[1] T. G. Bhashkar and V. Lakshmikantham, Fixed point theorems in partially ordered metric
spaces and applications, Nonlinear Anal., 65 (2006), 1379{1393.
[2] S. S. Chang, Y. J. Cho and S. M. Kang, Nonlinear Operator Theory in Probabilistic Metric
Spaces, Nova Science Publishers, Inc., New York, 2001.
[3] B. S. Choudhury, K. Das and P. N. Dutta, A xed point result in Menger spaces using a real
function, Acta Math. Hungar., 122 (2009), 203{216.
[4] B. S. Choudhury and A. Kundu, A coupled coincidence point result in partially ordered metric
spaces for compatible mappings, Nonlinear Anal., 73 (2010), 2524{2531.
[5] L. B. Ciric, Solving the Banach xed point principle for nonlinear contractions in probabilistic
metric spaces, Nonlinear Anal., 72 (2010), 2009{2018.
[6] L. B. Ciric, R. P. Agarwal and B. Samet, Mixed monotone-generalized contractions in par-
tially ordered probabilistic metric spaces, Fixed Point Theory Appl., (2011) 2011:56.
[7] L. B. Ciric, D. Mihet and R. Saadati, Monotone generzliaed contractions in partially ordered
probabilistic metric spaces, Topology Appl., 156 (2009), 2838{2844.
[8] J. X. Fang, Fixed point theorems of local contraction mappings on Menger spaces, Appl.
Math. Mech., 12 (1991), 363{372.
[9] J. X. Fang, Common xed point theorems of compatible and weakly compatible maps in
Menger spaces, Nonlinear Anal., 71 (2009), 1833{1843.
[10] J. X. Fang, On '-contractions in probabilistic and fuzzy metric spaces, Fuzzy Sets Syst., 267
(2014), 86{99.
[11] O. Hadzic and E. Pap, Fixed Point Theory in PM-Spaces, Kluwer Academic Publ., 2001.
[12] X. Q. Hu, Common coupled xed point theorems for contractive mappings in fuzzy metric
spaces, Fixed Point Theory Appl., Article ID 363716 (2011), 2011.
[13] J. Jachymski, On probabilistic '-contractions on Menger spaces, Nonlinear Anal., 73 (2010),
2199{2203.
[14] K. Karapinar, Coupled xed point theorems for nonlinear contractions in cone metric spaces,
Comput. Math. Appl., 59 (2010), 3656{3668.
[15] I. Kramosi and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11
(1975), 336{344.
[16] V. Lakahmikantham and L. B. Ciric, Coupled xed point theorems for nonlinear contractions
in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341{4349.
[17] N. V. Luong and N. X. Thuan, Coupled xed points in partially ordered metric spaces and
application, Nonlinear Anal., 74 (2011), 983{992.
[18] K. Menger, Statistical metric, Proc Natl. Acad. USA., 28 (1942), 535{537.
[19] D. O'Regan and R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl.
Math. Comput., 195 (2008), 86{93.
[20] R. Saadati, Generalized distance and xed point theorems in partially ordered probabilistic
metric spaces, Mate. Vesnik, 65 (2013), 82{93.
[21] B. Samet, Coupled xed point theorems for a generalized Meir-Keeler contraction in partially
ordered metric spaces, Nonlinear Anal., 71 (2010), 4508{4517.
[22] B. Schweizer and A. Sklar, Probabilisitc Metric Spaces, Elsevier/North-Holland, New York,
1983.
[23] S. Sedghi, I. Altun and N. Shobec, Coupled xed point theorems for contractions in fuzzy
metric spaces, Nonlinear Anal., 72 (2010), 1298{1304.
[24] V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic
metric space, Math Syst. Theory, 6 (1972), 87{102.
[25] J. Z. Xiao, X. H. Zhu and Y. F. Cao, Common coupled xed point results for probabilistic
'-contractions in Menger spaces, Nonlinear Anal., 74 (2011), 4589{4600.