[1] S. Abbasbandy and B. Asady, Ranking of fuzzy numbers by sign distance, Inform. Sci., 176
(2006), 2405-2416.
[2] S. Abbasbandy and T. Hajjari, A new approach for ranking of trapezoidal fuzzy numbers,
Comput. Math. Appl., 57 (2009), 413-419.
[3] S. Abbasbandy and T. Hajjari, An improvement on centroid point method for ranking of
fuzzy numbers, J. Sci. I.A.U., 78 (2011), 109-119.
[4] M. Adamo, Fuzzy decision trees, Fuzzy Sets and Systems, 4 (1980), 207-219.
[5] B. Asady, The revised method of ranking LR fuzzy number based on deviation degree, Expert
Syst with Applications, 37 (2010), 5056-5060.
[6] J. F. Baldwin and N. C. F. Guild, Comparison of fuzzy numbers on the same decision space,
Fuzzy Sets and Systems, 2 (1979), 213-233.
[7] S. Bass and H. Kwakernaak,Rating and ranking of multiple-aspect alternatives using fuzzy
sets, Automatica, 13 (1977), 47-58.
[8] G. Bortolan and R. Degani, A review of some methods for ranking fuzzy numbers, Fuzzy Sets
and Systems, 15 (1985), 1-19.
[9] S. H. Chen, Ranking fuzzy numbers with maximizing set and minimizing set, Fuzzy Sets and
Systems, 17 (1985), 113-129.
[10] W. K. Chang, Ranking of fuzzy utilities with triangular membership functions, International
Conference on Plicy Analysis and Informations Systems, Tamkang University, R. O. C.,
(1981), 163-171.
[11] C. H. Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and
Systems, 95 (1998), 307-317.
[12] S. J. Chen and S. M. Chen, Fuzzy risk analysis based on ranking of generalized trapezoidal
fuzzy numbers, Applied Intelligence, 26 (2007), 1-11.
[13] S. M. Chen and J. H. Chen, Fuzzy risk analysis based on ranking generalized fuzzy numbers
with dierent heights and dierent spreads, Expert Systs with Applications, 36 (2009), 6833-
6842.
[14] S. J Chen and C. L. Hwang, Fuzzy multiple attribute decision making, Spinger-Verlag, Berlin,
1992.
[15] S. M. Chen and K. Sanguansat, Analysing fuzzy risk based on a new fuzzy ranking generalized
fuzzy numbers with dierent heights and dierent spreads, Expert Systs with Applications,
38 (2011), 2163-2171.
[16] C. C. Chen and H. C. Tang, Ranking non-normal pnorm trapezoidal fuzzy numbers with
integral value, Comput. Math. Appl., 56 (2008), 2340-2346.
[17] F. Choobineh and H. Li, An index for ordering fuzzy numbers, Fuzzy Sets and Systems, 54
(1993), 287-294.
[18] S. Y. Chou, L. Q. Dat and F. Y. Vincent, A revised method for ranking fuzzy numbers using
maximizing set and minimizing set, Comput. Ind. Eng., 61 (2011), 1342-1384.
[19] T. Chu and C. Tsao, Ranking fuzzy numbers with an area between the centroid point and
orginal point, Comput. Math. Appl., 43 (2002), 11-117.
[20] L. Q. Dat, F. Y. Vincent and S. Y chou, An improved ranking method for fuzzy numbers
based on the centroid-index, International Fuzzy Systems, 14 (3) (2012), 413-419.
[21] K. Deep, M. L. Kansal and K. P. Singh, Ranking of alternatives in fuzzy environment using
integral value, J. Math. Stat. Allied Fields, 1(2) (2007), 2070-2077.
[22] M. Delgado, M. A. Vila and W. Voxman, On a canonical representation of fuzzy numbers,
Fuzzy Sets and Systems, 93 (1998), 125-135.
[23] Y. Deng and Q. Liu, A TOPSIS-based centroid index ranking method of fuzzy numbers and
its application in decision-making, Cybernetic and Systems, 36 (2005), 581-595.
[24] Y. Deng, Z. F. Zhu and Q. Liu, Ranking fuzzy numbers with an area method using of gyration,
Comput. Math. Appl., 51 (2006), 1127-1136.
[25] D. Dubios and H. Prade, Operations on fuzzy numbers, Internat. J. System Sci., 9 (1978),
613-626.
