Functorial semantics of topological theories

Document Type : Research Paper

Author

Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic

Abstract

Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce the quasicategory of catalg topological theories and consider its functorial relationships with the quasicategory of the categories of models, in order to provide convenient means for studying topological structures via the properties of their corresponding theories.

Keywords


 [1] J. Adamek, Introduction to coalgebra, Theory Appl. Categ., 14 (2005), 157{199.
[2] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and concrete categories: the joy of cats,
Dover Publications (Mineola, New York), 2009.
[3] J. Adamek, J. Rosicky and E. M. Vitale, Algebraic theories. A categorical introduction to
general algebra, Cambridge University Press, 2011.
[4] J. Adamek, M. Sobral and L. Sousa, Morita equivalence of many-sorted algebraic theories,
J. Algebra, 297(2) (2006), 361{371.
[5] D. Aerts, E. Colebunders, A. van der Voorde and B. van Steirteghem, State property systems
and closure spaces: a study of categorical equivalence, Int. J. Theor. Phys., 38(1) (1999),
359{385.
[6] D. Aerts, E. Colebunders, A. van der Voorde and B. van Steirteghem, On the amnestic
modi cation of the category of state property systems, Appl. Categ. Struct., 10(5) (2002),
469{480.
[7] F. Bayoumi and S. E. Rodabaugh, Overview and comparison of localic and xed-basis topological
products, Fuzzy Sets Syst., 161(18) (2010), 2397{2439.
[8] F. Borceux, Handbook of categorical algebra. Volume 1: basic category theory, Cambridge
University Press, 1994.
[9] F. Borceux, Handbook of categorical algebra. Volume 2: categories and structures, Cambridge
University Press, 1994.
[10] F. Borceux and E. M. Vitale, On the notion of bimodel for functorial semantics, Appl. Categ.
Struct., 2(3)(1994), 283{295.
[11] A. Carboni and P. Johnstone, Connected limits, familial representability and Artin glueing,
Math. Struct. Comput. Sci., 5(4) (1995), 441{459.
[12] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182{190.
[13] P. M. Cohn, Universal algebra, D. Reidel Publ. Comp., 1981.
[14] J. T. Denniston, A. Melton and S. E. Rodabaugh, Lattice-valued topological systems, In:
U. Bodenhofer, B. De Baets, E. P. Klement, and S. Saminger-Platz (Eds.), Abstracts of the
30th Linz seminar on fuzzy set theory, Johannes Kepler Universitat, Linz, (2009), 24{31.
[15] J. T. Denniston, A. Melton and S. E. Rodabaugh, Lattice-valued predicate transformers and
interchange systems, In: P. Cintula, E. P. Klement, and L. N. Stout (Eds.), Abstracts of the
31st Linz seminar on fuzzy set theory, Johannes Kepler Universitat, Linz, (2010), 31{40.
[16] J. T. Denniston, A. Melton and S. E. Rodabaughe, Formal concept analysis and latticevalued
interchange systems, In: D. Dubois, M. Grabisch, R. Mesiar, and E. P. Klement
(Eds.), Abstracts of the 32nd Linz seminar on fuzzy set theory, Johannes Kepler Universitat,
Linz, (2011), 41{47.
[17] J. T. Denniston, A. Melton and S. E. Rodabaugh, Interweaving algebra and topology: Latticevalued
topological systems, Fuzzy Sets Syst., 192 (2012), 58{103.
[18] J. T. Denniston and S. E. Rodabaugh, Functorial relationships between lattice-valued topology
and topological systems, Quaest. Math., 32(2) (2009), 139{186.
[19] R. Diaconescu, Grothendieck institutions, Appl. Categ. Structures, 10 (2002), 338{402.
