[1] M. A. Ahmed, Fixed point theorems in fuzzy metric spaces, Journal of the Egyptian Mathe-
matical Society, (in press).
[2] Y. J. Cho, Fixed points in fuzzy metric spaces. J Fuzzy Math, 39 (1997), 949-962.
[3] Y. J. Cho, S. Sedghi, N. Shobe, Generalized xed point theorems for compatible mappings
with some types in fuzzy metric spaces. J Fuzzy Math, 39 (2009), 2233-2244.
[4] L. B. Ciric, D. Mihet and R. Saadati, Monotone generalized contractions in partially ordered
probabilistic metric spaces, Topol. Appl., 156 (2009), 2838-2844.
[5] M. Goudarzi and S. M. Vaezpour,On the denition of fuzzy Hilbert spaces and its application,
J. Nonlinear Sci. Appl., 2(1) (2009) 46-59.
[6] O. Hadzic and E. Pap, Fixed Point Theory in PM Spaces, Kluwer Academic Publ., 2001.
[7] Y. Liu and Z. Li, Coincidence point theorems in probabilistic and fuzzy metric spaces, 158
(2007), 58-70.
[8] D. Mihe t, A generalization of a contraction principle in probabilistic metric spaces (II),
Int. J. Math. Math. Sci, 5 (2005), 729-736.
[9] S. N. Mishra, N. Sharma and S. L. Singh, Common xed points of maps on fuzzy metric
spaces, International Journal of Mathematics and Mathematical Sciences, 17 (1994), 253-
258.
[10] S. H. Nasseri, Fuzzy nonlinear optimization, Nonlinear Anal, 1 (2008), 236-240.
[11] H. K. Nashine and B. Samet, Fixed point results for mappings satisfying ( ; ') weakly
contractive condition in partially ordered metric spaces, Nonlinear Anal, 74 (2011), 2201-
2209.
[12] D. O'Regan and R. Saadati, Nonlinear contraction theorems in probabilistic spaces. Appl.
Math. Comput, 195 (2008), 86-93.
[13] B. Singh and M. S. Chauhan, Common xed points of compatible maps in fuzzy metric spaces,
Fuzzy Sets and Systems, 115 (2000), 471-475.
[14] B. Singh and S. Jain, Semi-compatibility, compatibility and xed point theorems in Fuzzy
metric space, Journal of Chungecheong Math. Soc., 18(1) (2005), 1-22.
[15] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier North Holand, New York,
1983.
[16] P. V. Subrahmanyam, A Common xed point theorem in fuzzy metric spaces, Information
Sciences, 83 (1995), 109-112