[1] T. Bag and S. K. Samanta, Fuzzy bounded linear operators in Felbin’s type fuzzy normed
linear spaces, Fuzzy Sets and Systems, 159 (2008), 685-707.
[2] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151
(2005), 513-547.
[3] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992),
239-248.
[4] C. Felbin, The completion of a fuzzy normed linear space, Mathematical Analysis and Applications,
174 (1993), 428-440.
[5] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984),
215-229.
[6] E. Kreyszig, Introductory functional analysis with applications, John Wiley and Sons, New
York, 1978.
[7] A. Narayanan, S. Vijayabalaji and N. Thillaigovindan, Intuitionistic fuzzy bounded linear
operators, Iranian Journal of Fuzzy Systems, 4(1) (2007), 89-101.
[8] M. Rafi and M. S. M. Noorani, Fixed point theorem on intuitionistic fuzzy metric spaces,
Iranian Journal of Fuzzy Systems, 3(1) (2006), 23-29.
[9] R. Saadati, S. Sedghi and H. Zhou, A common fixed point theorem for -weakly commuting
maps in L-fuzzy metric spaces, Iranian Journal of Fuzzy Systems, 5(1) (2008), 47-53.
[10] J. Xiao and X. Zhu, Fuzzy normed space of operators and its completeness, Fuzzy Sets and
Systems, 133 (2003), 389-399.
[11] J. Xiao and X. Zhu, On linearly topological structure and property of fuzzy normed linear
space, Fuzzy Sets and Systems, 125 (2002), 153-161.