Document Type : Research Paper


1 Department of Mathematics, University of Tebessa, 12000, Algeria

2 Department of Mathematics, University of Larbi Ben M’Hidi, Oum-El-Bouaghi, 04000, Algeria


We prove a related fixed point theorem for n mappings which are
not necessarily continuous in n fuzzy metric spaces using an implicit relation
one of them is a sequentially compact fuzzy metric space which generalize
results of Aliouche, et al. [2], Rao et al. [14] and [15].


[1] A. Aliouche and B. Fisher, Fixed point theorems for mappings satisfying implicit relation
on two complete and compact metric spaces, Applied Mathematics and Mechanics., 27(9)
(2006), 1217-1222.
[2] A. Aliouche, F. Merghadi and A. Djoudi, A related fixed point theorem in two fuzzy metric
spaces, J. Nonlinear Sci. Appl., 2(1) (2009), 19-24.
[3] Y. J. Cho, Fixed points in fuzzy metric spaces, J. Fuzzy. Math., 5(4) (1997), 949-962.
[4] B. Fisher, Fixed point on two metric spaces, Glasnik Mat., 16(36) (1981), 333-337.
[5] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and Systems,
64 (1994), 395-399.
[6] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389.
[7] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica., 11
(1975), 326-334.
[8] M. S. El Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos,
Solitons and Fractals., 9 (1998), 517-29.
[9] M. S. El Naschie, A review of E-infinity theory and the mass spectrum of high energy particle
physics, Chaos, Solitons and Fractals., 19 (2004), 209-36.
[10] M. S. El Naschie, On a fuzzy Kahler-like manifold which is consistent with two-slit experiment,
Int. J. of Nonlinear Science and Numerical Simulation., 6 (2005), 95-98.
[11] M. S. El Naschie, The idealized quantum two-slit gedanken experiment revisited criticism and
reinterpretation, Chaos, Solitons and Fractals., 27 (2006), 9-13.
[12] M. S. El Naschie On two new fuzzy Kahler manifols, Klein modular space and ’t Hooft
holographic principles, Chaos, Solitons & Fractals., 29 (2006), 876-881.
[13] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation,
Demonstratio Math., 32 (1999), 157-163.
[14] K. P. R. Rao, N. Srinivasa Rao, T. Ranga Rao and J. Rajendra Prasad, Fixed and related fixed
point theorems in sequentially compact fuzzy metric spaces, Int. Journal of Math. Analysis,
2(28) (2008), 1353-1359
[15] K. P. R. Rao, A. Aliouche and G. Ravi Babu, Related fixed point theorems in fuzzy metric
spaces, J. Nonlinear Sci. Appl., 1(3) (2008), 194-202
[16] J. Rodr´ıguez L´opez and S. Ramaguera, The hausdorff fuzzy metric on compact sets, Fuzzy
Sets and Systems, 147 (2004), 273-283.
[17] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334.
[18] Y. Tanaka, Y. Mizno, T. Kado, Chaotic dynamics in friedmann equation, Chaos, Solitons
and Fractals., 24 (2005), 407-422.
[19] M. Telci, Fixed points on two complete and compact metric spaces, Applied Mathematics
and Mechanics, 22(5) (2001), 564-568.
[20] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.