[1] C. Croarkin and R.Varner, Measurement Assurance for Dimensional Measurements on
Integrated-Circuit Photo masks, NBS Technical Note 1164, U.S. Department of Commerce,
Washington D.C., USA, 1982.
[2] M. H. FazelZarandi and A. Alaeddini, Using Adaptive Nero-Fuzzy Systems to Monitor Linear
Quality Proles, J. Uncertain System, 4(2) (2010 ), 147-160.
[3] Sh. Ghobadi, K. Noghondarian, R. Noorossana and S. M. Sadegh Mirhosseini, Developing
a multivariate approach to monitor fuzzy quality proles, Quality & Quantity, 48 (2014),
817-836.
[4] H. Hassanpur, H. R. Maleki and M. A. Yaghoobi, A goal programming approach for fuzzy
linear regression with nonfuzzy input and fuzzy output data, Asia Pacic J. Operational
Research., 26(5) (2009), 1-18.
[5] S. Z. Hosseinifard, M. Abdollahian and P. Zeephongsekul, Application of articial neural
networks in linear prole monitoring, Expert Systems with Applications, 38 (2011), 4920-
4928.
[6] L. Kang and S. L. Albin, On-line monitoring when the process yields a linear prole, J.
Quality Technology, 32(4) (2000), 418-426.
[7] K. Kim, M. A. Mahmoud and W. H. Woodall, On the monitoring of linear proles, J. Quality
Technology, 35 (2003), 317-328.
[8] R. Korner and W. Nather, Linear regression with random fuzzy variables: extended classical
estimates, best linear estimates, least squares estimates, J. Information Sciences, 109 (1998),
95-118.
[9] Z. Li and Z. Wang, An exponentially weighted moving average scheme with variable sampling
intervals for monitoring linear proles, Computers & Industrial Engineering, 59 (2010), 630-
637.
[10] V. Monov, B. Sokolov and S. Stefan, Grinding in Ball Mill: Modeling and Process Control,
Cybernetics and Information Technologies, 12(2) (2012).
[11] D. C. Montgomery, Introduction to Statistical Quality Control, John Wiley and Sons, New
York, 2009.
[12] S. T. A. Niaki, B. Abbasi and J. Arkat, A generalized linear statistical model approach to
monitor proles, Int. J. Engineering, Transactions A: Basics, 20(3) (2007), 233-242.
[13] K. Noghondarian and Sh. Ghobadi, Developing a univariate approach to phase-I monitoring
of fuzzy quality proles, Int. J. Industrial Engineering Computations, 3 (2012), 829-842.
[14] R. Noorossana, A. Saghaei and A. H. Amiri, Statistical Analysis of Prole Monitoring, John
Wiley and Sons, Inc. Hoboken, New Jersey, 2011.
[15] A. Saghaei, M. Mehrjoo and A. Amiri, ACUSUM-based method for monitoring simple linear
proles, Int. J. Advanced Manufacturing Technology, 45(11) (2009), 1252-1260.
[16] S. Senturk, N. Erginel, I. Kaya and C. Kahraman, Fuzzy exponentially weighted moving av-
erage control chart for univariate data with a real case application, Applied Soft Computing,
22 (2014), 1-10
[17] S. M. Taheri and M. Are, Testing fuzzy hypotheses based on fuzzy test statistic, Soft Computing
, 13 (2009), 617-625.
[18] R. Viertl, Statistical Methods for Fuzzy Data, John Wiley and Sons, Austria, 2011.
[19] J. Zhang, Z. Li and Z. Wang, Control chart based on likelihood ratio for monitoring linear
proles, Computational Statistics and Data Analysis, 53 (2009), 1440-1448.
[20] J. Zhu and D. K. J. Lin, Monitoring the slops of linear proles, Quality Engineering, 22(1)
(2010), 1-12.
[21] C. Zou, Y. Zhang and Z. Wang, Control chart based on change-point model for monitoring
linear proles, IIE Transactions, 38(12) (2006), 1093-1103.
[22] C. Zou, C. Zhou, Z. Wang and F. Tsung, A self-starting control chart for linear proles, J.
Quality Technology, 39(4) (2007), 364-375.