[1] R. P. Agarwal, M. Meehan and D. O'Regan, Fixed point theory and applications, Cambridge
University Press, 2001.
[2] A. Amini-Harandi and H. Emami, A xed point theorem for contraction type maps in partially
ordered metric spaces and application to ordinary dierential equations, Nonlinear Anal., 72
(2010), 2238-2242.
[3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations
integrales, Fund. Math., 3 (1922), 133{181.
[4] R. Baskaran and P. V. Subrahmanyam, A note on the solution of a class of functional
equations, Applicable Anal., 22 (1986), 235{241.
[5] R. Bellman, Methods of nonliner analysis, vol. II, 61 of Mathematics in Science and Engi-
neering, Academic Press, New York, NY, USA, 1973.
[6] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20
(1969), 458{464.
[7] D. Dukic , Z. Kadelburg and S. Radenovic, Fixed points of Geraghty type mappings in various
generalized metric spaces, Abstract Appl. Anal., Article ID 561245 (2011), 13 pages.
[8] M. Edelstein, On xed and periodic points under contractive mappings, J. London Math.
Soc., 37 (1962), 74{79.
[9] M. Edelstein, An extension of Banach contraction principle, Proc. Amer. Math. Soc., 12 (1)
(1961), 7{10.
[10] V. D. Estruch and A. Vidal, A note on xed fuzzy points for fuzzy mappings, Rend Istit.
Univ. Trieste., 32 (2001), 39-45.
[11] M. Geraghty, On contractive mappings, Proc Amer Math Soc., 40 (1973), 604{608.
[12] M. E. Gordji, M. Ramezani, Y. J. Cho and S. Pirbavafa, A generalization of Geraghty's
theorem in partially ordered metric spaces and applications to ordinary dierential equations,
Fixed Point Theory Appl., 1 (74) (2012), pages 9.
[13] M. E. Gordji, H. Baghani, H. Khodaei and M. Ramezani, Geraghty's xed point theorem for
special multivalued mappings, Thai J. Math., 10 (2012), 225{231.
[14] R. H. Haghi, Sh. Rezapour and N. Shahzad, Some xed point generalizations are not real
generalizations, Nonlinear Anal., 74 (2011), 1799{1803.
[15] S. Heilpern, Fuzzy mappings and fuzzy xed point theorems, J. Math. Anal. Appl., 83 (1981),
566{569.
[16] J. Jachymski, Equivalent conditions for generalized contractions on (ordered) metric spaces,
Nonlinear Analysis: Theory, Methods Appl., 3 (74), (2011), 768{774.
[17] G. Jungck, Commuting mappings and xed points, Amer. Math Monthly, 83 (1976), 261{263.
[18] B. S. Lee and S. J. Cho, A xed point theorem for contractive type fuzzy mappings, Fuzzy
Sets and Systems, 61 (1994), 309{312.
[19] S. B. Nadler, Multivalued contraction mappings, Pacic J. Math., 30 (1969), 475{488.
[20] J. J. Nieto and R. R. Lopez, Contractive mapping theorems in partially ordered sets and
applications to ordinary dierential equations, Order, 22 (3) (2005), 223{239.
[21] S. Park, Fixed points of fô€€€contractive maps, Rocky Mountain J. Math., 8 (4) (1978), 743{
750.
[22] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13 (1962), 459{465.
[23] B. E. Rhoades, A comparison of various denitions of contractive mappings, Transaction.
Amer. Math. Soc., 226 (1977), 257{290.
[24] V. M. Sehgal, A xed point theorem for mappings with a contractive iterate, Proc. Amer.
Math. Soc., 23 (3) (1969), 631{634.
[25] C. S. Sen, Fixed degree for fuzzy mappings and a generalization of Ky Fan's theorem, Fuzzy
Sets and Systems, 24 (1987), 103{112.
[26] T. Suzuki, Mizoguchi and Takahashi's xed point theorem is a real generalization of Nadler's,
J. Math. Anal. Appl., 340 (2008), 752{755.
[27] D. Turkoglu and B. E. Rhoades, A xed fuzzy point for fuzzy mapping in complete metric
spaces, Math. Commun., 10 (2005), 115{121.
[28] J. S. W. Wong, Mappings of contractive type on abstract spaces, J. Math. Anal. Appl., 37
(1972), 331-340.
[29] L. A. Zadeh, Fuzzy Sets, Informations and Control, 8 (1965), 103-112.
[30] E. H. Zarantonello, Solving functional equations by contractive averaging, Mathematical Re-
search Center, Madison, Wisconsin, Technical Summary Report No. 160, June 1960.
[31] E. Zeidler, Nonlinear functional analysis and its applications I: Fixed Point Theorems,
Springer{Verlag, Berlin, 1986.