[1] J. Adamek, Introduction to coalgebra, Theory Appl. Categ., 14 (2005), 157{199.
[2] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and concrete categories: the joy of cats,
Dover Publications (Mineola, New York), 2009.
[3] J. Adamek, J. Rosicky and E. M. Vitale, Algebraic theories. A categorical introduction to
general algebra, Cambridge University Press, 2011.
[4] J. Adamek, M. Sobral and L. Sousa, Morita equivalence of many-sorted algebraic theories,
J. Algebra, 297(2) (2006), 361{371.
[5] D. Aerts, E. Colebunders, A. van der Voorde and B. van Steirteghem, State property systems
and closure spaces: a study of categorical equivalence, Int. J. Theor. Phys., 38(1) (1999),
359{385.
[6] D. Aerts, E. Colebunders, A. van der Voorde and B. van Steirteghem, On the amnestic
modication of the category of state property systems, Appl. Categ. Struct., 10(5) (2002),
469{480.
[7] F. Bayoumi and S. E. Rodabaugh, Overview and comparison of localic and xed-basis topological
products, Fuzzy Sets Syst., 161(18) (2010), 2397{2439.
[8] F. Borceux, Handbook of categorical algebra. Volume 1: basic category theory, Cambridge
University Press, 1994.
[9] F. Borceux, Handbook of categorical algebra. Volume 2: categories and structures, Cambridge
University Press, 1994.
[10] F. Borceux and E. M. Vitale, On the notion of bimodel for functorial semantics, Appl. Categ.
Struct., 2(3)(1994), 283{295.
[11] A. Carboni and P. Johnstone, Connected limits, familial representability and Artin glueing,
Math. Struct. Comput. Sci., 5(4) (1995), 441{459.
[12] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182{190.
[13] P. M. Cohn, Universal algebra, D. Reidel Publ. Comp., 1981.
[14] J. T. Denniston, A. Melton and S. E. Rodabaugh, Lattice-valued topological systems, In:
U. Bodenhofer, B. De Baets, E. P. Klement, and S. Saminger-Platz (Eds.), Abstracts of the
30th Linz seminar on fuzzy set theory, Johannes Kepler Universitat, Linz, (2009), 24{31.
[15] J. T. Denniston, A. Melton and S. E. Rodabaugh, Lattice-valued predicate transformers and
interchange systems, In: P. Cintula, E. P. Klement, and L. N. Stout (Eds.), Abstracts of the
31st Linz seminar on fuzzy set theory, Johannes Kepler Universitat, Linz, (2010), 31{40.
[16] J. T. Denniston, A. Melton and S. E. Rodabaughe, Formal concept analysis and latticevalued
interchange systems, In: D. Dubois, M. Grabisch, R. Mesiar, and E. P. Klement
(Eds.), Abstracts of the 32nd Linz seminar on fuzzy set theory, Johannes Kepler Universitat,
Linz, (2011), 41{47.
[17] J. T. Denniston, A. Melton and S. E. Rodabaugh, Interweaving algebra and topology: Latticevalued
topological systems, Fuzzy Sets Syst., 192 (2012), 58{103.
[18] J. T. Denniston and S. E. Rodabaugh, Functorial relationships between lattice-valued topology
and topological systems, Quaest. Math., 32(2) (2009), 139{186.
[19] R. Diaconescu, Grothendieck institutions, Appl. Categ. Structures, 10 (2002), 338{402.
[20] D. Dikranjan, E. Giuli and A. Toi, Topological categories and closure operators, Quaest.
Math., 11(3) (1988), 323{337.
[21] J. J. Dukarm, Morita equivalence of algebraic theories, Colloq. Math., 55(1) (1988), 11{17.
[22] P. Eklund, Categorical fuzzy topology, Ph.D. thesis, Abo Akademi, 1986.
[23] P. Eklund, M. A. Galan and W. Gahler, Partially ordered monads for monadic topologies,
rough sets and Kleene algebras, Electron. Notes Theor. Comput. Sci., 225 (2009), 67{81.
[24] A. Frascella, C. Guido and S. Solovyov, Algebraically-topological systems and attachments,
Iran. J. Fuzzy Syst., 10(3) (2013), 65{102.
[25] W. Gahler, Monadic topology { a new concept of generalized topology, In: W. Gahler (Eds.),
Recent developments of general topology and its applications, international conference in
memory of Felix Hausdor (1868 - 1942), Math. Research, vol. 67, Akademie-Verlag, Berlin,
(1992), 136{149.
[26] W. Gahler, General topology { the monadic case, examples, applications, Acta Math. Hung.,
88(4) (2000), 279{290.
[27] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145{174.
[28] J. A. Goguen, The fuzzy Tychono theorem, J. Math. Anal. Appl., 43 (1973), 734{742.
[29] G. Gratzer, Universal algebra, 2nd ed., Springer, 2008.
[30] C. Guido, Powerset operators based approach to fuzzy topologies on fuzzy sets, In: S. E. Rodabaugh
and E. P. Klement (Eds.), Topological and algebraic structures in fuzzy sets. A Handbook
of recent developments in the mathematics of fuzzy sets, Kluwer Academic Publishers,
(2003), 401{413.
[31] C. Guido, Fuzzy points and attachment, Fuzzy Sets Syst., 161(6) (2010), 2150{2165.
[32] H. Herrlich and G. E. Strecker, Category theory, 3rd ed., Sigma Series in Pure Mathematics,
vol. 1, Heldermann Verlag, 2007.
[33] D. Hofmann, Topological theories and closed objects, Adv. Math., 215(2) (2007), 789{824.