[26] M. S. Garcia and M. T. Lamata, A modication of the index of Liou and Wang for ranking
fuzzy numbers, Int.J. Uncer. Fuzz. Know. Based Syst., 14(4) (2007).
[27] T. Hajjari, On deviation degree methods for ranking fuzzy numbers, Australian Journal of
Basic and Applied Sciences, 5(5) (2011), 750-758.
[28] T. Hajjari, Ranking of fuzzy numbers based on ambiguity degree, Australian Journal of Basic
and Applied Sciences., 5(1) (2011), 62-69.
[29] T. Hajjari and S. Abbasbandy, A note on " The revised method of ranking LR fuzzy number
based on deviation degree", Expert Syst with Applications, 38 (2011), 13491-13492.
[30] R. Jain, Decision-making in the presence of fuzzy variable, IEEE Trans. Systems Man and
Cybernet., 6 (1976), 698-703.
[31] R. Jain, A procedure for multi-aspect decision making using fuzzy sets. Internat. J. Systems
Sci., 8 (1977), 1-7.
[32] A. Kumar, P. Singh, P. Kaur and A. Kaur, RM approach for ranking of L-R type generalized
fuzzy numbers, Soft Cumput, 15 (2011), 1373-1381.
[33] A. Kumar, P. Singh and A. Kuar, Ranking of generalized exponentialfuzzy numbers using
integral value approach, Int.J.Adv.Soft.Comput.Appl., 2(2) (2010), 221-230.
[34] A. Kumar, P. Singh, P. Kuar and A. Kuar, A new approach for ranking of L R type
generalized fuzzy numbers, Expert Syst. Appl., 38 (2011), 10906-10910.
[35] A. Kumar, P. Singh, A. Kaur and P. Kaur, A new approach for ranking of nonnormal pnorm
trapezoidal fuzzy numbers, Comput. Math. Appl., 57 (2011), 881-887.
[36] T. S. Liou and M. J. Wang, Ranking fuzzy numbers with integral value, Fuzzy Sets and
Systems, 50 (1992), 247-255.
[37] X. W. Liu and S. L. Han, Ranking fuzzy numbers with preference weighting function expec-
tationc, Comput. Math. Appl., 49 (2005), 1455-1465.
[38] S. Murakami, H. Maeda and S. Imamura, Fuzzy decision analysis on development of cen-
tralized regional energycontrol system, Proceeding of the IFAC Symposium Marseille, (1983),
363-368.
[39] P. Phani Bushan Rao and R. Shankar, Ranking fuzzy numbers with a distance method
using circumcenter of centroids an index of modality, Advance in Fuzzy Systems,
dio:10.1155/2011/178308, 2011.
[40] S. Rezvani, Ranking generalized fuzzy numbers with Euclidian distance by the incentre of
centroid, Mathematica Aeterna, 3 (2013), 103-114.
[41] F. Y. Vincent and L. Q. Dat, An improved ranking method for fuzzy numbers with integral
values, Appl. Soft Comput., 14 (2014), 603-608.
[42] Y. J.Wang and H. Sh. Lee, The revised method of ranking fuzzy numbers with an erea between
the centroid and original points, Comput. Math. Appl., 55 (2008), 2033-2042.
[43] Z. X. Wang, Y. J. Liu, Z. P. Fan and B. Feng, Ranking L-R fuzzy number based on diviation
degree, Information Sciences, 179 (2009), 2070-2077.
[44] W. Wang and Z. Wang, Total orderings dened on the set of all fuzzy numbers, Fuzzy Sets
and Sysemts, 243 (2014), 131-141.
[45] Y. M. Wang and Y. Luo, Area ranking of fuzzy numbers based on positive and negative ideal
points, Comput. Math. Appl., 58 (2009), 1776-1779.
[46] X. Wang and E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I),
Fuzzy Sets and Systems, 118 (2001), 375-385.
[47] X. Wang and E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (II),
Fuzzy Sets and Systems, 118 (2001), 387-405.
[48] R. R. Yager, On choosing between fuzzy subsets, Kybernetes, 9 (1980), 151-154.
[49] R. R. Yager, On a general class of fuzzy connective, Fuzzy Sets and Systems, 4 (1980),
235-242.
[50] R. R. Yager, A procedure for ordering fuzzy subests of the unit interval, Inform. Sciences, 24
(1981), 143-161.
[51] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.