[20] D. Dikranjan, E. Giuli and A. Toi, Topological categories and closure operators, Quaest.
Math., 11(3) (1988), 323{337.
[21] J. J. Dukarm, Morita equivalence of algebraic theories, Colloq. Math., 55(1) (1988), 11{17.
[22] P. Eklund, Categorical fuzzy topology, Ph.D. thesis, Abo Akademi, 1986.
[23] P. Eklund, M. A. Galan and W. Gahler, Partially ordered monads for monadic topologies,
rough sets and Kleene algebras, Electron. Notes Theor. Comput. Sci., 225 (2009), 67{81.
[24] A. Frascella, C. Guido and S. Solovyov, Algebraically-topological systems and attachments,
Iran. J. Fuzzy Syst., 10(3) (2013), 65{102.
[25] W. Gahler, Monadic topology { a new concept of generalized topology, In: W. Gahler (Eds.),
Recent developments of general topology and its applications, international conference in
memory of Felix Hausdor (1868 - 1942), Math. Research, vol. 67, Akademie-Verlag, Berlin,
(1992), 136{149.
[26] W. Gahler, General topology { the monadic case, examples, applications, Acta Math. Hung.,
88(4) (2000), 279{290.
[27] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145{174.
[28] J. A. Goguen, The fuzzy Tychono theorem, J. Math. Anal. Appl., 43 (1973), 734{742.
[29] G. Gratzer, Universal algebra, 2nd ed., Springer, 2008.
[30] C. Guido, Powerset operators based approach to fuzzy topologies on fuzzy sets, In: S. E. Rodabaugh
and E. P. Klement (Eds.), Topological and algebraic structures in fuzzy sets. A Handbook
of recent developments in the mathematics of fuzzy sets, Kluwer Academic Publishers,
(2003), 401{413.
[31] C. Guido, Fuzzy points and attachment, Fuzzy Sets Syst., 161(6) (2010), 2150{2165.
[32] H. Herrlich and G. E. Strecker, Category theory, 3rd ed., Sigma Series in Pure Mathematics,
vol. 1, Heldermann Verlag, 2007.
[33] D. Hofmann, Topological theories and closed objects, Adv. Math., 215(2) (2007), 789{824.
[34] U. Hohle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980),
659{673
[35] U. Hohle and A. P. Sostak, Axiomatic foundations of xed-basis fuzzy topology, In: U. Hohle
and S. E. Rodabaugh (Eds.), Mathematics of fuzzy sets: logic, topology and measure theory,
Kluwer Academic Publishers, (1999), 123{272.
[36] T. Ihringer, Allgemeine Algebra. Mit einem Anhang uber universelle Coalgebra von H. P.
Gumm, Heldermann Verlag, 2003.
[37] G. Jager, A category of L-fuzzy convergence spaces, Quaest. Math., 24(4) (2001), 501{517.
[38] P. Johnstone, J. Power, T. Tsujishita, H. Watanabe and J. Worrell, On the structure of
categories of coalgebras, Theor. Comput. Sci., 260(1-2) (2001), 87{117.
[39] P. T. Johnstone, Stone spaces, Cambridge University Press, 1982.
[40] D. Kruml and J. Paseka, Algebraic and categorical aspects of quantales, In: M. Hazewinkel
(Eds.), Handbook of algebra, vol. 5, Elsevier, (2008), 323{362.
[41] T. Kubiak and A. Sostak, Foundations of the theory of (L;M)-fuzzy topological spaces, In:
U. Bodenhofer, B. De Baets, E. P. Klement, and S. Saminger-Platz (Eds.), Abstracts of the
30th Linz seminar on fuzzy set theory, Johannes Kepler Universitat, Linz, (2009), 70{73.
[42] F. W. Lawvere, Functorial semantics of algebraic theories, Ph.D. thesis, Columbia University,
1963.
[43] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976),
621{633.
[44] S. Mac Lane, Categories for the working mathematician, 2nd ed., Springer-Verlag, 1998.
