ON GENERALIZED FUZZY MULTISETS AND THEIR USE IN COMPUTATION

Document Type : Research Paper

Author

Greek Molecular Computing Group, 366, 28th October St., GR-67100 Xanthi, Greece

Abstract

An orthogonal approach to the fuzzification of both multisets and hybrid
sets is presented. In particular, we introduce $L$-multi-fuzzy and
$L$-fuzzy hybrid sets, which are general enough and in spirit with the
basic concepts of fuzzy set theory. In addition, we study the properties of
these structures. Also, the usefulness of these structures is examined in
the framework of mechanical multiset processing. More specifically, we
introduce a variant of fuzzy P~systems and, since simple
fuzzy membrane systems have been introduced elsewhere, we simply extend
previously stated results and ideas.

Keywords


[1] M. Akay, M. Cohen and D. Hudson, Fuzzy sets in life sciences, Fuzzy Sets and Systems, 90
(1997), 219-224.
[2] S. Anelli, E. Damiani, O. D'Antona and D. E. Loeb, Getting results with negative thinking,
LACES 05A-95-17, eprint arXiv:math.CO/9502214.
[3] D. A. Baum, Individuality and the existence of species through time, Systematic Biology,
47(4) (1989), 641-653.
[4] G. Berry and G. Boudol, The chemical abstract machine, Theoretical Comput. Sci., 96
(1992), 217-248.
[5] W. Blizard, The development of multiset theory, Modern Logic, 1 (1991), 319-352.
[6] R. De Nicola and S. A. Smolka, Concurrency: theory and practice, ACM Computing Surveys
28A, 4es (1996), 52.
[7] J. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Application, 18 (1967), 145-
174.
[8] D. E. Knuth, The art of computer programming, Seminumerical Algorithms, Addisson-
Wesley, 2 (1981).
[9] D. Loeb, Sets with a negative number of elements, Advances in Mathematics, 91 (1992),
64-74.
[10] S. Miyamoto, Fuzzy multisets and their generalizations, In Multiset Processing, C. Calude,
G. Paun, G. Rozenberg and A. Salomaa, eds., in Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 2235 (2001), 225-235.
[11] S. Miyamoto, Data structure and operations for fuzzy multisets, In Transactions on Rough
Sets II: Rough Sets and Fuzzy Sets, J. F. Peters, A. Skowron, D. Dubois, J. Grzymala-Busse
and M. Inuiguchi, eds., in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 3135
(2004), 189-200.
[12] G. Paun, Membrane computing: an introduction, Springer-Verlag, Berlin, 2002.
[13] J. R. Searle, Mind: a brief introduction, Oxford University Press, Oxford, UK, 2004.
[14] L. A. Stein, Challenging the computational metaphor: implications for how we think, Cyber-
netics & Systems, 30(6) (1999), 473-507.
[15] A. Syropoulos, Mathematics of multisets, In Multiset Processing, C. Calude, G. Paun,
G. Rozenberg and A. Salomaa, eds., in Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 2235 (2001), 347-358.
[16] A. Syropoulos, Fuzzifying P systems, The Computer Journal, 49(5) (2006), 619-628.
[17] A. Syropoulos, Fuzzy chemical abstract machines, CoRR abs/0903.3513, 2009.
[18] A. Syropoulos, On nonsymmetric multi-fuzzy sets, Critical Review IV, (2010), 35{41.
[19] A. Tzouvaras, The linear logic of multisets, Logic Journal of the IGPL, 6(6) (1998), 901-916.
[20] A. Tzouvaras, The logic of multisets continued: the case of disjunction, Studia Logica, 75
(2003), 287-304.
[21] S. Vickers, Topology via logic, Cambridge Tracts in Theoretical Computer Science, Cambridge
University Press, Cambridge, U. K., 6 (1990).
[22] K. Weihrauch, Computable analysis: an introduction, Springer-Verlag, Berlin/Heidelberg,
2000.
[23] R. R. Yager, On the theory of bags, Int. J. General Systems, 13 (1986), 23-37.
[24] X. Zheng and K. Weihrauch, The arithmetical hierarchy of real numbers, Mathematical Logic
Quarterly, 47(1) (2001), 51-65.