[1] D. Filev and R. R. Yager, On the issue of obtaining OWA operator weights, Fuzzy Sets and
Systems, 94 (1988), 157-169.
[2] R. Fullr and P. Majlender, An analytic approach for obtaining maximal entropy OWA operator
weights, Fuzzy Sets and Systems, 124 (2001), 53-57.
[3] X. W. Liu, On the methods of decision making under uncertainty with probability information,
Int. J. Intell. Syst., 19 (2004), 1217-1238.
[4] X. W. Liu and H. Lou, Parameterized additive neat OWA operators with different orness
levels, Int. J. Intell. Syst., 21 (2006), 1045-1072.
[5] M. Marimin, M. Umano, I. Hatono and H. Tamura, Linguistic labels for expressing fuzzy
preference relations in fuzzy group decision making, IEEE Trans. Syst. Man. Cybern. B, 28
(1998), 205-218.
[6] M. O’Hagan, Aggregating template or rule antecedents in real-time expert systems with fuzzy
set, In: Grove P, editor. Proc 22nd Annual IEEE Asilomar Conf on Signals, Systems, Computers.
California, 1988, 681-689.
[7] J. I. Pel´aez and J. M. Do˜na, Majority additive-ordered weighting averaging: A new neat
ordered weighting averaging operators based on the majority process, Int. J. Intell. Syst., 18
(2003), 469-481.
[8] J. I. Pel´aez and J. M. Do˜na, A majority model in group decision making using QMA-OWA
operators, Int. J. Intell. Syst., 21 (2006), 193-208.
[9] C. E. Shannon, A mathematical theory of communication, Bell System Tech., 27 (1948),
379-423 and 623-656.
[10] J. Wu, C. Y. Liang and Y. Q. Huang, An argument-dependent approach to determining OWA
operator weights based on the rule of maximum entropy, Int. J. of Intell. Syst., 22 (2007),
209-221.
[11] Z. Xu, An overview of methods for determining OWA weights, Int. J. Intell. Syst., 20 (2005),
843-865.
[12] R. R. Yager, On ordered weighted averaging aggregation operators in multicriteria decisionmaking,
IEEE Trans. Syst. Man. Cybern., 18 (1988), 183-190.
[13] R. R. Yager, Families of OWA operators, Fuzzy Sets and Systems, 59 (1993), 125-143.
[14] R. R. Yager and D. P. Filev, Parameterized and-like and or-like OWA operators, Int. J. Gen.
Sys., 22 (1994), 297-316.
[15] R. R. Yager, Quantifier guided aggregation using OWA operators, Int. J. Intell. Syst., 11
(1996), 49-73.
[16] R. R. Yager, On the cardinality and attituditional charactersitics of fuzzy measures, Int. J.
Gen. Sys., 31 (2002), 303-329.
[17] R. R. Yager, Centered OWA operators, Soft Comp., 11 (2007), 631-639.
[18] L. A. Zadeh, A computational approach to fuzzy quantifiers in natural languages, Comput.
and Math. with App., 9 (1983), 149-184.
[19] M. Zarghami, F. Szidarovszky and R. Ardakanian, Sensitivity analysis of the OWA operator,
IEEE Trans. Syst. Man. Cybern. B, 38(2) (2008), 547-552.
[20] M. Zarghami and F. Szidarovszky, Revising the OWA operator for multi criteria decision
making problems under uncertainty, Euro. J. Oper. Res., 2008, (Article in press: doi:
10.1016/j.ejor.2008.09.014).