[1] A. E. Bashirov, E. Kurpnar and A. Ozyapc, Multiplicative calculus and its applications, J.
Math. Anal. Appl., 337(1) (2008), 36-48.
[2] A. F. Cakmak and F. Basar, Some new results on sequence spaces with respect to non-
Newtonian calculus, J. Inequal. Appl., 2012(1) (2012), 228.
[3] M. Grossman and R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, MA, 1972.
[4] M. Grossman, Bigeometric Calculus, Archimedes Foundation, Rockport, Mass, USA, 1983.
[5] M. Grossman, The First Nonlinear System of Dierential and Integral Calculus, Mathco,
1979.
[6] U. Kadak and H. Efe, Matrix transformations between certain sequence spaces over the non-
Newtonian complex eld, Sci. World J., 2014 (2014).
[7] U. Kadak and M. Ozluk, Generalized Runge-Kutta method with respect to the non-Newtonian
calculus, Abstr. Appl. Anal., 2014 (2014).
[8] U. Kadak and F. Basar, On Fourier series of fuzzy-valued function, Sci. World J., 2014
(2014).
[9] M. Matloka, Sequences of fuzzy numbers, BUSEFAL, 28 (1986), 28-37.
[10] E. Msrl, and Y. Gurefe, Multiplicative Adams-Bashforth-Moulton methods, Numer. Algorithms,
57(4) (2011), 425-439.
[11] M. Stojakovic and Z. Stojakovic, Series of fuzzy sets, Fuzzy Sets Syst., 160(21) (2009),
3115{3127.
[12] M. Stojakovic and Z. Stojakovic, Addition and series of fuzzy sets, Fuzzy Sets Syst., 83(3)
(1996), 341{346.
[13] O. Talo and F. Basar, Determination of the duals of classical sets of sequences of fuzzy
numbers and related matrix transformations, Comput. Math. Appl., 58(4) (2009), 717-733.
[14] O. Talo and F. Basar, Quasilinearity of the classical sets of sequences of the fuzzy numbers
and some applications, Taiwanese J. Math., 14(5) (2010), 1799-1819.
[15] S. Tekin and F. Basar, Certain sequence spaces over the non-Newtonian complex eld, Abstr.
Appl. Anal., 2012 (2013).
[16] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338{353.