[45] E. G. Manes, Algebraic theories, Springer-Verlag, 1976.
[46] K. Morita, Duality for modules and its applications to the theory of rings with minimum
condition, Sci. Rep. Tokyo Kyoiku Daigaku, 6(A) (1958), 83{142.
[47] G. Preu, Semiuniform convergence spaces, Math. Jap., 41(3) (1995), 465{491.
[48] A. Pultr, Frames, In: M. Hazewinkel, (Eds.), Handbook of algebra, vol. 3, North-Holland
Elsevier, (2003), 789{858.
[49] S. E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets Syst., 40(2) (1991), 297{
345.
[50] S. E. Rodabaugh, Categorical frameworks for Stone representation theories, In: S. E. Rodabaugh,
E. P. Klement, and U. Hohle (Eds.), Applications of category theory to fuzzy subsets,
Kluwer Academic Publishers, (1992), 177{231.
[51] S. E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, In: U. Hohle and
S. E. Rodabaugh (Eds.), Mathematics of fuzzy sets: logic, topology and measure theory,
Kluwer Academic Publishers, (1999), 273{388.
[52] S. E. Rodabaugh, Relationship of algebraic theories to powerset theories and fuzzy topological
theories for lattice-valued mathematics, Int. J. Math. Math. Sci., 2007 (2007), 1{71.
[53] S. E. Rodabaugh, Functorial comparisons of bitopology with topology and the case for redundancy
of bitopology in lattice-valued mathematics, Appl. Gen. Topol., 9(1) (2008), 77{108.
[54] S. E. Rodabaugh, Relationship of algebraic theories to powersets over objects in Set and
SetC, Fuzzy Sets Syst., 161(3) (2010), 453{470.
[55] K. I. Rosenthal, Quantales and their applications, Addison Wesley Longman, 1990.
[56] J. J. M. M. Rutten, Universal coalgebra: a theory of systems, Theor. Comput. Sci., 249(1)
(2000), 3{80.
[57] S. Solovjovs, Categorically-algebraic topology, Abstracts of the International Conference on
Algebras and Lattices (Jardafest), Charles University, Prague, (2010), 20{22.
[58] S. Solovjovs, Lattice-valued categorically-algebraic topology, Abstracts of the 91st Peripatetic
Seminar on Sheaves and Logic (PSSL 91), University of Amsterdam, Amsterdam, (2010), 21.
[59] S. Solovjovs, Functorial semantics of topological theories, Abstracts of Applications of Algebra
XV, Institute of Mathematics and Computer Science of Jan D lugosz University,
Czestochowa, (2011), 37{41.
[60] S. Solovyov, Sobriety and spatiality in varieties of algebras, Fuzzy Sets Syst., 159(19) (2008),
2567{2585.
[61] S. Solovyov, Categorically-algebraic dualities, Acta Univ. M. Belii, Ser. Math., 17 (2010),
57{100.
[62] S. Solovyov, Variable-basis topological systems versus variable-basis topological spaces, Soft
Comput., 14(10) (2010), 1059{1068.
[63] S. Solovyov, Fuzzy algebras as a framework for fuzzy topology, Fuzzy Sets Syst., 173(1)
(2011), 81{99.
[64] S. Solovyov, Categorical foundations of variety-based topology and topological systems, Fuzzy
Sets Syst., 192 (2012), 176{200.
[65] S. Solovyov, Topological systems and Artin glueing, Math. Slovaca, 62(4) (2012), 647{688.
[66] W. Tholen, Relative Bildzerlegungen und algebraische Kategorien, Ph.D. thesis, Westfalisch
Wilhelms-Universitat Munster, 1974.
[67] S. Vickers, Topology via logic, Cambridge University Press, 1989.
[68] O. Wyler, On the categories of general topology and topological algebra, Arch. Math., 22
(1971), 7{17.
[69] O. Wyler, TOP categories and categorical topology, General Topology Appl., 1 (1971), 17{28.
[70] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338{365.