[34] U. Hohle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980),
659{673
[35] U. Hohle and A. P. Sostak, Axiomatic foundations of xed-basis fuzzy topology, In: U. Hohle
and S. E. Rodabaugh (Eds.), Mathematics of fuzzy sets: logic, topology and measure theory,
Kluwer Academic Publishers, (1999), 123{272.
[36] T. Ihringer, Allgemeine Algebra. Mit einem Anhang uber universelle Coalgebra von H. P.
Gumm, Heldermann Verlag, 2003.
[37] G. Jager, A category of L-fuzzy convergence spaces, Quaest. Math., 24(4) (2001), 501{517.
[38] P. Johnstone, J. Power, T. Tsujishita, H. Watanabe and J. Worrell, On the structure of
categories of coalgebras, Theor. Comput. Sci., 260(1-2) (2001), 87{117.
[39] P. T. Johnstone, Stone spaces, Cambridge University Press, 1982.
[40] D. Kruml and J. Paseka, Algebraic and categorical aspects of quantales, In: M. Hazewinkel
(Eds.), Handbook of algebra, vol. 5, Elsevier, (2008), 323{362.
[41] T. Kubiak and A. Sostak, Foundations of the theory of (L;M)-fuzzy topological spaces, In:
U. Bodenhofer, B. De Baets, E. P. Klement, and S. Saminger-Platz (Eds.), Abstracts of the
30th Linz seminar on fuzzy set theory, Johannes Kepler Universitat, Linz, (2009), 70{73.
[42] F. W. Lawvere, Functorial semantics of algebraic theories, Ph.D. thesis, Columbia University,
1963.
[43] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976),
621{633.
[44] S. Mac Lane, Categories for the working mathematician, 2nd ed., Springer-Verlag, 1998.
[45] E. G. Manes, Algebraic theories, Springer-Verlag, 1976.
[46] K. Morita, Duality for modules and its applications to the theory of rings with minimum
condition, Sci. Rep. Tokyo Kyoiku Daigaku, 6(A) (1958), 83{142.
[47] G. Preu, Semiuniform convergence spaces, Math. Jap., 41(3) (1995), 465{491.
[48] A. Pultr, Frames, In: M. Hazewinkel, (Eds.), Handbook of algebra, vol. 3, North-Holland
Elsevier, (2003), 789{858.
[49] S. E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets Syst., 40(2) (1991), 297{
345.
[50] S. E. Rodabaugh, Categorical frameworks for Stone representation theories, In: S. E. Rodabaugh,
E. P. Klement, and U. Hohle (Eds.), Applications of category theory to fuzzy subsets,
Kluwer Academic Publishers, (1992), 177{231.
[51] S. E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, In: U. Hohle and
S. E. Rodabaugh (Eds.), Mathematics of fuzzy sets: logic, topology and measure theory,
Kluwer Academic Publishers, (1999), 273{388.
[52] S. E. Rodabaugh, Relationship of algebraic theories to powerset theories and fuzzy topological
theories for lattice-valued mathematics, Int. J. Math. Math. Sci., 2007 (2007), 1{71.
[53] S. E. Rodabaugh, Functorial comparisons of bitopology with topology and the case for redundancy
of bitopology in lattice-valued mathematics, Appl. Gen. Topol., 9(1) (2008), 77{108.
[54] S. E. Rodabaugh, Relationship of algebraic theories to powersets over objects in Set and
SetC, Fuzzy Sets Syst., 161(3) (2010), 453{470.
[55] K. I. Rosenthal, Quantales and their applications, Addison Wesley Longman, 1990.
[56] J. J. M. M. Rutten, Universal coalgebra: a theory of systems, Theor. Comput. Sci., 249(1)
(2000), 3{80.
[57] S. Solovjovs, Categorically-algebraic topology, Abstracts of the International Conference on
Algebras and Lattices (Jardafest), Charles University, Prague, (2010), 20{22.
[58] S. Solovjovs, Lattice-valued categorically-algebraic topology, Abstracts of the 91st Peripatetic
Seminar on Sheaves and Logic (PSSL 91), University of Amsterdam, Amsterdam, (2010), 21.
[59] S. Solovjovs, Functorial semantics of topological theories, Abstracts of Applications of Algebra
XV, Institute of Mathematics and Computer Science of Jan D lugosz University,
Czestochowa, (2011), 37{41.
[60] S. Solovyov, Sobriety and spatiality in varieties of algebras, Fuzzy Sets Syst., 159(19) (2008),
2567{2585.
[61] S. Solovyov, Categorically-algebraic dualities, Acta Univ. M. Belii, Ser. Math., 17 (2010),
57{100.
[62] S. Solovyov, Variable-basis topological systems versus variable-basis topological spaces, Soft
Comput., 14(10) (2010), 1059{1068.
[63] S. Solovyov, Fuzzy algebras as a framework for fuzzy topology, Fuzzy Sets Syst., 173(1)
(2011), 81{99.
[64] S. Solovyov, Categorical foundations of variety-based topology and topological systems, Fuzzy
Sets Syst., 192 (2012), 176{200.
[65] S. Solovyov, Topological systems and Artin glueing, Math. Slovaca, 62(4) (2012), 647{688.
[66] W. Tholen, Relative Bildzerlegungen und algebraische Kategorien, Ph.D. thesis, Westfalisch
Wilhelms-Universitat Munster, 1974.
[67] S. Vickers, Topology via logic, Cambridge University Press, 1989.
[68] O. Wyler, On the categories of general topology and topological algebra, Arch. Math., 22
(1971), 7{17.
[69] O. Wyler, TOP categories and categorical topology, General Topology Appl., 1 (1971), 17{28.
[70] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338{365.