[1] B. Chen and X. P. Liu, Delay-dependent robust H-innite control for T-S fuzzy systems with
time delay, IEEE Trans. Fuzzy Systems, 13 (2005), 238-249.
[2] B. Chen, C. Lin, X. P. Liu and S. C. Tong, Guaranteed cost control of T{S fuzzy systems
with input delay, Int. J. Robust Nonlinear Control, 18 (2008), 1230-1256.
[3] B. Chen, X. P. Liu, S. C. Tong and C. Lin, Observer-based stabilization of T{S fuzzy systems
with input delay, IEEE Trans. Fuzzy Systems, 16 (2008), 652-663.
[4] B. Chen, X. Liu, S. Tong and C. Lin, guaranteed cost control of T-S fuzzy systems with state
and input delay, Fuzzy Sets and Systems, 158 (2007), 2251-2267.
[5] M. Chen, G. Feng, H. Ma and G. Chen, Delay-dependent H-innite lter design for discrete-
time fuzzy systems with time-varying delays, IEEE Trans. Fuzzy Systems, 17 (2009), 604-616.
[6] W. H. Chen, Z. H. Guan and X. M. Lu, Delay-dependent output feedback guaranteed cost
control for uncertain time-delay systems, Automatica, 44 (2004), 1263-1268.
[7] J. Dong, Y. Wang and G. Yang, Control synthesis of continuous-time T-S fuzzy systems
with local nonlinear models, IEEE Trans. Systems, Man, Cybernetics-Part B, 39 (2009),
1245-1258.
[8] B. Z. Du, J. Lam and Z. Shu, Stabilization for state/input delay systems via static and
integral output feedback, Automatica, 46 (2010), 2000-2007.
[9] D. L. Elliott, Bilinear systems in Encyclopedia of Electrical Engineering, New York: Wiley,
1999.
[10] H. J. Gao, J. Lam and Z. D. Wang, Discrete bilinear stochastic systems with time-varying
delay: stability analysis and control synthesis, Chaos, Solitons and Fractals, 34 (2007), 394-
404.
[11] H. J. Gao, X. Liu and J. Lam, Stability analysis and stabilization for discrete-time fuzzy
systems with time-varying delay, IEEE Trans. Systems, Man, Cybernetics-Part B, 39 (2009),
306-316.
[12] D. W. C. Ho and Y. Niu, Robust fuzzy design for nonlinear uncertain stochastic systems via
sliding-mode control, IEEE Trans Fuzzy Systems, 15 (2007), 350-358.
[13] H. L. Huang and F. G. Shi, Robust H1 control for TCS time-varying delay systems with
norm bounded uncertainty based on LMI approach, Iranian Journal of Fuzzy Systems, 6
(2009), 1-14.
[14] L. H. Keel and S. P. Bhattacharryya, Robust, fragile, or optimal, IEEE Trans. Automatic
Control, 42 (1997), 1098-1105.
[15] J. H. Kim, Delay-dependent robust and non-fragile guaranteed cost control for uncertain
singular systems with time-varying state and input delays, International Journal of Control,
Automation and Systems, 7 (2009), 357-364.
[16] F. Leibfritz, An LMI-based algorithm for designing suboptimal static H2/H-innite output-
feedback controllers, SIAM J Control Optimization, 57 (2001), 1711-1735.
[17] J. M. Li, G. Zhang and C. Du, Robust H-innity control for a class of multiple input fuzzy
bilinear systems with uncertainties, Control Theory and Applications, 26 (2009), 1298-1302.
[18] L. Li and X. D. Liu, New approach on robust stability for uncertain T{S fuzzy systems with
state and input delays, Chaos, Solitons and Fractals, 40 (2009), 2329-2339.
[19] T. H. S. Li and S. H. Tsai, T-S fuzzy bilinear model and fuzzy controller design for a class
of nonlinear systems, IEEE Trans. Fuzzy Systems, 15 (2007), 494-505.
