[1] S. Bodjanova, Median value and median interval of a fuzzy number, Information Sciencees,
172 (2005), 73-89.
[2] G. K. Bhattacharyya and R. A. Johnson, Statistical concepts and methods, John Wiley and
Sons, 1977.
[3] C. Carlsson and R. Full´er, On possibilistic mean value and variance of fuzzy numbers, Fuzzy
Sets and Systems, 122 (2001), 315-326.
[4] D. Dubois and H. Prade, Fuzzy sets and systems, theory and applications, Academikc press,
New York, 1980.
[5] D. Dubois and H. Prade, The mean value of a fuzzy number, Fuzzy Sets and Systems, 24
(1987), 279-300.
[6] D. Dubois and H. Prade, Fundamentals of fuzzy sets, The Handbooks of Fuzzy Sets Series,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
[7] A. Galvan, Univariate equtions, Internet, 2005.
[8] M. Ma, A. Kandel and M. Friedman, A new approach for defuzzification, Fuzzy Sets and
Systems, 111 (2000), 351-356.
[9] C. R. Marques, P. D. Neves and L. M. Sarmento, Evaluating core inflation indicator, Economic
Modelling, 20 (2003), 765-775.
[10] P. McAdam and P. McNelis, Forecasting inflation with thick model and neural networks,
Economic Modelling, 22 (2005), 848-867.
[11] A. V. Patel and B. M. Mohan, Some numerical aspects of center of area defuzzification
method, Fuzzy Sets and Systems, 132 (2002), 401-409.
[12] A. K. Rose, A stable internatinal monetary systems emerges: Inflation targeting is Bretton
Woods, reversed, Journal of International Money and Finance, 26 (2007), 663-681.
[13] A. Saiedifar and E. Pasha, The percentiles of trapezoidal fuzzy numbers and their applications,
ICREM3, Kuala Lumpur, Malaysia, Proceedings of Pure Mathemathics Statistics, 2007, 61-
66.
[14] A. Stuart, J. K. Ord and Kendall’s, Advanced theory of statistics, Distribution Theory 6th
ed. New York, Oxford University Press, 1 (1998).
[15] L. A. Zadeh, A fuzzy set-theoritic interpretation of linguistic hedges, Journal of Cybernetics,
2 (1972), 4-34.