[1] B. Ali and M. Abbas, Suzuki type xed point theorem for Fuzzy mappings in ordered metric
spaces, Fixed Point Theory Appl., 2013:9 (2013), 1-19.
[2] J. W. de Bakker and E. P. de Vink, A metric approach to control
ow semantics, in: Proc.
Eleventh Summer Conference on General Topology and Applications, Ann. New York Acad.
Sci., 806 (1996), 11-27.
[3] J. W. de Bakker and E. P. de Vink, Denotational models for programming languages: appli-
cations of Banach's xed point theorem, Topology Appl., 85(1-3) (1998), 35-52.
[4] J. W. de Bakker and E. P. de Vink, Control Flow Semantics, Cambridge, MA, USA: The
MIT Press, 1996.
[5] A. Deb Ray and P. K. Saha, Fixed point theorems on generalized fuzzy metric spaces,. Hacet.
J. Math. Stat., 39(1) (2010), 1-9.
[6] V. D. Estruch and A. Vidal, A note on xed fuzzy points for fuzzy mappings, Rend Istit.
Univ. Trieste, 32 (2001), 39-45.
[7] J. X. Fang, On xed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 46(1)
(1992), 107-113.
[8] P. Flajolet, Analytic analysis of algorithms, In: W. Kuich (Ed.), Automata, Languages and
Programming, 19th Internat. Colloq. ICALP'92, Vienna, July 1992, in: Lecture Notes in
Computer Science, Berlin: Springer, 623 (1992), 186-210.
[9] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and Systems,
64(3) (1994), 395-399.
[10] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets
and Systems, 90(3) (1997), 365-368.
[11] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(3) (1988),
385-389.
[12] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Sys-
tems, 115(1) (2000), 485-489.
[13] V. Gregori and A. Sapena, On xed point theorems in fuzzy metric spaces, Fuzzy Sets and
Systems, 125(2) (2002), 245-253.
[14] R. H. Haghi, Sh. Rezapour and N. Shahzad, Some xed point generalizations are not real
generalizations, Nonlinear Anal., 74(5) (2011), 1799-1803.
[15] S. Heilpern, Fuzzy mappings and xed point theorem, J. Math. Anal. Appl., 83(2) (1981),
566-569.
[16] G. Kahn, The semantics of a simple language for parallel processing, in: Proc. IFIP Congress,
North-Holland, Amsterdam: Elsevier, (1974), 471-475.
[17] F. Kiany and A. Amini-Harandi, Fixed point and endpoint theorems for set-valued fuzzy
contraction maps in fuzzy metric spaces, Fixed Point Theory Appl., 2011:94 (2011), 1-9.
[18] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(5)
(1975), 336-344.
[19] R. L. Kruse, Data structures and program design, Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1984.
[20] Y. Liu and Z. Li, Coincidence point theorems in probabilistic and fuzzy metric spaces, Fuzzy
Sets and Systems, 158(1) (2007), 58-70.
[21] S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topol-
ogy and Applications, Ann. New York Acad. Sci., 728 (1994), 183-197.
[22] D. Mihet, On the existence and the uniqueness of xed points of Sehgal contractions, Fuzzy
Sets and Systems, 156(1) (2005), 135-141.
[23] D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems,
158(8) (2007), 915-921.
[24] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete
metric spaces, J. Math. Anal. Appl., 141(1) (1989), 177-188.
[25] S. B. Nadler, Multivalued contraction mappings, Pacic J. Math., 30(2) (1969), 475-488.
[26] S. Phiangsungnoen, W. Sintunavarat and P. Kumam, Fuzzy xed point theorems in Hausdor
fuzzy metric spaces, J. Inequal. Appl., 2014:201 (2014), 1-10.
[27] A. Razani, A contraction theorem in fuzzy metric space, Fixed Point Theory Appl., 2005(3)
(2005), 257-265.
[28] J. Rodrguez-Lopez and S. Romaguera, The Hausdor fuzzy metric on compact sets, Fuzzy
Sets and Systems, 147(2) (2004), 273-283.
[29] S. Romaguera, A. Sapena and P. Tirado, The Banach xed point theorem in fuzzy quasi-
metric spaces with application to the domain of words, Topology Appl., 15(10) (2007),
2196-2203.
[30] R. Saadati, S. M. Vaezpour and Y. J. Cho, Quicksort algorithm: Application of a xed point
theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, J. Comput. Appl.
Math., 228(1) (2009), 219-225.
[31] P. Salimi, C. Vetro and P. Vetro, Some new xed point results in non-Archimedean fuzzy
metric spaces, Nonlinear Anal. Model. Control, 18(3) (2013), 344-358.
[32] B. Schweizer and A. Sklar, Statistical metric spaces, Pacic J. Math., 10(1) (1960), 385-389.
[33] C. S. Sen, Fixed degree for fuzzy mappings and a generalization of Ky Fan's theorem, Fuzzy
Sets and Systems, 24(1) (1987), 103-112.
[34] T. Som and R. N. Mukherjee, Some xed point theorems for fuzzy mappings, Fuzzy Sets and
Systems, 33(2) (1989), 213-219.
[35] D. Turkoglu and B. E. Rhoades, A xed fuzzy point for fuzzy mapping in complete metric
spaces, Math. Commun., 10(2) (2005), 115-121.
[36] L. A. Zadeh, Fuzzy Sets, Inf. Control, 8(3) (1965), 338-353.