[20] T. H. S. Li, S. H. Tsai and et al, Robust H-innite fuzzy control for a class of uncertain
discrete fuzzy bilinear systems, IEEE Trans. Systems, Man, Cybernetics-Part B, 38 (2008),
510-526.
[21] R. R. Mohler, Bilinear control processes, New York: Academic, 1973.
[22] C. T. Pang and Y. Y. Lur, On the stability of Takagi-Sugeno fuzzy systems with time-varying
uncertainties, IEEE Trans. Fuzzy Systems, 16 (2008), 162-170.
[23] R. E. Precup, S. Preitl, J. K. Tar, M. L. Tomescu, M. Takacs, P. Korondi and P. Baranyi,
Fuzzy control systems performance enhancement by iterative learning control, IEEE Trans.
Industrial Electronics, 55 (2008), 3461-3475.
[24] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis: a linear matrix
inequality approach, John Wiley and Sons, 2001.
[25] S. H. Tsai and T. H. S. Li, Robust fuzzy control of a class of fuzzy bilinear systems with
time-delay, Chaos, Solitons and Fractals, 39 (2007), 2028-2040.
[26] R. J. Wang, W. W. Lin and W. J. Wang, Stabilizability of linear quadratic state feedback
for uncertain fuzzy time-delay systems, IEEE Trans. Systems, Man, Cybernetics-Part B, 34
(2004), 1288-1292.
[27] H. N. Wu and H. X. Li, New approach to delay-dependent stability analysis and stabilization
for continuous-time fuzzy systems with time-varying delay, IEEE Trans. Fuzzy Systems, 15
(2007), 482-493.
[28] D. D. Yang and K. Y. Cai, Reliable guaranteed cost sampling control for nonlinear time-delay
systems, Mathematics and Computers in Simulation, 80 (2010), 2005-2018.
[29] G. H. Yang and J. L. Wang, Non-fragile H-innite control for linear systems with multiplica-
tive controller gain variations, Automatica, 37 (2001), 727-737.
[30] G. H. Yang, J. L. Wang and C. Lin, H-innite control for linear systems with additive
controller gain variations, Int. J Control, 73 (2000), 1500-1506.
[31] J. S. Yee, G. H. Yang and J. L. Wang, Non-fragile guaranteed cost control for discrete-time
uncertain linear systems, Int. J Systems Science, 32 (2001), 845-853.
[32] K. W. Yu and C. H. Lien, Robust H-innite control for uncertain T{S fuzzy systems with
state and input delays, Chaos, Solitons and Fractals, 37 (2008), 150-156.
[33] D. Yue and J. Lam, Non-fragile guaranteed cost control for uncertain descriptor systems with
time-varying state and input delays, Optimal Control Applications and Methods, 26 (2005),
85-105.
[34] B. Y. Zhang, S. S. Zhou and T. Li, A new approach to robust and non-fragile H-innitecontrol
for uncertain fuzzy systems, Information Sciences, 177 (2007), 5118-5133.
[35] J. Zhang, Y. Xia and R. Tao, New results on H-innite ltering for fuzzy time-delay systems,
IEEE Trans. Fuzzy Systems, 17 (2009), 128-137.
[36] J. H. Zhang, P. Shi and J. Q. Qiu, Non-fragile guaranteed cost control for uncertain stochastic
nonlinear time-delay systems, Journal of the Franklin Institute, 3462009676-690.
[37] S. S. Zhou, J. Lam and W. X. Zheng, Control design for fuzzy systems based on relaxed
non-quadratic stability and H-innite performance conditions, IEEE Trans. Fuzzy Systems,
15 (2007), 188-198.
[38] S. S. Zhou and T. Li, Robust stabilization for delayed discrete-time fuzzy systems via basis-
dependent Lyapunov-Krasovskii function, Fuzzy Sets and Systems, 151 (2005), 139-153.