spaces}, Chaos
Soliton  Fract., {\bf 37}\textbf{(3)} (2008), 1419--1426.

\bibitem{Za1965}
L. A. Zadeh,  {\it Fuzzy sets}, Information and Control,  {\bf 8}\textbf{(2)}  (1965), 338--353.

\bibitem{Zha2007}
X. Zhang, {\it Common fixed point theorems
for some new generalized contractive type mappings}, J Math Anal
Appl., {\bf
333}\textbf{(3)} (2007), 780--786.